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ABSTRACT

In this paper, a reconstruction algorithm for frequency-domain optical tomography in human tissue is
presented. A fast and efficient multigrid finite difference (MGFD) method is adopted as a forward solver
to obtain the simulated detector responses and the required imaging operator. The solutions obtained
from MGFD method for 3-D problems with weakly discontinuous coefficients and strongly discontinuous
coefficients are compared with analytical solutions to determine the accuracy of the numerical method.
Simultaneous reconstruction of both absorption and scattering coefficients for tissue-like media is accom-
plished by solving a perturbation equation using the Born approximation. This solution is obtained by
a conjugate gradient descent method with Tikhonov regularization. Two examples are given to show the
quality of the reconstruction results. Both involve the examination of anatomically accurate optical (AAO)
models of tissue derived from segmented 3-D magnetic resonance images (MRI) to which have been as-
signed optical coefficients to the designated tissue types. One is a map of a female breast containing two
small "added pathologies”, such as tumors. The other is a map of the brain containing a ”local bleeding”
area, representing a hemorrhage. The reconstruction results show that the algorithm is computationally
practical and can yield qualitatively correct geometry of the objects embedded in the simulated human
tissue. Acceptable results are obtained even when 10% noise is present in the data.

1. INTRODUCTION

The potential for generating cross-sectional maps of tissue using NIR optical tomographic illumination
schemes has stirred an intense research effort [1-5]. The numerical methods such as finite difference method
(6], finite element method [7] and multigrid finite difference method [8] have been used to solve the forward
and inverse problem. Recently, our group has described an efficient and practical approach for optimizing
data collection and analysis strategies based on evaluation of MR-derived priors [9-11]. The basic approach
involves assignment of optical coefficients to segmented 3-D MRI data to generate AAO models of tissue.

In this paper we consider the reconstruction of optical properties of small objects (such as tumors,
bleeding, etc) embedded in an inhomogeneous background medium (such as human tissue). A finite
number of source-detector pairs of known locations is used to probe the entire medium. Our goal is to
retrieve both geometry and optical parameters (inverse problem) of objects by measuring their effects
on the propagation of near-infrared light. The nonlinear inverse scattering problem is linearized within
the Born approximation for this study. A fast and efficient numerical method, a multigrid finite difference
(MGFD) method [12-14], is also ultilized to calculate the scattered field at detector points, which is defined
as the difference between the total field with and without the added objects, and the required imaging
operator which depends on the Green’s function and the incident field (the latter would be the total field
in Born iterative algorithm [15]). As is demonstrated, the method is well suited for accurately computing
the expected field even in the presence of strong discontinuities.

The accuracy of MGFD method is verified by comparison with analytical solutions. Simultaneous
reconstruction of both absorption and scattering coefficients are accomplished by employing a conjugate
gradient descent (CGD) method with Tikhonov regularization. Two common problems encountered in
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medical diagnosis are studied. One of them refers to the female breast cancer and another one relates to
hemorrhage. In our study, the optical properties of normal female breast and human brain are derived
from segmented 3-D magnetic resonance images. Two small “added pathologies” simulating tumors, are
embedded in the simulated breast. Local bleeding in the ventricle are simulated in the brain. The sources
and detectors are distributed on a circle around the breast and the brain. The reconstructed results show
that the algorithm can efficiently determine the geometry of the objects embedded in tissue-like media
and perform well even when 10% noise is present. However we also observe that quantitative values of
optical properties of the objects are not reconstructed accurately. This is due to the application of Born
approximation. Born iterative scheme described in an accompanying paper [15] is expected to yield more
accurate result.

2. FORWARD CALCULATION USING A MULTIGRID METHOD

The frequency domain diffusion equation for the fluence rate u(r) is:
V - [D(r)Vau(r)] + [—a(r) + z’g]u(r) = -5(r), reQ (1)

where
u(r) and n(r) - (D(r)Vu(r)) are continuous at r = (z,y, ) for almost everyr € T (2)

Here (2 is a bounded region within the tissue, I' is the internal boundary of €2, n(r) is the normal vector of
T', v is the speed of light in the tissue, and S(r) represents source terms. D(r) = [3(ua(r) + p)(r))] ™! is the
diffusion coefficient, and p,(r) and p)(r) are the absorption and equivalent-isotropic scattering coefficients,
respectively. Most generally these quantities are position-dependent.

For human tissues, strong discontinuities in p,(r) and pi(r) (orD(r)) exist. For example, there are
many anatomical regions in the human body where migrating photons could encounter optically clear or
free space regions. Examples include the pleural cavity, joint spaces, fluid-filled cysts, and cerebro-spinal
fluid. The multigrid method is proven to be very efficient at solving the 3-D diffusion equation even with
strong discontinuities in the diffusion coefficient [12].

2.1 The Multigrid Finite Difference Method

To solve Eq. (1), the finite different method partitions the domain Q2 into small volume elements (voxels)
and approximates the differential operator by difference, this yields:
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H(—Haizp + i ik = Sijgs (3)

where i, j and k are the voxel indices for axes x, y and z, respectively, Az, Ay and Az are the mesh size in
z,y and z directions, respectively, and D; ; » = D(iAz,jAy,kAz).
Eq. (3) can also be denoted by:
Lu = f, (4)

where the operator L depends on the medium properties D; ;x, and f depends on the source distribution.
Rather than solving u; ;k at a fine grid directly, the multigrid method solves u from a coarse grid to the
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fine grid progressively. Among several multigrid schemes we use the full multigrid (FMG) method [14).
Letting the number of grid levels be denoted by M, we represent the original equation in (4) on the finest
grid by

Mo =¥, (5)

The operator on the coarse grid is defined recursively as:
Lk-l = (Ikk—l)TLkak—la (6)

where I*;_; is the coarse-to-fine operator from grid k — 1 to k using multilinear interpolation. The source
term on the (k — 1)th grid is given by:

£ = (TFy)Trk, (7
where
rk = fF _ [kgk _ )
is the residual on grid k. Finally, we use a relaxation sweep process given by the expression
uF — GH(ik, f¥) (9)

where G* represents the sweeps of some iterative process, such as the point Gauss-Seidel relaxation, line
Gauss-Seidel (in any combination of directions) relaxation and planar Gauss-Seidel (for three-dimensional
problems) relaxation.

Fig. 1lillustrates the basic idea of the FMG algorithm for a problem with M = 4 grid levels. The process
starts on the coarsest grid / = 1 where the discrete approximation to Eq. (3) on this grid level is solved.
The resulting solution is interpolated to the next finer grid / = 2 and used as the first approximation to
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Figure 1: A Full Multigrid (FMG) algorithm for a problem with M = 4 grids (from [14]).

the solution of this grid level. The residual is then solved by a multigrid V-cycle. This process is repeated,
interpolating the solution from one level to the next as a first approximation and solving the residual by a
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V-cycle, until the final solution is obtained on the finest level I = M. In going from one level [ to the next
finer level, / + 1, the truncation error (discrete approximation of the actual continuous function) decreases
by roughly the mesh element size ratio (hiy; /hi)P, where h; is the side length of an element at grid level [,
and p is the order of the difference approximation. The solution at each grid level by the FMG algorithm
(denoted by the double circles in Fig. 1) is accurate to at least the level of the respective truncation error.
Therefore, the FMG algorithm is very efficient.

2.2 Results of Forward Calculations

To evaluate the accuracy of the MGFD algorithm, we compare its solution to one obtained using an analyt-
ical solver [2] for a simple medium. We consider a spherical object embedded in an otherwise homogeneous
infinite medium. To simulate the solution using the MGFD, we make the following assumptions:

(1) A spherical object with a radius of 0.7 cm is embedded in a cube of volume 1000 ¢m3. The problem
is to determine the incident field and scattered field over a ring of radius 4 cm surrounding the object.

(2) To simulate a weak discontinuity, the optical properties of the background and object are pb =
0.05em™1, pb = 10.0em™" and g, = 0.1em™1, !, = 20.0cm=1, respectively. We use the Dirichlet condition
© = 0 on the boundary.

(3) To simulate a strong discontinuity, the optical properties of the background and object are u? =
0.0lem™, pb = 0.5¢em™1, and p, = 1.0em™1, iy = 30.0cm™1, respectively. This represents a 100 fold
difference in the absorption coefficient and a 60 fold difference in the scattering coefficient. We require
that u, the total field, be equal to the incident field on the boundary.

Fig. 2 shows the comparison of the amplitude and phase of the incident field and scattered field obtained
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Figure 2: Amplitude and phase of the incident and scattered field versus detector angle for different grid
spacing, due to a 0.7 cm radius object with y, = 0.1em™! and /s = 20.0cm~! embedded in surrounding
background media with p} = 0.05¢cm™! and p® = 10.0cm=1. The modulation frequency is 200MHz.
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by the analytical solution and MGFD method for the weak perturbation problem. For the MGFD method,
we show the results obtained when the 1000cm?® cube is discretized into different numbers of mesh elements.
We clearly see that the MGFD algorithm results with 33x33x33 (h ~ 3mm) and 65 x 65 x 65 (h ~ 1.5mm)
elements are very close to the analytic solution. On the other hand, the results obtained with a 17X 17 x 17
(h ~ 6mm) elements deviate significantly (a factor of 10 in the amplitude data) from the analytic solution.

Results in Fig. 3 show the comparison of the analytic and MGFD solutions for the strong perturbation
problem. In this case, it can be seen that for amplitude data, reasonably accurate results are obtained for
the incident field for 33 x 33 x 33 and 65 x 65 X 65 grid sizes, at least for larger detector angles. Results
shown in the phase plots illustrate that comparable results are obtained for the two grid sizes using the
MGFD method, but differ from the analytic result by approximately a 15 degree positive off-set.
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Figure 3: Amplitude and phase of the incident and scattered field versus detector angle for different grid
spacing, due to a 0.7 cm radius object with y, = 1.0cm™" and y's = 30.0cm™! embedded in surrounding
background media with 2 = 0.01em=! and p;b = 0.5¢cm™!. The modulation frequency is 200MHz.

Interestingly, somewhat more accurate results are obtained for the computed amplitude of the scattered
field, particular for the larger grid size. The phase data also show improved agreement with the analytic
result using the larger grid size.

3. IMAGE RECONSTRUCTION FORMULATION
3.1 The Mathematical Model

Consider an unknown 3-D object O(r) (e.g., tumor) occupying volume V,; in some inhomogeneous back-
ground (human tissue) space. The receivers collect the signal of the field scattered by the object due to
each of the transmitted field. The goal is to simultaneously reconstruct the absorption and scattering
distributions of the scatterer as a function of the three space variables x, y and z.
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From Eq. (1), we can derive the inhomogeneous scalar wave equation for photon density waves:
Viu(r) + k2 (r)u(r) = S(r)— £(r)u(r), (10)

where ky%(r) = —pub(r)/ Dy(r) 4 iw/vDy(r) is the wavenumber of the inhomogeneous background medium,
the object operator £(r) is

VD(r)-V

£(r)=0(r) + D(r)

’ reV, (11)

The object function O(r) is:
O(r) = k*(r) — ks*(r), (12)

where k%(r) = —pu,(r)/D(r) + w/vD(r). From Eq. (10), it can easily be shown that the scattering field
satisfies the following nonlinear volume intergral equation:

us(r) = f G(r, ') £(r')u(r')d?r, (13)
where

us(r) = u(r) — up(r) (14)

is the scattered field measured at the detector, u(r) is the total field inside the object due to the sources,
up(r) is the background field without object due to the sources, and the inhomogeneous background Green'’s
function satisfes:

V2G(r,r') + k3 (r)G(r, 1) = =é(r—1r') (15)

In the cases when the contrast of the scatterer is weak so that the second term on the right of Eq. (11)
is small compared to the first term, we can neglect the second term. In addition, we adopt the first-order
Born approximation u(r) 2 uy(r). Then Eq. (13) can be approximated as

us(r) = ] G(r, ¥)O(r")us(r')dr’ (16)

3.2 Simultaneous Reconstruction of Absorption and Scattering Distributions

The integral equation in (16) can be discretized to yield a linear system of equations with complex coeffi-
cients as follows:

W (mxn)O@) = U(m) (17)
where O = [O(rj,j = 1,2, -, n]T is composed of the values of O(r) at various voxels r;; u = [us(rg;,rs,),i =
1,2,---,m]7 consists of the scattered field obtained with different source-detector pairs (rq;,rs;); and W
is a weight matrix with elements:

Wi; = G(rd.‘!rj)ub(rss' - ri)év1 t=1,-:-m,j= 1, « ¢ . m, (18)

where év is the volume of a voxel. The weight matrix depends on the physics of the problem (such as the
properties of the background medium, the Green’s function, the incident field, and measurement geometry).
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It is well known that Eq. (17) of the inverse scattering problem is ill-posed. In order to find an
adequate solution of Eq. (17), the Tikhonov regularization procedure [16-17] is employed to circumvent
the instability of the problem. In this procedure, the following function E(-) is minimized:

E(0) = ||W -0 —1u|[® +4][H o], (19)

where 7 is the regularization parameter, and H is the smoothing matrix which is chosen to be an identity
matrix in this paper. The regularized solution is given by

o=[Wt.W44HY.H]"1. Wt.u (20)

where W+ and H* are the conjugate transpose of W and H, respectively. This solution is obtained by
the conjugat gradient descent method.

Once the object function is obtained, we can determine the absorption and scattering coefficients as
follows [15]:

b ImO() | Re[O(r)]

_ HeTure
ba(r) = — Tmpoy +3(ub 4 pt (L)

wfc

and
by ) = RO+ 3068 +42) + =M
o(F) = .
k Im[OG)] | 3(ub + p

wfe

(22)

4. SIMULATION RESULTS

In this section, we show the reconstruction results on the simulated female breast containing “added
pathologies” and the simulated human brain containing “added bleeding”. The optical properties in these
media are derived based on anatomic maps obtained from 3-D magnetic resonance images (MRI). Seg-
mentation of the breast data was achieved using a thresholding method followed by identify and deleting
isolated regions [18]. Multispectral MR images of the brain were obtained and segmented based on both
spatial and spectral information [19].

4.1 Results on the Simulated Female Breast

Fig. 4(a) illustrates the configuration of sources and detectors (S/D) for the breast imaging simulation,
where the S/D are uniformly spread on a ring surrounding an axial slice perpendicular to the chest wall.
A total of 10 sources and 20 detectors are on the surface of the breast. To overcome zero boundary on
the surface of the breast, we use a “matching medium” to surround the breast. The optical properties of
the matching medium are g, = 0.4cm™! and g} = 10.0cm™! which are the same as those of fat. At the
“matching medium” boundary, the Dirichlet condition u = 0 is applied. The “matching medium” has two
physical significances: (1) Enhanced sensitivity to embedded objects for image reconstruction is achieved
if the optical properties of this medium are appropriately chosen [3]; (2) To serve as a possible mechanical
support for sources and detectors located on the surface of tissue.

The breast has a volume of 9 X 8 X 7Tem?®, and the total volume being solved (with the matching medium
surrounding the breast) is 10 X 10 X 10cm? The breast was segmented into two different tissue types: fat
and parenchyma. Each tissue type was assigned a set of optical properties of absorption coefficient p, and
reduced scattering coefficient u., respectively. Two spherical “pathologies” were introduced by assigning
different p, and p, values to selected voxels in two regions. Fig. 4(b) shows the anatomic map of a sagittal
slice perpendicular to the chest wall. Fig. 4(c) shows the image of absorption coefficients in an axial slice
in the background medium. The optical properties for different tissues are listed in Table 1.
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Figure 4: ( a ) Illustration of position of source-detector configuration used. ( b ) Segmentation of the
tenth sagittal cut of MR breast images. The black color represents fat tissue, the white cooar represents
parenchyma tissue. ( ¢ ) Image of the absorption properties of an axial slice.

Table 1: Optical Properties Assigned to Different Tissue Types in the Simulated Female Breast (Unit:
em™1)

Fat Parenchyma | Tumor 1 Tumor 2
'

Ba | Ms | Ba | ms | Opa | Spg | Spa | Spy
0.04 | 10.0 [ 0.08 | 7.0 | 0.1 | 10.0 | 0.16 | 15.0
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The two objects each has a radius of 0.7 cm, separated by 3 cm. The optical properties of the two
objects are different as listed in Table 1. The forward data was calculated on a 65 X 65 X 65 grid in full
volume (1000cm?®). However to reduce computation, the reconstruction was performed only for a single
axial slice with 65x 65 grid. The weights for this 2-D slice are obtained by adding the weights in all the axial
slices. This is equivalent to assume that all the voxels in the same axial positions have the same optical
properties. The reconstruction image is an approximation to the average of all axial slices. In order to
evaluate the effect of noise in the data on the reconstruction accuracy, we compare results from the original
calculated data and those subjected to 10% (SNR=20 dB) noise. Fig. 5(a) is the actual distribution of
the magnitude of the object function (see Eq. (12)). Figs. 5(b) and 5(c) are the reconstructed object
functions (magnitude only) from the original and noise added data, respectively. Figs. 5(d)-5(f) present
similar results for the perturbation in absorption, while Figs. 5(g)-(i) are for the perturbation in scattering.
It can be seen that with this example, the reconstruction results are only accurate qualitatively, correctly
identifying the presence of two objects. But the estimated spatial range and perturbation magnitude of
the object are not very accurate. With noise-free data, the two rods are located quite accurately with
slight blurring, and the estimated perturbation magnitude is approximately half of the actual one. But
with noise-added data, the objects are poorly located (especially for the scattering properties) and the
peak perturbation values are severely underestimated.

4.2 Results on the Simulated Human Brain

For the brain imaging simulation, the S/D are evenly spread over a mid axial slice. Fig 6(a) shows the
anatomic map of this slice. The brain was segmented into four different tissue types: CSF, bone, gray
matter and white matter. Each tissue type was assigned a set of optical properties of Ko and pl. A
“bleeding” is introduced in the ventricle area by assigning different Ko and p! values to selected voxels.
Fig. 6(b) shows the inhomogeneous background medium (absorption coefficient) on the detector cross
section. Fig. 6(c) shows the position of the “added bleeding” with §u, = 1.0¢cm~! and Sl = 6.0em™1.
The optical properties assigned to different tissue types are listed in Table 2. The sources and detectors
are embedded in a “matching medium” outside the brain. The optical properties of this medium are the
same as those of the CSF.

The forward calculation was done in 3-D, with 65 X 65 x 65 grid size in a volume of 8.5 X 8 X 9¢m3. The
reconstruction was only performed for the axial slice shown in Fig. 6(b). As with the breast simulation,
the weight for this slice was obtained by adding the weights in all the axial slices. The reconstructed ob ject
function (magnitude) is shown in Fig. 6(d). The results are obtained by the CGD algorithm after 5000
iterations in the absence of added noise. The modulation frequency is 200 MHz.

Table 2: Optical Properties Assigned to Different Tissue Types in the Simulated Human Brain (Unit:
em™1)

CSF Bone Gray matter | White matter | Bleeding

Ba | Bs | Pa | B | Ba | #y | Ma T 6pa | Sl
0.01[05][001]50[02] 100 |0.1] 150 | 1.0 6.0
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Figure 5: Simultaneous reconstruction of the object function, the absorption and scattering distributions
of two sin-like objects with same radius (0.7 cm) and different optical properties (see Table 1). The two
objects separated by 3 cm are embedded in an axial slice of the breast with optical properties shown in
Fig. 4(c). The modulation frequency is 200 MHz.

SPIE Vol. 2570/ 263



(b)
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Figure 6: ( a ) Segmentation of the fourteenth axial cut of MR brain images. ( b ) Image of the absorption
properties of this axial slice. ( ¢ ) Illustration of position of “added bleeding” with éu, = 1.0em=! and
éps = 6.0cm™". ( d ) Reconstructed image of of this axial slice with added bleeding. Results shown were
obtained after 5000 iterations in the absence of added noise. The modulation frequency is 200 MHz.
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