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1. INTRODUCTION

Image quality is one of key factors that determines the practicality of an imaging scheme. Experience with diffuse optical 
tomography (DOT) research and applications has indicated that most image reconstruction algorithms yield blurred images 
because localized information from the object domain is mapped to more than one position in the image domain. To reduce 
the blurring in reconstructed images and  improve image quality, as measured by parameters such as quantitative spatial 
and temporal accuracy of recovered optical coefficients, a linear deconvolution strategy was proposed [1,2]. An illustration 
depicting this strategy is shown in Figure 1. As shown in the figure, the function of the deconvolution operator/filter is to 
reduce the mixing of information and to make the recovered image as nearly as possible a one-to-one correspondence 
between object and image pixels. The original idea of the deconvolution scheme is to borrow the concept of frequency 
encoding of spatial information from MR imaging and to use this strategy to label information that is “transferred” from the 
object to image space[3]. As discussed below, in practice we find that the method works best when applied in time domain 
directly, rather than in the frequency domain [1]. 
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Figure 1.  Panel A, schematic depicting the action of typical DOT image 
reconstruction algorithm, which yields blurred images because information from 
each object domain location is mapped to more than one position in the image 
domain.  Panel B, the action of an ideal image-correcting filter, which is to 
counteract the information spreading aspect of the reconstruction algorithm’s action.
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In this report, we continue our 
investigation of image quality 
improvement via the spatial 
deconvolution scheme in DOT. In 
contrast to our provious work[2,4], in 
which we have demonstrated that the 
deconvolution method brings about 
substantial qualitative improvement in 
spatial resolution and spatial accuracy 
for 2D[4] and 3D[2] static images 
reconstructed from steady-state (cw) 
DOT measurement data, we now 
investigate the effect of the spatial 
deconvolution method on the dynamical 
features of time-series images[5,6] in 
dense-scattering media by quantitative 
assessments of spatial and temporal 
accuracy of the reconstructed images.
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2. METHODS

2.1 Spatial Deconvolution Algorithm
The reasoning that underlay our linear deconvolution strategy, and 
the mathematical details of its implementation, are given in Refs. 1, 
2 and 4. We only introduce how to compute the deconvolution
operator and how to apply it to correct reconstructed images here. 
The three steps to generate a deconvolution operator are as follows:
(1) Assign each mesh node a time-dependent absorption and/or 
scattering coefficient:

where x is the optical coefficient on mesh node, Nd is the number of 
mesh nodes and Nt is the number of total time points;
(2) Compute the forward-problem solutions and reconstruct the 
corresponding optical coefficient distributions:

;
(3)  Determine the deconvolution operator F by solving the linear 
system: Y=FYr, where                                and                      .

When the operator F is obtained,  any image Z that is recovered 
using the same numerical mesh and source-detector geometry as 
used in the generation of operator F can be corrected by computing 
the matrix product FZ .
The test medium geometry and source-detector configuration used 
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Figure 2: 3D FEM mesh, source-detector configuration and heterogeneous test 
medium. (a) The hemispheric mesh has 982 nodes, 4309 tetrahedral elements and 
a diameter of 8 cm, where 25 sources and 29 detectors are marked with small 
white circles. (b) The heterogeneous test medium in the projection planes shows 
the positions and shapes of three inclusions, which is used in demonstrations of the 
efficacy of deconvolution at improving reconstructed image accuracy.

for the filter generation and image reconstructions that are reported 
here are  shown in Figure 2. For all computations considered in this 
report, the absorption coefficient of the test medium’s background 
is µa=0.06 cm-1, and the medium has spatially homogeneous and 
temporally invariant scattering, with µs=10 cm-1.

2.2 Dynamic features of targets
To explore dynamic characteristics of time-series images under 
deconvolution operation, as shown in Figure 3, the following four 
time-varying functions are assigned to the absorption coefficients 
of the test medium’s inclusions:
(a) sinusoidal time series:

;
(b) amplitude-modulated time series:

;
(c) constant-amplitude time series with time-dependent frequency:

;                
(d) time series with time-dependent frequency and ampl. mod.:

.

Where parameters µa0=0.12 cm-1, ∆µa=0.024 cm-1, f0=0.1 Hz, 
fa=0.03 Hz, fm=0.03 Hz, φ0=0, φa=0 and φm=0 have been used for 
the calculation of time-series curves in Figure 3.
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(a)                                   (b)                       (c)                                    (d)
Figure 3: Time series assigned to the optical coefficients of the test medium’s 
inclusions: (a) sinusoidal time series; (b) amplitude-modulated time series; (c) 
frequency-modulated time series; (d) amplitude and frequency-modulated time 
series, where the four time-series curves correspond to cases. (a)-(d) in section 
2.2, respectively.
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Level 3:   K0=2.0%  and  Kw=20%;
Level 4:   K0=3.0%  and  Kw=30%;
Level 5:   K0=4.0%  and  Kw=40%;
Level 6:   K0=5.0%  and Kw=50%.

Figure 4 shows the source-detector distance dependence of the 
noise-to-signal ratios of these six noise levels. In next section we 
will illustrate the spatial and temporal accuracy of images on the 
six noise levels.

2.3 3D Detector Noise Model
In most demonstrated cases of this report the white Gaussian 
noise is added to simulated detector readings for investigating 
the robustness of our deconvolution method. The noise-to-signal 
ratio of our 3D detector noise model can be expressed by[9]

(1)

where dij is the distance between the i-th source and the j-th
detector; W is the maximal distance between sources and 
detectors, i.e. W=max(dij); K0 is the noise-to-signal ratio at the 
co-located point of source and detector; and Kw stands for the 
noise-to-signal ratio when the distance between source and 
detector equals W. This noise model is in agreement with usual 
experimental and clinical experience.
To quantitatively analyze the effect of noise on spatial and 

temporal accuracy of reconstructed images, we, here, define six 
noise levels:    Level 1:   K0=0.5%  and  Kw=5%;

Level 2:   K0=1.0%  and  Kw=10%;
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Figure 4:  Variation in noise-signal (N/S) ratio with distance between source 
and detector locations: the N/S ratio increased with the distance is described 
by Eq. (1), which is in agreement with usual experimental and clinical 
experiences, where curves 1-6 correspond to the six noise levels defined in 
section 2.3, respectively.

2.4 Quantitative Assessments of Spatial and Temporal   
Accuracy

In this report, we select the spatial and temporal correlations 
between target medium and  reconstructed images as the 
measurements of spatial and temporal accuracy of recovered 
images, respectively, for whose numerical values can be 
precisely evaluated[9]. 

The spatial correlation is defined as

(2)

Where                           is accurate values,             is 
reconstructed values,       and       are the mean values of u and v , 
and         and are their standard deviations. The sum runs 
over all (Nd) mesh nodes.

The temporal correlation is defined as

(3)

Where                           is accurate values,             is 
reconstructed values, and the sum runs over all (Nt) time points. 
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t=0               t=T/4              t=T/2            t=3T/4    t=T
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Figure 5: Reconstructed time-series images of three-inclusion hemispheric 
test medium without noise added to the detector readings: (a) uncorrected 
images at five time points within a period; (b) deconvolved images, where a 
sinusoidal time series as shown in Fig. 3(a) is assigned to the absorption 
coefficients of three inclusions. Numbers along color bar give the quantitative 
values of the spatially varying µa and the period (T) is 10 seconds.
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3. RESULTS
Qualitative and quantitative assessments of the effectiveness of the linear deconvolution method when applied to time series of images 
are presented in this section.  In the first example, in which noise-free data were used, a comparison between convolved and 
deconvolved images, for selected time frames within the image sequence, are shown in Figure 5.  These results demonstrate that the 
spatial accuracy of the images is markedly improved by use of the linear deconvolution correction, and that there is no comcomitant
degradation of temporal information.  An important, logical next step is to determine the effect of noise in the detector data on the 
spatial and temporal accuracy. Figure 6 shows a case with added noise, in which the level-2 white Gaussian noise is added to detector 
measurements.  Comparing Figures 6(a) and 6(b), it can be seen that using deconvolution the spatial accuracy of time-series images is 
improved, but the temporal accuracy of the images is degraded due to the additive detector noise. However, when a simple temporal
low-pass filter is used to denoise the deconvolved time-series 
images, the quality of the images is additionally enhanced, as 
shown in Figure 6(c).  In next three cases, we have investigated
three simple denoising techniques: temporal low-pass filtering, 
spatial low-pass filtering and optimizing regularization factors. 
The corresponding results of reconstructed images are 
presented in Figures 7, 8 and 9, respectively.  These results 
show that the three simple denoising methods can all enhance 
the performance of deconvolution. To quantitatively assess the 
spatial and temporal accuracy of reconstructed time-series 
images, we make use of definitions (2) and (3) to calculate the 
spatial and temporal correlations of reconstructed images under 
different conditions. The contrast dependence of spatial 
correlations of recovered images with two different noise levels
is shown in Figure 10. Figure 11 gives the noise dependence of 
spatial correlations of reconstructed results. The quantitative 
results indicate that the spatial accuracy is clearly improved by 
deconvolution, even for high noise levels.  The amplitude 
dependence and noise dependence of temporal correlations of 
reconstructed time-series images are plotted in Figures 12 and 
13, respectively.  Figures 12 and 13 show that the temporal 
accuracy increases with the increase in amplitude of time series
and is degraded by the deconvolution procedure.  Finally, the 
comparisons of temporal correlations of time-series images 
between four different dynamic features of inclusions are listed
in Table 1, which clearly indicates that simple time series is 
easier to recover than complex time series. 
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Figure 6: Reconstructed time-series images with level-2 noise added to 
the detector readings: (a) uncorrected images at five time points within 
a period; (b) deconvolved images without temporal low-pass filtering; 
(c) deconvolved images with temporal low-pass filtering, where a 
sinusoidal time series as shown in Fig. 3(a) is assigned to the 
absorption coefficients of three inclusions. Numbers along color bar 
give the quantitative values of the spatially varying µa and the period 
(T) is 10 seconds.
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(a) Before deconvolution and temporal low-pass filter

(b) After deconvolution and before temporal low-pass filter

(c) After deconvolution and temporal low-pass filter
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(a) Before temporal low-pass filter (b) After temporal low-pass filter

Figure 7: Reconstructed image denoised by a temporal low-pass filter. (a) 
deconvolved image before low-pass filter; (b) deconvolved image after 
low-pass filter. Where the noise level is K0=1% and Kw=5%, absorption 
contrast of inclusion is 2, and Regularization factor λ=1.0.
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(a) Before spatial low-pass filter (b) After spatial low-pass filter
Figure 8: Reconstructed image denoised by a spatial low-pass filter. (a) 
deconvolved image denoised by temporal low-pass filter but before spatial 
low-pass filter; (b) deconvolved image after temporal and spatial low-pass 
filters. Where the noise level is K0=5% and Kw=10%, absorption contrast of 
inclusion is 2, and regularization factor λ=1.0.
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X-Y Plane    X-Z Plane    Y-Z Plane

(a) Regularization factor: λ=0.1 (b) Regularization factor: λ=10.0

Figure 9: Reconstructed image denoised by optimizing regularization 
factors. (a) deconvolved image denoised by temporal low-pass filter, λ=1.0 ; 
(b) deconvolved image denoised by temporal low-pass filter, λ=10.0. Where 
the noise level is K0=5% and Kw=10%, absorption contrast of inclusion is 2.

X-Y Plane    X-Z Plane    Y-Z Plane
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Figure 12: Amplitude dependence of 
temporal accuracy of deconvolved images 
denoised by temporal low-pass filter. The 
blue curve corresponds to level-2 noise; 
green curve level-3 noise. Time-averaged 
contrast is 2.

Figure 10: Contrast dependence of spatial 
accuracy of deconvolved images denoised by 
temporal low-pass filter. The blue curve 
corresponds to level-2 noise; green curve 
level-3 noise.

Figure 11: Noise dependence of spatial 
accuracy of reconstructed images denoised
by temporal low-pass filter. The blue curve 
corresponds to undeconvolved values; green 
curve deconvolved values. The absorption 
contrast is 2.4. 

Figure 13: Noise dependence of temporal 
accuracy of reconstructed images denoised by 
temporal low-pass filter. The blue curve 
corresponds to undeconvolved values; green 
curve deconvolved values. Time-averaged 
contrast is 2 and the relative amplitude is 0.2.

Table 1: Time correlations in different dynamical features of objects (Noise: K0=1%, Kw=10%)

Without Low-pass Filter With Temporal Low-pass Filter

Before 
Deconv.

After Deconv. Before 
Deconv.

After Deconv.

1 0.8231 0.2478 0.9522 0.6729

2 0.8352 0.2680 0.9548 0.6928

3 0.8172 0.2476 0.6966 0.4244

4 0.8332 0.2692 0.7685 0.5200

Dynamic 
Features
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4. CONCLUSIONS

In this report, we have investigated effectiveness of the linear deconvolution method applied to reconstructed time-series 
images. The qualitative and quantitative results show that: 

(1) For noise-free or low noise level (<0.5%) data, both spatial and temporal accuracy of time-series 
images are markedly improved by the deconvolution method;

(2) Simple time-series features (e.g. sinusoidal) are easier to recover than complex time-series features
(e.g. modulation of frequency);

(3) For noisy data, deconvolution procedures can significantly improve the spatial accuracy of time
series images but degrade the temporal accuracy;

(4) Denoising methods (even simple techniques) can enhance the performance of the deconvolution
method;

(5) Combined with a temporal low-pass filter, satisfactory spatial and temporal accuracy (>60%) can be
achieved by use of the deconvolution method at an experimental noise level (K0=1% and Kw=10%). 
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