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INTRODUCTION

Image quality is onc of key factors that determines the practicality of an imaging scheme,
Expericnce with diffuse optical tomography (DOT) research and applications has indicat
that most image reconstruction algorithms  yield blurred images because localized
information from the object domain is mapped to more than one position in the image
domain. To reduce the blurring in reconstructed images and improve image quality, as
measured by parameters such as quantitative spatial and temporal accuracy of recovered
optical coefficients, a linear deconvolution strategy was proposed [1.2]. An illustration
depicting this strategy is shown in Figure 1. As shown in the figure, the function of the
deconvolution operator/flter is to reduce the mixing of information and to make the
recovered image as nearly as possible a one-to-one correspondence befween object and
image pixels. The original idea of the deconvolution scheme is to borrow the concept of
frequency encoding of sptial information from MR imaging and (0 use his strategy to label
information that ferred” from the object to image space[3]. As discussed below,
practice we find that the method works best when applied in time domain directly, rather
than in the frequency domain [1]

Figure 1. Panel A, schematic depicting the action of typical DOT image
reconstruction algorithm, which yields blurred images because information
from each object domain location is mapped to mare than one posiion in
the image domain. Panl B, the action of an ideal image-correcting fl

o counteract the information spreading aspect. of the
reconsiruction algorithm’s action

In this report, we continue our investigation of image quality improvement via the spatial
deconvolution scheme in DOT. In contrast to our provious work[2,4], in which we have
demonstrated that the deconvolution method brings about substantial qualitative
improvement in spatial resolution and spatial accuracy for 2D[4] and 3D[2] static images
reconstructed from steady-state (cw) DOT measurement data, we now investigate the effect
of the spatial deconvolution method on the dynamical features of time-series images[5.6] in
dense-scattering media by quantitative assessments of spatial and temporal accuracy of the
reconstructed images.

METHODS
2.1 Spatial Deconvolution Algorithm

‘The reasoning that underlay our linear deconvolution srategy, and the mathematical details
of its implementation, are given in Refs. 1, 2 and 4. Here, we only briefly introduce the
method in an intuitive way which is compared to the procedure of calibration of a
‘measurement system,

We know that no measurement system is
perfect. It is necessary to calibrate the
system before measurement. As shown in
Figure 2(a), calibration of a measurement
system can be represented by the equation:
[Sd=
where [S,] and [S,] denote a series of
standard signals and the corresponding
measured signals, respectively, and [c] are
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optical coefficient distribution [X,()] in
the spatial domain under consideration is
known:

XM = g Tt 1"
where the distribution [X,(1)] is
discretized by an n-node mesh for numerical computations. Taking the known distribution
as the input for the imaging system, we can abtain the reconstructed distribution

XAD] =[5 Xk

So calibration of the imaging system can be performed by computing [X,(r)] = [F] [X,(r)].
where the calibration coefficient [F] is an > matrix and is called deconvolution operator o
image-correcting filter. In practice, the basic steps to generate an image-correcting filter are
as follows:

(1) Generate N'

Figure 2. Anslogy between the calibration of &
measurement system and the deconvolution scherme,

y known optical coefficient distrib
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(2) Use the rom ard model [7,8] to simulate the detector readings from the known

by computer:
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() Roconsiuet the optical coefficient distributions from the simulated detector
readings by use of the inverse model
r
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(4) Solve the matrix equation to determine the image-correcting filter:
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Finally, any image [ (r)] that is recovered using the same numerical mesh and source-
detector geometry as used in the generation of filter [F] can be corrected by computing the
‘matrix product [FI[Y ().

The test medium geometry and source-detector configuration used for the filter generation
and image reconstructions that are reported here are shown in Figure 3. For all
computations considered in this report, the absorption coefficient of the test medium’s
background is 1,-0.06 cm, and the medium has spatially homogeneous and temporally
invariant scattering, with =10 e
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Figure 3: 3D FEM mesh, source-detcctor a medium. (o
mesh b 982 nods, 309t lments 1 3 danctes o § e, where 2 sourss 29 detectors
sarked with small white circles. (b) The heterogeneous test medium in the projection planes sho
Bostions and hapes f e inclsions, which i sed  demonsrations ot icacy of decomoltion st

improving reconstructed image aceuracy.
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2.2 Dynamic features of inclusions

To explore dynamic characteristics of time-series images under deconvolution operation, as
shown in Figure 4, the following four time-varying functions are assigned to the absorption
coefficients of the test medium’s inclusions:

() sinusoidal time series:

Ho(0)= Moo+ Bpt, cOSQT [t + ) (O]
(b) amplitude-modulated time series:
1,0 = 1,y + A [1+0.55in27 £+ 9,)]cosQr fit +9,) )
plitude time series with p frequency:
1,(0)= pyy + A, cos {27 £, [1-0.55inz 1+ 0,)]1+ 0, ) 3)

(d) time series with time-dependent frequency and amplitude modulation:
#,(0)= p0+ g, [1+0.55in27 £+ ,)]cos {27 f, [1-0.5sin2z [+ 9]t + 0} (4)

‘Where parameters j1,¢=0.12 em, At,~0.024 em-1, f;=0.1 Hz, £,~0.03 Hz, £,=0.03 Hz, 9,0,
9,70 and ¢,,~0 have been used for the calculation of time-series curves in Figure 4.

@ ® @ @
Figure 4: Time seres assigned (o the optical coefTiients of the test medium’s inclusions: (a) sinusoidal
e sre; ) -l o e ) reenc-madld e e, (&) s
frequency-modulated. time the four ries curves comespond 1o Eas. (11(4),
respectively.

2.33D Detector Noise Model

In most demonstrated cases of this report the white Gaussian noise is added to simulated
detector readings for investigating the robustness of our deconvolution method. The noise-
to-signal ratio of our 3D detector noise model can be expressed by(9]

©)
where d is the distance between the i-th source and the j-th detector; W is the maximal
distance between sources and detectors, ie. IF=max(d,): K, is the noise-to-signal ratio at the
co-located point of source and detector: and K, stands for the noise-to-signal ratio when the
distance between source and detector equals 7. This noise model is in agreement with usual
experimental and clinical expeirence.

To quantitatively analyze the effect of noise on spatial and temporal accuracy of
reconstructed images, we, here, define six noise levels:

Level 1: K,~0.5% and K,=5%; x
Level 2: K,=1% a ; - )
Level 3: K,;=2% i s
Level 4: K;=3% a 1 4
Level 5: K;=4% z 5 "
Level 6: K,=5% i

L 3
Figure 5 shows the source- =

detector distance dependence of
the noise-to-signal ratios of these
six noise levels.

Figure 5. Variation in noise-signal (N'S) ratio with distance
between source and detector locations: the NS ratio inereased
with the distnce is described by Eq. (5),
agreement with usual experimental and clinical experiences,
where curves 16 cortespond to the six noise levels defined in
section 2.3, respectively

. which is in

the six noise levels.

2.4 Quantitative Assessments of Spatial and Temporal Accuracy
In this report, we select the spatial and temporal correlations between target medium and
reconstructed images as the measurements of spatial and temporal accuracy of recovered

images, respectively, for whose numerical values can be precisely evaluated[9)

The spatial correlation is defined as

llty)

Where , =u(x,.);31) is accurate values, v, = V(%% is reconstructed values, @ and ¥
are the mean values of wand v, and 5, and S, are their standard deviations. The sum runs
overall (N,) mesh nodes.

‘The temporal correlation is defined as

=y &

Where u, =u(x,.y;it,) is accurate values, v,
sum runs over all (V) time points.

V(3 it is reconstrueted values, and the

RESULTS

Qualitative and quantitative assessments of the effectivencss of the lincar deconvolution
method when applied to time series of images are presented in this scction. In the first
example, in which noise-free data were used, a comparison between convolved and
deconvolved images, for selected time frames within the image sequence, are shown in
Figure 6. These results demonstrate that the spatial accuracy of the images is markedly
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 6: Recons fes images of threc-inclusion hemispheric test
medium without nase added 1o the detcio readings: (9 uneorectd imagen o e
e poi i ot ) deconlvd imags, et sl e sy

in Fig. 3(a) i assigned to the absorption cocflicients of thrce inclusions.
Numbers aons coor b s o e vaues o the sptily varsing . and
the period (T) is 10 seconds.

improved by use of the linear deconvolution correction, and that there is no comcomitant
degradation of temporal information. An important, logical next step is to determine the
effect of noise in the detector data on the spatial and temporal accuracy. Figure 7 shows a
case with added noise, in which the level-2 white Gaussian noise is added to detector
measurements. Comparing Figures 7(a) and 7(b), it can be scen that using deconvolution
the spatial accuracy of time-series images is improved, but the temporal accuracy of the
images is degraded due to the additive detector noise. However, when a simple temporal
low-pass filter is used to denoise the deconvolved time-series images, the quality of the
images is additionally enhanced, as shown in Figure 7(c). In next three cases, we have
investigated three simple denoising techniques: temporal low-pass ﬁltermg, spanal Tow-pass
filtering and optimizin
images are presented in Figures 8, 9 and 10, respectively. These ettt
simple denoising methods can all enhance the performance of deconvolution. To
quantitatively assess the spatial and temporal accuracy of reconstructed time-series images,
we make use of definitions (6) and (7) to calculate the spatial and temporal correlations of
reconstructed images under different conditions. The contrast dependence of spatial
correlations of recovered images with two different noise levels is shown in Figure 11
Figure 12 gives the noise dependence of spatial correlations of reconstructed results. The
quantitative results indicate that the spatial accuracy is clearly improved by deconvolution,
even for high noise levels. The amplitude dependence and noise dependence of temporal
correlations of reconstructed time-series images arc plotted in Figures 13 and 14,
respectively. Figures 13 and 14 show that the temporal accuracy increases with the increase
in amplitude of time series and is degraded by the deconvolution procedure. Finally, the
comparisons of temporal correlations of time-series images between four different dynamic
features of inclusions are listed in Table 1, which clearly indicates that simple
casier to recover than complex time serics.
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Figure 7: Reconstructed time-series images with level-2 noise added to the detector
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Figure 11: Contrast dependence of spatial accuracy of deconvolved images denoised
by temporal low-pass filtr. The blue curve corresponds to level-2 noise; green curve.
level-3 noise

=
Figure 12: Noise dependence of spatal accuracy of reconsiructed images denoised by
temporal low-pass filtr. The blue curve corresponds 10 undeconvolved values; green
curve deconvolved valucs. The absorption contrast is 2
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Figu 13 Anpliude dependence of emporal oy of desonvlvel images
denoised by temporal low-pass filler. The blue curve corresponds o level-2 noise;
{reen urve Ievel 3 noie. Time-sveraged contas 2

Figure 14: Noise dependence of temporal aceuracy of reconstructed images denoised

by temporal low-pass fillr. The blue curve coresponds to undeconvaled values;
green curve deconval

Ived valucs. Time-averaged contrast is 2 and the rlative
amplitude s 0.2
Table 1 % K,=10%
Without Low-pass Filter ‘With Temporal Low-pass Filter
Dynamic
Features | Before Deconv. | After Deconv. | Before Deconv. | After Deconv.
1 08231 02478 09522 06729
2 08352 02680 09548 0.6928
3 08172 02476 0.6966 04244
4 08332 02692 0.7685 05200
CONCLUSIONS

In this report, we have investigated effectiveness of the linear deconvolution method applied
10 reconstructed time-series images. The qualitative and quantitative results show that
(1) For noise-free or low noise level (<0.5%) data, both spatial and temporal accuracy
of time-series images are markedly improved by the deconvolution method;
(2) Simple time-series features (e.g. sinusoidal) are easier to recover than complex
time-series features (e.g. modulation of frequency):
(3) For noisy data, deconvolution procedures can significantly improve the spatial
accuracy of time series images but degrade the temparal accuracy;
(4) Denoising methods (even simple techniques) can enhance the performance of the
deconvolution method;
(5) Combined with a temporal low-pass filter, satisfactory spatial and temporal
accuracy (~60%) can be achieve the deconvolution method at an
experimental noise level (K,=1% and K,
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