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We present a Born iterative method for reconstructing optical properties of turbid media by means of
frequency-domain data. The approach is based on iterative solutions of a linear perturbation equation, which
is derived from the integral form of the Helmholtz wave equation for photon-density waves. In each iteration
the total field and the associated weight matrix are recalculated based on the previous reconstructed image.
We then obtain a new estimate by solving the updated perturbation equation. The forward solution, also
based on a Helmholtz equation, is obtained by a multigrid finite difference method. The inversion is carried
out through a Tikhonov regularized optimization process by the conjugate gradient descent method. Using
this method, we first reconstruct the distribution of the complex wave numbers in a test medium, from which
the absorption and the scattering distributions are then derived. Simulation results with two-dimensional
test media have shown that this method can yield quantitatively (in terms of coefficient values) as well as
qualitatively (in terms of object location and shape) accurate reconstructions of absorption and scattering dis-
tributions in cases in which the first-order Born approximation cannot work well. Both full-angle and limited-
angle measurement schemes have been simulated to examine the effect of the location of detectors and sources.
The robustness of the algorithm to noise has also been evaluated. © 1997 Optical Society of America.
[S0740-3232(97)02501-5]
1. INTRODUCTION
Optical measurements in the frequency domain have
been used to study bulk photon propagation1–5 and to im-
age objects6–10 in highly scattering media such as human
tissue. Results from these studies support the idea that
such measurements may prove a useful diagnostic tool for
early detection of tumors. The imaging problem entails
the reconstruction of the absorption and the scattering co-
efficients of an inhomogeneous scattering medium from
measurement of multiple scattered light signals on the
medium surface. This is an inverse scattering problem.
This problem is difficult because the scattered field is non-
linearly related to the properties of the medium and be-
cause scattering occurs randomly and cannot be neglected
for objects with strong contrast. These properties make
it impossible to derive a closed-form expression. In the
past, either the Born or the Rytov approximation has
been utilized to linearize the problem.11–12 However,
this approximation is not valid in the presence of strong
0740-3232/97/010325-18$10.00 ©
perturbations, i.e., when the absorption or the scattering
coefficients of the actual medium are significantly differ-
ent from those of a specified background. More general
iterative perturbation approaches have been described in
Refs. 7, 9, 13, and 14, which iteratively update and solve a
linear perturbation equation. The perturbation equa-
tions in these studies are derived based on the first-order
Taylor approximation of the detected signal. These
equations linearly relate the changes in the detector read-
ings (data) and the changes in the medium properties (the
unknown image) from a previous estimate (the back-
ground medium) through a Jacobian matrix, which is
more often referred to as the weight matrix in optical to-
mography literature. Each iteration of the perturbation
approach essentially consists of two steps: The forward
step updates the detector signal and the Jacobian matrix
based on the previous solution of the unknown image,
whereas the inverse step solves the updated perturbation
equation to yield a new estimate of the unknown image.
1997 Optical Society of America
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The approaches reported in Refs. 7 and 9 are derived
based on the diffusion approximation, whereas those in
Ref. 13 are based on the transport model.
An alternative way of setting up the perturbation equa-

tion is to discretize the integral form of the wave equation
or the diffusion equation. In fact, this type of approach
has been explored previously for the electromagnetic in-
verse scattering problem. In Refs. 15–17 the so-called
Born iterative method (BIM) and the distorted Born itera-
tive method (DBIM) have been used successfully to solve
nonlinear two-dimensional (2D) profile inversions, using
both single-frequency and time-domain data. The DBIM
is equivalent to the Newton–Kantorovich method.
Joachimowicz et al.18 have also proposed an algorithm
based on the Newton–Kantorovich method for recon-
structing objects whose dielectric properties are similar to
those of biological tissues. In such formulations the ele-
ments in the weight matrix consist of the product of the
Green’s function for a background medium and the total
field for the actual medium. In the BIM the background
medium is fixed, and only the total field is updated based
on the previous estimate of the medium. In the DBIM
the background medium is continuously updated to be the
newly estimated target medium. Consequently, both the
Green’s function and the total field also need to be up-
dated. It has been observed that the DBIM converges
faster than the BIM but that it is less robust to noise than
is the BIM.
In this paper we apply the BIM to solve for the absorp-

tion and the scattering coefficients of a turbid medium un-
der optical illumination. The approach is derived based
on the integral form of the Helmholtz wave equation.
Starting with a chosen homogeneous background field, we
employ the Born approximation to derive an initial linear
perturbation equation, which is then solved to yield the
first image. In each of the successive iterations, the total
field and the associated weight matrix are recomputed
based on the previous reconstructed image. A new esti-
mate is then obtained by solution of the updated pertur-
bation equation. This method is evaluated for several 2D
test media containing objects having relatively large con-
trast compared with the background. The results show
that accurate reconstructions can be achieved within a
small number (less than 15 in our examples) of iterations.
Reconstruction examples from both full-angle and
limited-angle measurements are presented to show the ef-
fect of the source and the detector location on reconstruc-
tion accuracy. The robustness of the proposed algorithm
to noise has been evaluated by addition of noise to simu-
lated data. It is shown that quite accurate results can be
obtained at a signal-to-noise ratio (SNR) as low as 25 dB.

2. FORWARD SOLUTION
A. Diffusive Light Transport in Turbid Media
The migration of near-infrared photons in a turbid me-
dium V can be modeled with the diffusion theory.19,20

Let ma(r) and ms8(r) represent the absorption and the
equivalent isotropic scattering coefficients in a medium,
respectively, and D(r) 5 $3@ma(r) 1 ms8(r)#%21 represent
the diffusion coefficient. In general, these quantities are
position dependent. The frequency-domain diffusion
equation for the fluence rate u(r), which is due to a sinu-
soidally intensity-modulated point source of light, is given
by1

¹ • @D~r!¹u~r!# 1 @2ma~r! 1 i~v/v !#u~r! 5 2Q~r!

r P V, (1)

where v is the speed of light in the media and Q(r)
represents the source signal. By means of the identity
¹ • @D(r)¹u(r)# 5 D(r)¹2u(r) 1 ¹u(r) • ¹D(r), Eq. (1)
becomes

¹2u~r! 1 k2~r!u~r! 5 2S~r! 2
¹u~r! • ¹D~r!

D~r!
, (2)

where

k~r! 5 @2ma~r!/D~r! 1 iv/vD~r!#1/2 (3)

is referred to as the complex wave number and S(r)
5 Q(r)/D(r). In this paper we assume that the absorp-
tion and the scattering properties change smoothly, so
that ¹D(r) is small. Under this condition, the second
term of the right-hand side of Eq. (2) can be neglected.
Then Eq. (2) becomes

¹2u~r! 1 k2~r!u~r! 5 2S~r!. (4)

Equation (4) can be solved numerically as a boundary-
value problem, with the Dirichlet condition u(r) 5 0 on
the boundary and with u(r) 5 S(r) at the source loca-
tion, rs . Different numerical methods, such as the finite
element21 and the finite difference9 methods, can be used
to solve Eq. (4). Both can be implemented in a multigrid
scheme to reduce computation time. The multigrid finite
difference (MGFD) method used here is described below.

B. Multigrid Finite Difference Method
To solve Eq. (4) for a three-dimensional (3D) domain V,
the finite difference method partitions the domain V into
small volume elements (voxels) and approximates the dif-
ferential operator by finite differences. This leads to

ui11, j,k 1 ui21, j,k

Dx2
1

ui, j11,k 1 ui, j21,k

Dy2

1
ui, j,k11 1 ui, j,k 2 1

Dz2
2 S 2

Dx2
1

2

Dy2
1

2

Dz2

2 ki, j, k
2 D ui, j, k 5 2Si, j, k , (5)

where i, j, and k are the indices for axes x, y and z,
respectively; Dx, Dy, and Dz are the mesh sizes in the
x, y, and z directions, respectively; and ki, j,k 5
k(iDx, jDy, kDz) 5 (2mai, j,k

/Di, j,k 1 iv/vDi, j,k)
1/2,with

Di, j,k 5 D(iDx, jDy, kDz), mai, j,k
5 ma(iDx, jDy, kDz).

Equation (5) can also be denoted

Lu 5 f, (6)

where the operator L depends on the medium properties
ki, j,k and f depends on the source distribution. Rather
than directly solving ui, j,k at the desired fine-grid level,
the multigrid method solves u from a coarse grid to the
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Fig. 1. Full multigrid algorithm for a problem with M 5 4 grids.

Fig. 2. (a) Amplitude and (b) phase shift of the incident wave obtained with different grid sizes in a 10 cm 3 10 cm homogeneous
medium with ma

b 5 0.05 cm21 and ms8
b 5 10.0 cm21. (c) Amplitude and (d) phase shift of the scattered field obtained with different

grid spacings, caused by a 0.7-cm-radius object, with ma 5 0.2 cm21 and ms8 5 30.0 cm21. The modulation frequency is 200 MHz.
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fine grid progressively. Among several multigrid
schemes we use the full multigrid method.22–25 Letting
the number of grid levels be denoted by M, we write the
equation solved at grid level k as

Lkuk 5 f k k 5 1, 2, . . ., M. (7)

At the finest grid (k 5 M), LM 5 L, uM 5 u, f M 5 f.
The operators on the coarse grids are defined recursively
from the original operator according to

Lk21 5 ~Ik21
k!TLkIk21

k, (8)
where Ik21
k is the coarse-to-fine operator from grid

k 2 1 to k by means of multilinear interpolation and
(Ik21

k)T is the reverse, fine-to-coarse, operator from grid
k to k 2 1. The source term on the (k 2 1)th grid is
given by

f k21 5 ~Ik21
k!Trk, (9)

where

rk 5 f k 2 Lkuk (10)
Fig. 3. Flow chart of the BIM (RLS, regularized least-squares method; CGD, conjugate gradient descent).
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is the residual on grid k. The solution of Eq. (6) at each
grid level is solved by a relaxation sweep process given by
the expression

uk ← Gk~ ũk, f k!, (11)

where ũk is the initial solution used in the relaxation pro-
cess, which is replaced by the new solution generated by
Gk. The operator Gk represents the sweeps of a certain
iterative process, such as the point Gauss–Seidel relax-
ation, the line Gauss–Seidel (in any combination of direc-
tions) relaxation, and the planar Gauss–Seidel (for 3D
problems) relaxation.26 The initial solution ũk is nor-
mally generated by interpolation of the solution uk21, i.e.,
ũk 5 Ik21

kuk21.
Figure 1 illustrates the basic idea of the full multigrid

algorithm for a problem with M 5 4 grid levels. The
process starts on the coarsest grid k 5 1, where the dis-
crete approximation to Eq. (6) on this grid level u1 is
solved. The resulting solution is interpolated to the next
finer grid, k 5 2, to yield ũ2 and is used as the first ap-
proximation to the solution u2. The residual r2 is then
calculated, and the solution u2 is obtained by a multigrid
V cycle. We repeat this process, interpolating the solu-
tion from one level to the next as a first approximation
and solving the residual by a V cycle, until the final solu-
tion is obtained on the finest level, k 5 M. In going from
one level k to the next finer level, k 1 1, the truncation
error (which is due to discrete approximation of the actual
continuous function) decreases by roughly the mesh ele-
ment size ratio (hk11 /hk)

p, where hk is the side length of
an element at grid level k and p is the order of the differ-
ence approximation. The solution at each grid level by
the full multigrid algorithm (shown by concentric circles
in Fig. 1) is accurate to at least the level of the respective
truncation error. Computational efficiency is gained be-
cause the final solution is achieved by evaluation of a se-
ries of problems having significantly fewer unknowns
than would be required had the finest grid solution been
computed directly. Hereafter we refer to this method as
the MGFD method.
Validation of this method is illustrated in Fig. 2. Here

we compare the amplitude and the phase values of the in-
cident [Figs. 2(a) and 2(b)] and the scattered [Figs. 2(c)
and 2(d)] fields, respectively, computed by the MGFD
method and by an analytic method for an infinite 2D me-
dium containing a circular object. The MGFD method is
used to compute the solution in a 10 cm 3 10 cm area
with the object at the center. The Dirichlet boundary
conditions were employed at the boundary of this area.
The modulation frequency was 200 MHz. The optical
properties of the background are ma

b 5 0.05 cm21 and
ms8

b 5 20.0 cm21. The object has a radius of 0.7 cm,
and its optical properties are ma 5 0.2 cm21 and ms8
5 30.0 cm21. A point source is located at a distance of 4
cm from the center of the object. The solution presented
are for the incident and the scattering fields at the same
distance, but at different angles with respect to the
source. It can be seen that, in general, the accuracy of
the amplitude and the phase increases with the mesh size
from 33 3 33 (h . 3 mm), 65 3 65 (h . 1.5 mm) to 129
3 129 (h . 0.78 mm). Results show very good agree-
ment between the analytic solutions (a normal-mode se-
ries method5 is employed to solve the Helmholtz equation
in 2D cylindrical coordinates) and the numerical solutions
at the finest grid level (129 3 129) for both the amplitude
and the phase of the incident field and the amplitude of
the scattering field. For the phase of the scattering field,
the MGFD method fails to provide accurate results at lo-
cations opposite the source (uuu . 100°) with mesh size
129 3 129. A possible reason is that the absorption and
the scattering perturbations are assigned as a step func-
tion in the simulated medium. There is a sharp discon-
tinuity of the optical property at the boundary of the ob-
ject, which may cause the error when the second term of
the right-hand side of Eq. (2) is neglected.

Fig. 4. (a) Data-acquisition geometry for full-angle profile inver-
sion with 10 sources and 20 detectors in a uniform ring geometry.
(b) Data-acquisition geometry for limited-angle profile inversion
with 10 sources and 20 detectors distributed uniformly along a
semicircle ranging from 265° to 65°. In both cases the radius of
the source–detector ring is 4 cm. The object radius is 0.7 cm.
The object is located either at the center or at an off-center loca-
tion. O(r) is the object function.
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Fig. 5. Reconstruction of the absorption coefficient for test case I: (a) image of the true perturbation; (b)–(f) reconstructed images after
1 (i.e., the Born approximation), 2, 3, 5, and 15 iterations, respectively.

Fig. 6. Reconstruction of the scattering coefficient for test case I: (a) image of the true perturbation; (b)–(f) reconstructed images after
1 (i.e., the Born approximation), 2, 3, 5, and 15 iterations, respectively.

Table 1. Medium Properties and Measurement Schemes in Different Simulation Studies

Test
Case

Background Properties Peak Perturbation
Object
Location

ROIa Being
Reconstructedma (cm

21) ms8 (cm21) Dma (cm
21) Dms8 (cm21)

I 0.05 10.0 0.15 15.0 Center 3.125 cm 3 3.125 cm
Full angle a 5 0, b 5 0 40 3 40 elements
II 0.05 15.0 0.20 25.0 Off center 3.125 cm 3 3.125 cm
Full angle a 5 1.5, b 5 0 40 3 40 elements
III 0.05 15.0 0.20 15.0 Two objects 6.25 cm 3 3.59 cm
Full angle 0.15 20.0 a1 5 1.5, b1 5 0 80 3 46 elements

a2 5 21.5, b2 5 0
IV 0.05 15.0 0.20 15.0 Off center 3.125 cm 3 5.47 cm
Limited angle a 5 0, b 5 1.5 40 3 70 elements

a ROI, region of interest.
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The MGFD method employed in these studies is very
efficient. A typical calculation with a mesh size of 129
3 129 takes approximately 45 s on a Sun SPARC 5 work-
station.

3. INVERSE SOLUTION
A. Mathematical Model
Consider the test medium as a perturbation of a homoge-
neous background medium with absorption and scatter-
ing coefficients described by ma

b and ms8
b , respectively,

with an associated diffusion coefficient Db 5 @3(ma
b

1 ms8
b)#21 and wave number kb

2 5 2ma
b/Db

1 iv/cDb . Let ma 5 ma
b 1 dma , ms8 5 ms8

b 1 dms8 ,
and define the object function as

O~r! 5 k2~r! 2 kb
2

5 23~ma
b 1 dma!~dma 1 dms8! 2

dma

Db

1 i
3v

c
~dma 1 dms8!, (12)

which represents the unknown contrast between the ob-
ject and the background medium. From Eq. (4), we can
derive the following scalar wave equation:

¹2u~r! 1 kb
2u~r! 5 S~r! 2 O~r!u~r!. (13)

From Eq. (13) it can easily be shown that u(r) satisfies
the following nonlinear volume-integral equation:

E
V
G~r, r8!O~r8!u~r8!d2r8 5 u~r! 2 ub~r!, (14)

where ub(r) is the background field (i.e., the total field of
the background medium under the same source illumina-
tion) and G(r, r8) is the Green’s function of the homoge-
neous background that satisfies

¹2G~r, r8! 1 kb
2G~r, r8! 5 2d~r 2 r8!. (15)

In this paper we refer to

us~r! 5 u~r! 2 ub~r! (16)

as the scattering field. We assume that the background
field is known either from experiment or by numerical so-
lution, so that the scattering field can be derived from the
measured total field and the background field.

B. Born Iterative Method for Image Reconstruction
In the previous sections, we have used u(r), ub(r), and
us(r) to represent the total, the background, and the scat-
tering fields at r, respectively, that are due to a point
source located at rs . In optical imaging, multiple sources
and detectors are often used. To express explicitly the
dependence of these fields on the source locations, hereaf-
ter we use u(r, rs), ub(r, rs), and us(r, rs) to denote these
three functions, respectively. The integral equation (14)
can be discretized to yield a complex linear system of
equations as follows:

W~m3n !O~n31 ! 5 us~m31 !
(17)

where O 5 @O(rj), j 5 1, 2, . . ., n#T is composed of the
values of O(r) at various voxels rj ; u 5 @us(rdi, rsi), i
5 1, 2, . . .,m#T consists of the scattered field obtained
with different source–detector pairs (rdi, rsi); and W is a
weight matrix with elements

Wij 5 G~rdi, rj!u~rj , rsi!dv i 5 1, . . .,m,

j 5 1, . . ., n, (18)

Fig. 7. Cross-sectional cuts along the y axis passing through the
object center for (a) the absorption reconstruction shown in Fig. 5
and (b) the scattering reconstruction shown in Fig. 6. (c) Rela-
tive RMSE’s of the reconstructed absorption distribution (circles)
and the scattering distribution (squares) as functions of iteration
steps.
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where dv is the volume of a voxel. The coefficients of the
weight matrix depend on the total field and on the
Green’s function. Since the total field depends on the un-
known object function, this is a nonlinear equation. To
solve Eq. (17), we adopt the following iterative method.
Given the measured total field u(rd , rs) and the back-

ground medium kb
2(r):

1. Solve the Green’s function G( , ) and the back-
ground field ub( , ), based on kb

2( ), using the MGFD
method. Set us(rd , rs) 5 u(rd , rs) 2 ub(rd , rs).
2. Let û(r, rs) 5 ub(r, rs), i.e., the Born approxima-

tion.
3. Calculate the weight matrix W from the previously

calculated total field û( , ) and the Green’s function G( , ),
according to Eq. (18).
4. Solve the perturbation equation given in Eq. (17)

for the object function O(r) by employing the Tikhonov
regularization optimization process, using the conjugate
gradient descent method.27,28 Here, because the pertur-
bation equation is complex, the conjugate gradient de-
scent method in Ref. 28 has been extended to handle com-
plex variables.
5. Using the recently found O(r) and hence the new

estimate of k2(r), solve the total field û(r, rs) by the
MGFD method.
6. Compare the measured total field u(r, rs) with the

total field û(r, rs) obtained in step 5. If the two quanti-
ties are within an acceptable value, stop the iterations.
Otherwise, go back to step 3.
Figure 3 is a flow chart of this algorithm.

C. Simultaneous Reconstruction of Absorption and
Scattering Distributions
With frequency-domain data, the object function O(r) is a
complex function of absorption and scattering distribu-
Fig. 8. Reconstruction of the absorption coefficient for test case II: (a) image of the true perturbation; (b)–(f) reconstructed images
after 1, 2, 5, 8, and 15 iterations, respectively.

Fig. 9. Reconstruction of the scattering coefficient for test case II: (a) image of the true perturbation; (b)–(f) reconstructed images after
1, 2, 5, 10, and 15 iterations, respectively.
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Fig. 10. Cross-sectional cuts for reconstruction results shown in
Figs. 8 and 9: (a) and (c) are along the y axis and the x axis,
respectively, through the object center for the absorption recon-
struction shown in Fig. 8; (b) and (d) are for the scattering recon-
struction shown in Fig. 9. (e) Relative RMSE’s of the recon-
structed absorption distribution (circles) shown in Fig. 8 and the
scattering distribution (squares) in Fig. 9 as functions of itera-
tion steps.
tions. We can find the absorption and the scattering co-
efficients from the real part and the imaginary part of the
object function. From Eq. (12) we obtain

Re@O~r!# 5 23~ma
b 1 dma!~dma 1 dms8! 2 @~dma!/Db#,

(19)

Im@O~r!# 5 @~3v!/c#~dma 1 dms8!. (20)

Solving the above two equations, we obtain the absorption
and the scattering coefficients as follows:
dma~r! 5 2

ma
b
Im@O~r!#

v/c
1 Re@O~r!#

Im@O~r!#

v/c
1 3~ma

b 1 ms8
b!

, (21)

dms8~r!

5

HRe@O~r!# 1 3~3ma
b 1 ms8

b!1
Im@O~r!#

v/c J Im@O~r!#

3v/c
Im@O~r!#

v/c
1 3~ma

b 1 ms8
b!

.

(22)
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From Eqs. (21) and (22) the perturbations in absorption
and scattering distributions can easily be derived once
the complex object function (i.e., the perturbation in the
wave number) is obtained.

4. RESULTS
Figure 4 illustrates the acquisition geometry employed.
Within a 10 cm 3 10 cm square are situated 10 sources
and 20 detectors deployed either in a uniform ring geom-
etry [Fig. 4(a)] or in a more restricted fashion about the
center [Fig. 4(b)]. The latter were spaced uniformly
along a semicircle ranging from 265° to 65° in a reflec-
tance mode. For both geometries the radius of the
source–detector ring is 4 cm. The source modulation fre-
quency used is 200 MHz. In all cases, the radius of the
added object is R 5 0.7 cm, and the absorption and scat-
tering perturbations follow a sinusoidal distribution
defined by dm(x, y) 5 Dm cos$p/2R@(x 2 a)2 1 ( y
2 b)2#1/2%, where Dm represents the peak perturbation in
absorption or scattering coefficient and the values for a
and b indicate object locations. The sinusoidal distribu-
tion is used to simulate gradual changes normally associ-
ated with a tumor. Table 1 lists the medium properties
and measurement schemes used in four test media. Note
that the contrast in the absorption and the scattering co-
efficient of the object is up to 4 and 2.5 times the back-
ground, respectively. To obtain the forward and the in-
verse solutions, the test medium is discretized to 128
3 128 square elements (h 5 10/128 5 0.078125 cm) with
129 3 129 grid points. The forward solution was ob-
tained by the MGFD method, with the finest grid size be-
ing 129 3 129. For the inverse solution, to save compu-
tation time, we solved only a subregion in the medium
Fig. 11. Reconstruction of the absorption distribution for test case III: (a) image of the true perturbation; (b)–(f) reconstructed images
after 1, 2, 3, 5, and 15 iterations, respectively.

Fig. 12. Reconstruction of the scattering distributions for test case III: (a) image of the true perturbation; (b)–(f) reconstructed images
after 1, 2, 5, 10, and 15 iterations, respectively.
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that contains the object. This is accomplished based on
the assumption that with a preprocessing step, a region of
interest (ROI) can be identified. One possible way is to
use the Born approximation to reconstruct the entire me-
dium, from which we can identify a ROI. The size and
the location of the ROI for each test case are also listed in
Table 1.
To compare the overall accuracy of the reconstructions,

we introduce the relative root-mean-square error (RMSE)
of the reconstructed profile as a function of the iteration
steps. The relative RMSE is defined as

RMSE~i ! 5 H ( j@a j
~i ! 2 a j#

2

( j~a j!
2 J 1/2, (23)

where a j
(i) is the reconstructed value of the absorption or

the scattering coefficients in the ith iteration and in the
jth cell, with aj being the actual value. The summation
is calculated over the ROI for each test medium.

A. Full-Angle Profile Inversion Without Noise

1. Test Media I: a Centered Rod
Figures 5 and 6 show a 3D plot of the spatial distribution
of the value of the absorption and the scattering coeffi-
cients, respectively, of the object and those of the recon-
structed profiles after the indicated number of iterations.
The target profile is shown in Figs. 5(a) and 6(a). Fig-
ures 5(b) and 6(b) show the results with the first-order
Born approximation. The results with subsequent 2, 3,
5, and 15 iterations are shown in Figs. 5(b)–5(f) and 6(b)–
6(f). It can be seen that the reconstruction result after 15
iterations [see Figs. 5(f) and 6(f)] is quite accurate, with
significant improvement in terms of both spatial range
and perturbation intensities, compared with the result
obtained with 1 iteration. Actually, the result obtained
after 8 iterations is almost identical to the one obtained
after 15 iterations. Cross-sectional cuts through the cen-
ter of the object along the y axis for the target and recon-
structions are shown in Figs. 7(a) and 7(b). Interest-
ingly, we observe that the reconstructed scattering
coefficient is closer to the true value than is the absorp-
tion coefficient.
Figure 7(c) shows the relative RMSE of the recon-

structed absorption and scattering distributions in Figs. 5
and 6 as a function of the iteration steps. Under the fol-
lowing convergence criterion:

URMSE~i11 ! 2 RMSE~i !

RMSE~i ! U , 1026, (24)

the convergence is reached after approximately 11 and 12
iterations for the absorption and the scattering recon-
structions, respectively.

2. Test Media II: an Off-Center Rod
Figures 8 and 9 show results similar to those shown in
Figs. 5 and 6, but for an object located 1.5 cm from the
center. The target profile is shown in Figs. 8(a) and 9(a).
As in the case for the centrally located object, location of
the object is accurately determined for both coefficients
after only one iteration [Figs. 8(b) and 9(b)], but edge
broadening is evident. With additional iterations, shown
in Figs. 8(c)–8(f) and 9(c)–9(f), significant improvements
are achieved, although some artifact in the vicinity of the
object is present. These improvements are apparent in
the cross-sectional cuts through the center of the object
along the two main axes, as shown in Figs. 10(a)–10(d).
Figure 10(e) shows the RMSE values of the recon-

structed absorption and scattering distributions in Figs. 8

Fig. 13. Cross-sectional cuts along the x axis passing through
the centers of the two objects for (a) the absorption reconstruc-
tion shown in Fig. 11 and (b) the scattering reconstruction shown
in Fig. 12. (c) Relative RMSE’s of the reconstructed absorption
distribution (circles) in Fig. 11 and the scattering distribution
(squares) shown in Fig. 12 as functions of iteration steps.
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Fig. 14. Reconstruction of the absorption distributions from noisy data with a SNR of 25 dB. (a)–(d) Reconstructed images after 1, 2,
5, and 15 iterations, respectively. The target medium is shown in Fig. 8(a).

Fig. 15. Reconstruction of the scattering distributions from noisy data with a SNR of 25 dB. (a)–(d) Reconstructed images after 1, 2,
5, and 15 iterations, respectively. The target medium is shown in Fig. 9(a).
and 9 as a function of the iteration number. By means of
the same convergence criterion as before, convergence is
reached for absorption and scattering reconstructions af-
ter approximately 10 and 11 iterations, respectively.

3. Test Case III: Two Separated Rods
Figures 11 and 12 show results for a medium containing
two objects having a radius of 0.7 cm, separated by 3 cm
and located equidistant from the center. The target pro-
file is shown in Figs. 11(a) and 12(a). Qualitatively, the
results obtained are similar to the cases with one object.
The objects are accurately located after the first iteration,
as shown in Figs. 11(b) and 12(b), but edge broadening
and artifacts are present. On subsequent iterations, sig-
nificant quantitative improvements are achieved. Fig-
ures 13(a) and 13(b) show the reconstructed absorption
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and scattering distributions along the x axis passing
through the center of the two objects.
In Fig. 13(c) we show the relative RMSE values, from

which we can see that the convergence is reached after 13
and 12 iterations for the absorption and the scattering re-
constructions, respectively.

B. Full-Angle Profile Inversion with Noise
To evaluate the effect of noise on the stability of the algo-
rithm, random noise with a Gaussian distribution is
added to the real part and the imaginary part of the scat-
tering field. The noise level is measured by the SNR, de-
fined as

SNR 5 10 log
Pu

PN
, (25)

where Pu is the power of the scattering field and PN is the
noise power.

1. Test Case II: an Off-Center Rod
Figures 14 and 15 show the reconstructions of absorption
and scattering distributions from noise-added data with a
SNR of 25 dB (i.e., 5.6% noise) for the same case as used
in Figs. 8 and 9, except the ROI becomes 6.4 cm 3 6.4 cm.
Compared with the case without noise (Figs. 8 and 9), the
reconstruction profiles are blurred, although the results
after 15 iterations are still quite accurate. Figures 16(a)
and 16(b) show the reconstructed absorption and scatter-
ing distributions along the x axis passing through the
center of the object.
We also attempted reconstruction in the presence of

stronger noise. We found that the algorithm starts to
break down at a SNR of approximately 20 dB.
Fig. 16. Cross-sectional cuts along the x axis passing through
the centers of the object for (a) the absorption reconstruction
shown in Fig. 14 and (b) the scattering reconstruction shown in
Fig. 15.
Fig. 17. Reconstruction of the absorption distributions from noisy data with a SNR of 25 dB. (a)–(d) Reconstructed images after 1, 2,
5, and 15 iterations, respectively. The target medium is shown in Fig. 11(a).
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Fig. 18. Reconstruction of the scattering distributions from noisy data with a SNR of 25 dB. (a)–(d) Reconstructed images after 1, 2,
5, and 15 iterations, respectively. The target medium is shown in Fig. 12(a).
Fig. 19. Cross-sectional cuts along the x axis passing through
the centers of the two objects for (a) the absorption reconstruc-
tion shown in Fig. 17 and (b) the scattering reconstruction shown
in Fig. 18.
2. Test Case III: Two Separated Rods
Figures 17 and 18 show the reconstructions of absorption
and scattering distributions from noise-added data with a
SNR of 25 dB for the same medium as was used for Figs.
11 and 12, except the ROI becomes 7.6 cm 3 7.6 cm. The
cross-sectional cuts are shown in Figs. 19(a) and 19(b). It
can be seen that the locations of two reconstructed objects
are slightly shifted from actual positions. An interesting
phenomenon, shown in Fig. 17, is that, whereas the re-
constructed absorption values of one object improves con-
tinuously on successive iterations, that of the other object
remains the same after 2 iterations. For scattering re-
constructions, shown in Fig. 18, the peak values of the fi-
nal reconstruction after 15 iterations (actually the value
stays the same after 5 iterations) are approximately half
of the true profile [see Fig. 18(b)].

C. Limited-Angle Profile Inversion without Noise

1. Test Case IV: an Off-Center Rod
It is appreciated that the full-angle measurement
schemes used in the previous examples may not always
be feasible in practice. Here we consider the limited-
angle measurement scheme shown in Fig. 4(b). Figures
20 and 21 show the target and the reconstruction profiles
of the computed absorption and scattering distributions
after the indicated number of iterations for an off-center
object with a limited-angle illumination. Cross-sectional
cuts through the center of the object are shown in Figs.
22(a) and 22(b). It can be seen that, when the measure-
ment is performed over a limited view, the reconstruction
quality is still quite satisfactory.
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Fig. 20. Limited-angle reconstruction of the absorption coefficient for test case IV: (a) image of the true perturbation; (b)–(f) recon-
structed images after 1, 2, 5, 8, and 15 iterations, respectively.

Fig. 21. Limited-angle reconstruction of the scattering coefficient for test case IV: (a) image of the true perturbation; (b)–(f) recon-
structed images after 1, 2, 5, 10, and 15 iterations, respectively.

Fig. 22. Cross-sectional cuts along the y axis passing through the object center for (a) the absorption reconstruction shown in Fig. 20
and (b) the scattering reconstruction shown in Fig. 21.
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5. SUMMARY AND DISCUSSION

In summary, we have evaluated a Born iterative method
(BIM) for the simultaneous reconstruction of absorption
and scattering distributions of added objects to otherwise
homogeneous turbid media by means of frequency-
domain data. The approach is based on iterative solu-
tions of a linear perturbation equation, which is derived
from the integral form of Helmholtz wave equation for
photon-density waves. This equation is a good approxi-
mation of the diffusion equation when the optical proper-
ties of the medium change smoothly. In each iteration
the total field and the object function are updated. The
object function represents the perturbation in the com-
plex wave number. A multigrid finite difference (MGFD)
method is used to calculate the forward solution (the total
field). A regularized least-squares method is used to
solve the inverse problem (the object function). The ab-
sorption and the scattering coefficients are obtained from
the complex object function. This method has been ap-
plied to several test media containing one or two objects
with strong but smoothly varying perturbation from the
background properties. Reconstructions from full-angle
as well as limited-angle data (obtained by the MGFD
method) have been attempted. From the reconstruction
results, we conclude that the algorithm can yield quanti-
tatively (in terms of coefficient values) and qualitatively
(in terms of location and shape) accurate reconstructions
for both absorption and scattering coefficients and that it
is computationally efficient. The algorithm is also quite
robust to noise in data.
Recognizing that limitations in available views occur

often in practical measurements, we have determined the
accuracy and the quality of reconstructed images under
these conditions. When restricted to a view angle mostly
in a reflectance geometry, we observed some loss of edge
resolution for the side of the object opposite the sources.
This finding is encouraging, particularly as it may relate
to possible applications intended for imaging of patholo-
gies (e.g., hematomas) in an adult brain, in which trans-
mission measurements likely are not practical.
The first iteration of the BIM reported here is equiva-

lent to the Born approximation. O’Leary et al.12 have
shown that the Rytov approximation produced more-
accurate reconstructions of the absorption coefficient than
did the Born approximation. However, they observed
that, overall, the recovered coefficients were significantly
lower than the true values, especially as the strength of
the perturbation is increased. We observed qualitatively
similar results for the Born approximation but showed
that, with successive iterations, quantitatively accurate
recovery is possible for both absorption and scattering co-
efficients.
In the reported simulation results, one obtains the data

by solving the wave equation numerically, which is an ap-
proximation to the diffusion equation. The approxima-
tion is valid in the test media simulated here, where the
optical properties change smoothly in a sinusoidal pat-
tern. To generate more realistic data, one could solve the
diffusion equation directly, using the MGFD method or a

finite element method. Reconstruction accuracies ob-
tained from these data should be evaluated to validate
the usefulness of the proposed scheme. Of course, ulti-
mately, validation with real measurement data are re-
quired.
Since the original reports in the early 1990’s,14,29–31 in-

terest in the problem of optical tomographic imaging in
highly scattering media and its applications to near-
infrared imaging of tissue have increased greatly. Many
of the reports on the imaging problem have been qualita-
tive in nature, with the primary aim being to demonstrate
that recognizable images of simple objects embedded in
otherwise homogeneous media can be computed.32

Nearly all the inverse schemes described employ iterative
perturbation approaches.7,13 These schemes are first de-
scribed for the recovery of either absorption or scattering
coefficient. Recently, these have been expanded to con-
sider the simultaneous recovery of both absorption and
scattering coefficients.10,12,21,33 Comparison of results in
this report with those of others is difficult because of the
lack of details regarding the number of iterations em-
ployed and because of the absence of an objective measure
of image quality. Here we have adopted as an objective
measure the relative root-mean-square error, which is
commonly used in other imaging modalities. Using this
measure under the conditions examined, we have demon-
strated accurate quantitative recovery of the optical coef-
ficients and their location. We consider this finding en-
couraging but recognize that further evaluation under
more realistic conditions is needed. Because an objective
measure of image quality is lacking from most reports in
this field, we recommend that the method described here
be adopted. This will be especially important for efforts
to compare results obtained from different data collection
and analysis schemes.
A major difference between the scheme described here

and the iterative perturbation approaches described pre-
viously in Refs. 7, 9, and 13 is that our perturbation equa-
tion is derived from the integral form of the wave equa-
tion, whereas others used the first-order Taylor
approximation. In both cases the elements in the weight
matrix consist of the product of the incident field and the
Green’s function. In the BIM reported here, only the in-
cident field needs to be updated. We have also investi-
gated the use of the DBIM, which updates both the inci-
dent field and the Green’s function.34 Note that the
perturbation approaches derived based on the Taylor ap-
proximation are essentially similar to the DBIM. For the
microwave imaging problem, both Wang and Chew15,16

have shown that the DBIM converges faster than the
BIM, but that the BIM is less sensitive to noise. This
phenomenon has also been observed in our preliminary
investigations.34 The BIM also requires less computa-
tion for updating the weight matrix if the sources and the
detectors are not colocated or if there are more detectors
than sources. [Note that, when a point source is used,
G(rd , r) 5 u(r, rs) when rd 5 rs . Therefore, if the
sources and the detectors are colocated, no extra calcula-
tions are required for updating the Green’s function.] A
thorough comparison between the BIM and the DBIM in
terms of accuracy, robustness, and complexity should be

conducted in future studies.
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