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Abstract. We present the fourth in a series of studies devoted to the
issue of improving image quality in diffuse optical tomography �DOT�
by using a spatial deconvolution operation that seeks to compensate
for the information-blurring property of first-order perturbation algo-
rithms. Our earlier reports consider only static target media. Here we
report spatial deconvolution applied to media with time-varying opti-
cal properties, as a model of tissue dynamics resulting from varying
metabolic demand and modulation of the vascular bed. Issues under
study include the influence of deconvolution on the accuracy of the
recovered temporal and spatial information. The impact of noise is
also explored, and techniques for ameliorating its information-
degrading effects are examined. At low noise levels �i.e, �5% of the
time-varying signal amplitude�, spatial deconvolution markedly im-
proves the accuracy of recovered information. Temporal information
is more seriously degraded by noise than is spatial information, and
the impact of noise increases with the complexity of the time-varying
signal. These effects, however, can be significantly reduced using
simple noise suppression techniques �e.g., low-pass filtering�. Results
suggest that the deconvolution scheme should provide considerable
enhancement of the quality of spatiotemporal information recovered
from dynamic DOT techniques applied to tissue studies. © 2005 Society of
Photo-Optical Instrumentation Engineers. �DOI: 10.1117/1.2103747�
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1 Introduction
Near-infrared diffuse optical tomography �DOT� has received
increasing attention for over a decade,1 in large measure be-
cause of its demonstrated ability to image turbid tissues—
including human breast,2–5 brain,6–9 and joints10,11 as well as
small animals12,13—in vivo. Compared to conventional medi-
cal imaging techniques such as x-ray computed tomography,
ultrasound, and magnetic resonance imaging �MRI�, DOT can
provide physiological information about molecular-level
changes in tissue, including contrast information on hemoglo-
bin oxygenation states, water and lipid content, and tissue
scattering properties14 �amplitude and power�. So far, most
DOT research and applications have been geared toward
qualitative characterization of hemoglobin content in spatially
resolved static images.1 Although many significant results
have been reported, one of the most important aspects of
physiology, namely, maintenance of homeostasis through the
action of dynamic processes, is largely neglected in these
works. In contrast, a succession of reports from our group has
described a broad range of dynamic physiological phenomena
that could be accurately investigated using DOT methods.15–19

Reported instrumentation18 and numerical methods15–17,19 for
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the collection and analysis of time-series image data also have
been shown to have the ability to improve the quality of op-
tical tomographic images, in terms of localization and con-
trast. We believe that the extension of DOT techniques from
static to dynamic imaging is bound to lead to the development
of improved techniques for early diagnosis and for treatment
monitoring.

The limits of attainable image quality are among the key
factors that will ultimately determine the practical utility of
DOT �in either the static or dynamic imaging mode�. As is the
case for all imaging modalities, these limits depend strongly
on the inherent stability of DOT to expected experimental
uncertainties, and on the computational effort that is required
for image recovery. Accordingly, a principal thrust of many of
our previous studies has been to characterize the effect of
experimental uncertainty on different DOT formulations, and
to determine the computational effort required to produce
clinically useful results. Thus, for example, we have shown
that computational strategies aimed at estimating absolute op-
tical coefficient values are markedly less stable than are esti-
mates of relative changes.16,17 We also showed that even when
the image reconstruction effort is limited to solution of first-
order perturbation equations—whose computational burden
can be orders of magnitude lower than that for recursive it-
1083-3668/2005/10�5�/051701/12/$22.00 © 2005 SPIE
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erative solutions—the image quality obtained from algorithms
that analyze relative changes in optical coefficients over time
is notably improved over similar estimates based on absolute
coefficient values.

While these earlier results have been encouraging, the im-
ages obtained nevertheless have had relatively low spatial
resolution compared to that achieved with more established
imaging techniques. Recently, we described an image correc-
tion technique that, when applied to first-order reconstructed
DOT images, markedly improves image quality without add-
ing a significant computational burden.20–23 The technique
employs a linear spatial deconvolution step that serves to un-
mix information that has been mapped from the object to
more than one location in the image domain. Notably, the
approach taken, which is conceptually similar to the encoding
of spatial information used20 in MRI, does not require prior
knowledge of the target properties and is applicable to arbi-
trary media. We have also shown that the technique is robust,
in that it can be effectively applied to a large number of dif-
ferent medium geometries and internal compositions, as well
as to restricted illumination-detection configuration �e.g.,
back-reflection only� cases.22,23

In the previous papers, however, deconvolution was ap-
plied only to target media with temporally static spatial dis-
tributions of optical coefficients. Here we extend our charac-
terization of the image correction technique to media
exhibiting dynamic phenomena similar to the types found in
living tissue. It is our belief that examination of dynamic phe-
nomena using time-series DOT will provide for more direct
assessment of tissue-vascular coupling and, in particular, the
specific mechanisms of autoregulation and autonomic control
over the vascular bed. Results obtained here show that when
combined with simple noise suppression techniques that en-
able exploration of low-frequency dynamic states, significant
improvements in spatiotemporal accuracy of DOT images can
be achieved with high computational efficiency.

2 Methods
2.1 Spatial Deconvolution Method
The reasoning that underlies our linear deconvolution strat-
egy, and the mathematical details of its implementation, are
given in Refs. 21–23. Here, we briefly describe the method in
an intuitive way, which is compared to the procedure of cali-
bration of a measurement system, with a focus on the compu-
tation and application of deconvolution operators.

Any measuring system is subject to the influence of sys-
tematic errors that serve to distort the derived information.
The goal of calibration is to eliminate or to reduce the sys-
tematic errors. In the case of imaging systems, one form of
error is the blurring effect caused by the occurrence of an
“information spread function”22 of finite extent. Simply put,
this causes information present in the object domain to be
mapped to more than one location in the image domain. A
standard strategy is to directly measure the spreading and to
use this as a calibrating tool to correct for expected
distortions.24

Here, we have adopted a conceptually similar approach,
but have implemented a strategy that is well suited for arbi-
trary media and for use with numerical solvers. Consider a

known optical coefficient distribution X0�r� in the spatial do-
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main: X0�r�= �x01 x02 ¯ x0Nd
�T, where the spatial domain is

discretized by an Nd-node mesh, x0i is the optical coefficient
value on the ith node, and superscript T represents the matrix
transpose operation. Using the known distribution X0�r� as
the input of the imaging system, we obtain the reconstructed
optical coefficient distribution Xr�r�= �xr1 xr2 ¯ xrNd

�T,
where xri is the reconstructed optical coefficient on the ith
node. Thus, the information-spreading properties of the imag-
ing system can be obtained by solving the “calibration” equa-
tion X0�r�=FXr�r�, where F is an Nd � Nd matrix, which is
called the deconvolution operator or image-correcting filter.
As a practical matter, of course, comparison of a single X0�r�
to the corresponding Xr�r� does not suffice to uniquely deter-
mine F. A large number of X0�r�-to-Xr�r� comparisons is
needed.

In practice, generation of a deconvolution operator or
image-correcting filter comprises four main steps. First, we
assign each mesh node a time-dependent absorption and/or
scattering coefficient. The functional form used here, as in
Refs. 20–23, is a set of sinusoids with incommensurate fre-
quencies �in particular, f =1 s−1, �2 s−1, �3 s−1 , . . . , i.e.,
square roots of successive prime numbers�, and whose ampli-
tudes �ac� were equal to 8% of their mean �dc� values. These
optical parameter functions are sampled at a constant interval
�t, until a total of Nt spatial distributions are recorded �for the
examples reported on here, �t=0.005 s and Nt=16,384
=214�:

X0
i �r� = �x01

i x02
i

¯ x0Nd

i �T, i = 1,2, . . . ,Nt.

Then, for each of these distributions a forward-problem solu-
tion is computed, using a specified fixed set of sources and
detectors, such as the configuration sketched in Fig. 1 in Sec.
2.3. Images of the spatial distributions of medium properties
at each of the Nt sample time points are reconstructed:

Xr
i�r� = �xr1

i xr2
i

¯ xrNd

i �T, i = 1,2, . . . ,Nt.

Finally, the original, or true, and reconstructed spatial distri-
butions of medium optical parameters are accumulated in two

Nd � Nt matrices Y= �X0
1 X0

2
¯ X0

Nt � and Ŷ
= �Xr

1 Xr
2

¯ Xr
Nt �, and a deconvolution operator is com-

ˆ

Fig. 1 3-D FEM mesh, source-detector configuration, and heteroge-
neous test medium: �a� hemispheric mesh with 982 nodes, 4309 tet-
rahedral elements, and a diameter of 8 cm, where 25 sources and 29
detectors are marked with small white circles; and �b� the heteroge-
neous test medium used in demonstrations of the efficacy of decon-
volution at improving reconstructed image accuracy. The three pro-
jection planes show the positions and shapes of the inclusions.
puted by solving the linear system Y=FY, or
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where the Nd � Nd matrix F= �f ij� is the deconvolution op-
erator or image-correcting filter, which contains the contribu-
tion of each medium node to all the image pixels. Note that
the system in Eq. �1� may be ill-conditioned, necessitating the
use a regularization method in order to accurately compute F.
�For the examples reported on here, the reconstructed image

values in Ŷ were imported into Eq. �1� in a fixed-precision
format, and this had a regularizing effect.�

After a deconvolution operator F is obtained by following
the above sequence of steps for a given numerical mesh and
source-detector geometry, then any image, Z
= �zr1 zr2 ¯ zrNd �T subsequently reconstructed—from
simulated or experimental or clinical data—by using the same
mesh and source-detector geometry, and the same reconstruc-
tion algorithm �including regularization� as was used in gen-

erating Ŷ, can be deconvolved or corrected by simple matrix
multiplication Zc=FZ:

�
zc1

zc2

�
zcNd

� = �
f11 f12 ¯ f1Nd

f21 f22 ¯ f2Nd

� � � �
fNd1 fNd2 ¯ fNdNd

��
zr1

zr2

�
zrNd

� . �2�

2.2 Solutions of Forward and Inverse Problems
Tomographic data for the simulated tissue models were ac-
quired by using the finite element method to solve the diffu-
sion equation, with a dc source term and Robin boundary
conditions, as described in Refs. 16 and 17.

The reconstruction algorithm that has been used to gener-
ate the results presented below seeks to solve a modified per-
turbation equation whose form is

Wr�x = �Rr, �3�

where �x is the vector of differences between the optical
properties �e.g., absorption and scattering coefficients� of a
target �measured� and a defined reference medium; Wr is the
Jacobian or weight matrix, which specifies the influence that
each voxel has on the surface detectors for the selected refer-
ence medium; and �Rr is proportional to the difference be-
tween detector readings obtained from the target in two dis-
tinct states �e.g., difference between data collected at two
different instants, or the difference between instantaneous and

time-averaged data�.
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As in Refs. 20–23, here we use the normalized difference
method16 to define the right-hand side of Eq. �3�. Thus �Rr is
given by

��Rr�i =
�R − R0�i

�R0�i
�Rr�i, �4�

where Rr is the computed detector readings corresponding to
a selected reference medium. For the filter-generating compu-
tations, R and R0 represent the detector readings at a specific
time point and the time-averaged intensity, respectively. For
the filter-testing computations, R and R0 are the detector
readings computed for the heterogeneous target medium and
homogeneous reference medium, respectively.

The weight matrix Wr is computed in the manner de-
scribed in Ref. 24. For each combination of medium geometry
and source-detector �S-D� configuration, a single set of weight
matrices is used for all inverse problem computations. These
are computed for a homogeneous reference medium having
the same shape, size, and measurement geometry as the �het-
erogeneous� target.

Zero-order Tikhonov regularization, or ridge regulariza-
tion, is used to stabilize the solution to Eq. �3�, which for-
mally is given by

�x = �Wr
TWr + �I�−1Wr

T�Rr, �5�

if Eq. �3� is overdetermined, and by

�x = Wr
T�WrWr

T + �I�−1�Rr, �6�

if Eq. �3� is underdetermined, and � is the regularization pa-
rameter �the numerical value used for all inverse-problem
computations was �=1.0, except for the results shown in Fig.
7 in Sec. 3�.

A Levenberg-Marquardt �LM� algorithm25 is used to com-
pute numerical solutions to Eq. �3�. In these computations, the
�x solved for includes position-dependent perturbations in
both �a and D. No use is made of a priori information re-
garding the spatial distributions of either coefficient. Thus the
dimensions of the quantities in Eq. �3� are Nf � �2Nd� for
Wr, where Nf is the overall number of S-D channels, Nf
� 1 for �Rr, and �2Nd��1 for �x.

2.3 Static and Dynamic Features of Targets
The test medium geometry and source-detector configuration
used for all forward- and inverse-problem computations, both
for generating deconvolution operators and for computing de-
tector readings and reconstructing images of the dynamic test
media, are shown in Fig. 1. The hemispheric finite element
method �FEM� mesh shown in Fig. 1�a� approximates the
measurement geometry for DOT mammographic studies.
There are 29 detector locations on the mesh �only 14, marked
with small white circles on the surface, are visible in Fig.
1�a��, and 25 of these also were used as sources, for a total of
725 S-D channels. Figure 1�b� shows the positions and shapes
of three inclusions inside the heterogeneous test medium, in
x-y, x-z, and y-z projection planes, which is used for testing
the performance of the deconvolution strategy. For all com-
putations considered in this paper, the absorption coefficient

−1
of the test medium’s background is �a=0.06 cm , and the
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test medium has spatially homogeneous and temporally in-
variant scattering, with �s�=10 cm−1. The FEM mesh used for
all inverse-problem computations contains 4309 tetrahedral
elements and 982 nodes. The same coarse mesh is used for the
filter-generating forward-problem computations �otherwise,
the point-by-point comparisons represented by Eq. �1� would
not be possible�, while a finer mesh containing 10,305 tetra-
hedral elements and 2212 nodes is used for the forward-
problem computations on the dynamic target media.

To explore dynamic characteristics of time-series images
under deconvolution, four time-varying functions �sketched in
Fig. 2� are assigned to the absorption coefficients of the test
medium’s inclusions as follows. Shown in Fig. 2�a� is a sinu-
soidal time series:

�a�t� = �a0 + ��a cos �2�f0t + �0�; �7�

in Fig. 2�b�, an amplitude-modulated time series:

�a�t� = �a0 + ��a�1 + 0.5 sin �2�fat + �a�� cos �2�f0t + �0�;
�8�

in Fig. 2�c�, a time-dependent frequency:

�a�t� = �a0 + ��a cos 	2�f0�1 − 0.5 sin �2�fmt + �m��t + �0
;
�9�

and in Fig. 2�d�, a combination of time-varying frequency and
amplitude modulation:

�a�t� = �a0 + ��a�1 + 0.5 sin �2�fat + �a��

�cos 	2�f0�1 − 0.5 sin �2�fmt + �m��t + �0
 .

�10�

These four functional forms were chosen as models of the
types of tissue dynamics known to result from varying meta-
bolic demand and modulation of the vascular bed.26 Parameter

−1 −1

Fig. 2 Time series assigned to the optical coefficients of the test me-
dium’s inclusions: �a� sinusoidal time series; �b� amplitude-modulated
time series; �c� variable-frequency time series; and �d� amplitude-
modulated and variable-frequency time series, where the four time-
series curves correspond to Eqs. �7� to �10�, respectively.
values �a0=0.12 cm , ��a=0.024 cm , f0=0.1 Hz, fa
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=0.03 Hz, fm=0.03 Hz, �0=0, �a=0, and �m=0 were used
in calculating the curves in Fig. 2.

2.4 Three-Dimensional Detector Noise Model
Gaussian noise was added to simulated detector readings in
most of the studies considered in this paper, for the purpose of
investigating the combined effects of noise and spatial decon-
volution on the accuracy of dynamic information recovered
from image time series. The noise-to-signal ratio of our de-
tector noise model can be expressed by27

	ij = �N

S
�

ij
= K0 + �KW − K0��dij

W
�4

, �11�

where dij is the distance between the ith source and the jth
detector, W is the maximal distance between sources and de-
tectors �i.e., W=max�dij��, K0 is the noise-to-signal ratio for a
colocated source and detector, and KW stands for the noise-to-
signal ratio when dij =W. The functional form of Eq. �11�, and
the numerical value of the exponent, are empirically derived,
not deduced from theoretical considerations. However, as a
noise model it is in good agreement with our usual experi-
mental and clinical experience.18,28

To quantitatively analyze the effect of noise on spatial and
temporal accuracy of reconstructed images, we here define six
noise levels:

level 1: K0 = 0.5 % and KW = 5 % ,

level 2: K0 = 1.0 % and KW = 10 % ,

level 3: K0 = 2.0 % and KW = 20 % ,

level 4: K0 = 3.0 % and KW = 30 % ,

level 5: K0 = 4.0 % and KW = 40 % ,

level 6: K0 = 5.0 % and KW = 50 % .

Figure 3 shows the S-D distance dependence of the noise-to-
signal ratios of these six noise levels for the S-D configuration
shown in Fig. 1�a�. In Sec. 3, the impact of noise level on the

Fig. 3 Variation in noise-to-signal �N/S� ratio with distance between
source and detector locations. The N/S ratio increases with distance,
as described by Eq. �11�, in agreement with usual experimental and
clinical experience. Curves 1 to 6 correspond to the six noise levels
defined in Sec. 2.4, respectively.
spatial and temporal accuracy of images is explored.
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In addition to the six levels just enumerated, some other
cases that use Eq. �11� as the noise model but have KW /K0
ratios different from 10:1 were used to generate some of the
image results that are presented subsequently �e.g., Figs. 6
and 7 in Sec. 3�. Levels 1 to 6, however, are used to define a
1-D scale for plots of image characteristics versus noise mag-
nitude �e.g., Figs. 9 and 11 in Sec. 3�.

The presence of noise in measured data degrades the qual-
ity of recovered images. As seen in Sec. 3, some simple de-
noising techniques, such as temporal low-pass filtering,29 spa-
tial low-pass �or long-pass� filtering,30 and optimization of
regularization parameters31 were used to denoise deconvolved
images for an additional improvement in image quality.

2.5 Quantitative Assessments of Spatial and Temporal
Accuracy

Quantitative assessment of image quality is an essential aspect
of characterizing the practicality of a reconstruction algo-
rithm. Here we use the spatial and temporal correlations be-
tween target medium and reconstructed images as the indices
of spatial and temporal accuracy, respectively, of recovered
images.19 The spatial correlation �SC� is defined as

c�t0�uv =
1

Nd − 1
i=1

Nd �ui − ū

su
��vi − v̄

sv
� , �12�

where ui=u�xi ,yi ; t0� are the true values of the contrast pa-
rameter in the target medium, vi=v�xi ,yi ; t0� are the recon-
structed values of the same contrast parameter, ū and v̄ are the
spatial mean values of u and v, and su and sv are the spatial
standard deviations. The summation runs over all Nd mesh
nodes. The temporal correlation �TC� is defined as

c�x0,y0�uv =
1

Nt − 1
i=1

Nt �ui − ū

su
��vi − v̄

sv
� , �13�

where ui=u�x0 ,y0 ; ti� and vi=v�x0 ,y0 ; ti� are contrast param-
eter values of the target medium and reconstructed image,
respectively, and the summation runs over all Nt time points.
Here, ū and v̄ are temporal mean values, and su and sv are
temporal standard deviations. As already noted, for all simu-
lation studies conducted for this paper, the optical coefficients

Fig. 4 �a� Image reconstructed from noise-free detector readings—un
gray-level scale are �a values—and �b� time-dependent SC of the reco
the inclusions—solid and dashed curves correspond to uncorrected a
of the target medium’s background region were static, i.e.,
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su=0. Consequently, the TC between target and image is
mathematically undefined in this region, and all subsequently
reported TC values are spatial averages over the inclusion
volume only.

2.6 Note Regarding Presentation of 3-D Graphics
Results presented below include several 3-D reconstructed
images �Figs. 4–7 in Sec. 3� that are rendered as contour-
surface plots, with all �a values below a threshold percentage
of the maximum recovered �a set to zero. This mode of pre-
sentation has the potential to create the suspicion that seem-
ingly positive results are only a consequence of adjusting the
threshold until the desired appearance is achieved. That such
is not the case here is proved by inspection of the supplemen-
tal figures presented in the appendix. There a different mode
of presentation �i.e., a sequence of two-dimensional �2-D�
cuts through the 3-D image� that does not require specifica-
tion of a threshold is used. Space limitations do not permit the
use of the 2-D slicing technique for all of the 3-D results
shown in Figs. 4–7 in Sec. 3.

3 Results
Qualitative and quantitative assessments of the effectiveness
of the linear deconvolution method applied to image time se-
ries are presented in this section. In the first example, in
which noise-free data were used, comparisons between con-
volved and deconvolved images are shown in Fig. 4. A sinu-
soidal pattern of temporal variation �Eq. �7�, Fig. 2�a��, with
dynamic feature parameters �a0=0.12 cm−1, ��a
=0.024 cm−1, f0=0.1 Hz, and �0=0, was assigned to the ab-
sorption coefficients of all three inclusions in the test medium
in this example. In Fig. 4�a�, we can see that, in agreement
with results presented in Ref. 21, image quality at a specific
time point is markedly improved by deconvolution. It is fur-
ther seen in Fig. 4�b� that the time-dependent spatial accuracy
of the deconvolved image time series, as quantified by the SC
index described in Sec. 2.5, also is significantly larger than
that of the uncorrected images. With regard to temporal accu-
racy, the TC index differs from unity by only a few tenths of
a percent, for both the uncorrected and deconvolved image
time series, in this noise-free case �see Fig. 11 later in this

ted �top row� and deconvolved �bottom row�, where numbers along
ed image time series for two periods of the sinusoidally varying �a in
onvolved images, respectively.
correc
nstruct
section�.
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Fig. 12 Alternative representation of the 3-D reconstructed images shown in Fig. 5�a.3� and 5�a.4�. Sections �a� and �b� through the deconvolved-
Fig. 5 �a� Image reconstructed from level 2 noise-added detector readings: uncorrected �5�a.1��, denoised �temporal low-pass filter� but not
deconvolved �5�a.2��, deconvolved but not denoised �5�a.3��, and deconvolved and denoised �5�a.4��, where numbers along color bar are �a
values. �b� Time-dependent SC of the reconstructed image time series for two periods of the inclusions’ sinusoidal �a�t� fluctuation: blue, green, red,
only image and �c� and �d� through the deconvolved+denoised image. Numbers along color bars are �a values.
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A logical and important next step is to determine the effect
of noise in the detector data on the spatial and temporal ac-
curacy. Figure 5 shows results for the case in which the three
inclusions had the same dynamic feature parameters as those
used for the noise-free example, and level 2 �see Sec. 2.4�
Gaussian noise was added to detector measurements. In Fig.
5�a� we see that deconvolution �5�a.3�� improves the spatial
resolution and localization of inclusions in the image recov-
ered at a specific time point, relative to that in the uncorrected
image �5�a.1��; at the same time, as noted in Ref. 21, the noise
leads to the appearance of spurious absorption coefficient per-
turbations, especially in regions of the image lying near the
curved hemispheric surface. However, when a simple tempo-
ral low-pass filter �LPF� with a cutoff frequency of 0.15 Hz is
applied to the deconvolved image �5�a.4��, the noise artifacts
are almost completely eliminated. On the other hand, use of
the LPF in the absence of deconvolution �5�a.2�� produces
some reduction in peripheral noise artifact levels, but no no-
ticeable improvement in either spatial resolution or quantita-
tive accuracy. Figure 5�b� reinforces and extends the preceed-
ing result: the SC between medium and image is greater for
the deconvolved �red curve� than for the uncorrected image
�blue curve� at some time points, and lower at others, but
fluctuates about the same average value ��0.2� and is never
larger than 0.4; following subsequent application of the tem-
poral LPF �black curve�, the SC is almost always greater than
0.6. The SC for images that are denoised but not deconvolved
�green curve� is only marginally higher than that for the un-
corrected images, again showing that spatial deconvolution is
a required operation for enhancing the image quality.

For the same computational study that gave the results
shown in Fig. 5, a qualitatively different trend was obtained
with respect to temporal accuracy, with substantially lower
TCs found in the deconvolved than in the uncorrected time
series. Denoising with a temporal LPF produces a secondary
increase in the TC, but its final value is lower than that in the

Fig. 6 Effect of temporal and spatial LPF denoising: �a� deconvolved
image, �b� deconvolved+temporal low-pass filtered image, and �c�
deconvolved+temporal+spatial low-pass filtered image. The noise
model �Eq. �11�� parameters are K0=5% and KW=10%, absorption
contrast of inclusions is 2, and the regularization parameter is �
=1.0.
uncorrected image �see Table 1, first row�. These observations
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begin to suggest that some trade-off between spatial and tem-
poral accuracy may be inevitable when our deconvolution
method is used, but that the degree of reduction in temporal
accuracy can be contained within acceptable limits. A plau-
sible mechanism for the effect of noise on the TC, more fully
described in Sec. 4, is an amplifying effect of deconvolution
on noise. The conjectured effect would result from the action
of the deconvolution operator, which is to replace the original
reconstructed image value at each FEM mesh node with some
linear combination of the values, including any noise that may
be present, at all nodes.

To further characterize the performance of the deconvolu-
tion method on noisy image time series, with a view toward
minimizing the TC reduction observed in the previous study,
we have further investigated the effects of the three elemen-
tary denoising techniques named in Sec. 2.4: temporal low-
pass filtering, spatial low/long-pass filtering, and optimization
of the regularization parameter. A sinusoidal time series ex-
pressed by Eq. �7� was assigned to the inclusions’ absorption
coefficients, with dynamic feature parameters �a0
=0.06 cm−1, ��a=0.06 cm−1, f0=0.1 Hz, and �0=0. Prior
to image reconstruction, Gaussian noise with noise model
�Eq. �11�� parameters of K0=5% and KW=10% was added to
the detector data. All images shown in Figs. 6 and 7 are for
time point t=T �10 s�, at which time all inclusions have a �a
value twice that of the background.

Figure 6 presents the deconvolved image before �Fig. 6�a��
and after �Fig. 6�b�� denoising with a “pillbox” LPF �Ref. 29�
whose threshold frequency is 0.15 Hz �0.15 Hz is the thresh-
old frequency, as well, in all subsequent results involving use
of temporal LPFs�. Figure 6�c� shows the result of applying a
second denoising operation, in this case, a spatial LPF that
computes a weighted average of the �a value on a given node
and on the surrounding nodes.30 In Fig. 7, denoising realized
by optimizing the regularization parameter31 � is demon-
strated; both images shown have been spatially deconvolved
and denoised with temporal LPFs. Figure 7�a� shows the final
result obtained when Eq. �3� is solved with �=0.1, and Fig.
7�b� is the corresponding result for �=10. The results in Figs.
6 and 7 suggest that the best final result in terms of spatial
resolution, localization, and reduction of noise artifacts is pro-
duced by using all three of the denoising methods examined

Fig. 7 Optimization of the regularization parameter. All images
shown here have been deconvolved and denoised with a temporal
LPF �threshold frequency 0.15 Hz�: �a� �=0.1 and �b� �=10.0. Noise
model �Eq. �11�� parameters are K0=5% and KW=10%, inclusion/
background absorption contrast is 2.
here. One trade-off apparent from inspection of the grayscales
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in these figures is some additional reduction in quantitative
accuracy with each additional operation. We next turn our
attention to the question of the impact of different types of
denoising on the TC and SC of image time series.

The dependence of SC on inclusion absorption contrast
�i.e., �a

incl /�a
bkgr, where �a

incl and �a
bkgr are the inclusion and

background �a, respectively; for the results presented here,
�a

bkgr=0.06 cm−1�, for images that have been denoised by a
temporal LPF, is shown in Fig. 8. Here the solid curves are
results obtained for level-2 noise, before and after deconvolu-
tion, respectively; the dashed curves are the analogous results
for level-3 noise. Each plotted point in the figure is an average
of six SC values, computed for images reconstructed from
data taken from six successive sinusoidal periods �one time
point per cycle�. From these curves we clearly see that the
final image’s SC grows with increasing inclusion contrast, but
saturates when the contrast is 
2.5. This is in agreement with
our previous results23 and with those of other groups.31,32

These results also unambiguously demonstrate the effective-
ness of deconvolution at improving qualitative image
accuracy.

Figure 9 shows the dependence of SC on noise level, for

Table 1 Temporal correlations for different d

Without LPF

Dynamic Featuresa Before Deconv. A

1 0.8231

2 0.8352

3 0.8172

4 0.8332

5 0.8078

a1= Eq. �7� for all three inclusions, 2= Eq. �8� for all, 3
inclusion apiece.

Fig. 8 Contrast dependence of spatial accuracy for deconvolved-only
�‘+’ and ‘�’ symbols� and for deconvolved+denoised �‘*’ and ‘�’ sym-
bols� images. The solid curves correspond to level 2 noise, and the

dashed curves to level 3 noise.
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reconstructed images denoised by only temporal or by both
temporal and spatial LPFs, for a fixed inclusion contrast of
2.4. The noise levels used here are defined in Sec. 2.4. The
curves with ‘*’ and ‘�’ symbols are the results for images that
have been deconvolved and denoised, while the curves with
‘�’ and ‘�’ symbols are the results for images that have been
denoised but not deconvolved. The dashed curves are results
for images denoised with only a temporal LPF, and the solid
curves are those for images denoised with both temporal and
spatial LPFs. The SCs indicate that spatial accuracy is sub-
stantially improved by the deconvolution�filtering opera-
tions, and that even at a relatively high noise level �e.g., level
3�, high spatial accuracy �e.g., c�t0�uv�0.6 for noise level 3�
is still achieved.

The dependence of TC on normalized modulation ampli-
tude, for deconvolved images denoised by a temporal LPF, is
plotted in Fig. 10. Sinusoidal temporal behavior expressed by
Eq. �7� was assigned to the �a of the inclusions, with dynamic
feature parameters �a0=0.12 cm−1, f0=0.1 Hz, and �0=0;
the definition of normalized modulation amplitude is

cal features of inclusions �noise: level 2�.

With Temporal LPF

conv. Before Deconv. After Deconv.

78 0.9522 0.6729

80 0.9548 0.6928

76 0.6966 0.4244

92 0.7685 0.5200

26 0.7975 0.5931

9� for all, 4= Eq. �10� for all, 5= Eqs. �7�–�9� for one

Fig. 9 Noise dependence of spatial accuracy for denoised images: ‘+’
and ‘�’ symbols, SC plots for images that have not been deconvolved;
‘*’ and ‘�’ symbols, SC plots for deconvolved images; dashed lines,
only a temporal LPF is used for denoising; solid lines, both temporal
and spatial LPFs are used for denoising. The absorption contrast is 2.4
ynami

fter De

0.24

0.26

0.24

0.26

0.27

= Eq. �
in all cases.
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��a /�a0. The solid and dashed curves are plots of TC versus
��a /�a0 for level 2 and level 3 noise, respectively. These
results demonstrate that the temporal accuracy of
deconvolved+denoised image time series increases with in-
creasing modulation amplitude, and that a relatively high tem-
poral accuracy �c�x0 ,y0�uv�0.6� can be obtained even when
��a /�a0 is as low as 0.2.

Figure 11 shows the dependence of TC on noise level for
reconstructed images denoised by only temporal or by both
temporal and spatial LPFs. The same sinusoidal time series
changes as used for Fig. 5 were assigned to inclusions’ ab-
sorption coefficients in this case. The four sets of conditions
corresponding to the plotted curves �i.e., ±deconvolution,
±spatial LPF� are the same as those considered in Fig. 9, with
corresponding curves symbol- and line-style-matched be-
tween Figs. 9 and 11. From these TC versus noise-level plots,
we find that the deconvolution operation has no effect on
temporal accuracy when the detector data are noise-free
�noise level 0�, but that temporal accuracy degrades rapidly
with increasing noise level. However, a relatively high tem-
poral accuracy �c�t0�uv�0.7� still is seen in the deconvolved
images at noise level 3, which typifies experimental noise
levels in data collected with our instrumentation.18 In light of
the significant improvement in spatial accuracy resulting from
deconvolution, at the same noise level �see Fig. 9�, the deg-
radation of temporal information seen in Fig. 11 may be
deemed an acceptable trade-off. Alternatively, temporal and
spatial content can be extracted from a time series at different
stages of the reconstruction process.

Finally, comparisons between TCs of image time series for
the four different dynamic features assigned to the inclusions
�Eqs. �7� to �10�� are summarized in Table 1. Here the dy-
namic features 1 �Eq. �7��, 2 �Eq. �8��, 3 �Eq. �9��, and 4 �Eq.
�10�� correspond to Figs. 2�a�, 2�b�, 2�c�, and 2�d�, respec-
tively. Dynamic feature 5 refers to a three-inclusion medium
with a different time-varying function �i.e., Eqs. �7�, �8�, and
�9�� assigned to each inclusion. The table gives TC data for
the case of level 2 noise. Consistent with earlier observations,
application of a temporal LPF ameliorates the loss of TC en-
gendered by spatial deconvolution, but does not restore it all

Fig. 10 Amplitude dependence of temporal accuracy for deconvolved
+denoised �temporal LPF� images: solid curve; level 2 noise; dashed
curve, level 3 noise; time-averaged contrast is 2.
the way to the predeconvolution level. Inspection of the data
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in Table 1 also reveals that the attainable temporal accuracy
falls as the dynamic properties of the medium become in-
creasingly complex.

4 Discussion and Conclusions
The results presented here constitute an extension of an ongo-
ing effort that, we believe, can have the effect of substantially
improving the quality, and hence interpretability, of DOT im-
age data. As is more completely laid out in earlier papers,20–23

there is an intimate connection between the spatial deconvo-
lution technique that is explored in this paper and our devel-
opment of and emphasis on dynamic functional imaging with
DOT over the past 6 to 7 yr �Refs. 15–19, 27 and 28�. A
requirement for successful adoption of dynamic DOT is de-
velopment of methods for rapid recovery of large numbers of
images. This necessity for fast imaging was a principal reason
for our reliance on first-order reconstruction algorithms based
on linear perturbation equations,16,17 thereby sacrificing the
improved spatial resolution and quantitative accuracy that in
some cases can be achieved by using computation-intensive
iterative, nonlinear methods.25,33,34 The discovery that the al-
gorithms we used enabled us to recover dynamic properties of
tissue structures and tissue-like media with far more accuracy
than that obtained for the optical coefficients at a particular
time frame,15 combined with the conviction, born of knowl-
edge of physiology and pathophysiology, that the former type
of information is the more clinically valuable, made the trade-
off between speed and quality of individual images accept-
able.

More recently, we recognized that our rapid time-series
imaging capability afforded us a previously unavailable
method for studying the action of various image reconstruc-
tion algorithms: temporal fluctuations are introduced into the
optical coefficients of light-diffusing media; spatial location is
encoded by varying the functional form of the fluctuations in
a position-dependent manner; application of analysis meth-
ods, already available to us,15,19,27 to the time series of recon-
structed images precisely reveal the manner in which spatial

Fig. 11 Noise dependence of temporal accuracy for denoised images:
‘+’ and ‘�’ symbols, TC plots for images that have not been decon-
volved; ‘*’ and ‘�’ symbols, TC plots for deconvolved images; dashed
lines, only a temporal LPF is used for denoising; solid lines, both
temporal and spatial LPFs are used for denoising; time-averaged con-
trast is 2 and the normalized modulation amplitude is 0.2.
information of the medium is represented in the image do-

September/October 2005 � Vol. 10�5�9



Xu et al.: Image quality improvement via spatial deconvolution…
main. Increasing experience with this approach led to a fur-
ther insight: careful comparison of the medium and images
might enable one to derive a mathematical operator that can
correct for errors made by the reconstruction algorithm in the
assignment of medium spatial information to the image. Add-
ing to the appeal of the proposed spatial deconvolution ap-
proach was the recognition that while computation of such an
operator might have substantial CPU and memory require-
ments, these would be completely independent from, and
could precede, reconstruction of the image�s� to which it
would be applied. The postreconstruction computational bur-
den, in contrast to that of nonlinear reconstruction algorithms,
might be as little as a single matrix multiplication. That is, if
the deconvolution approach proved successful, it could con-
stitute a computationally efficient method for producing
individual-time-frame images of a quality comparable to that
obtained by using the nonlinear reconstruction algorithms.
That method could, furthermore, have applicability not only
to the problem area that is of particular interest to us, but also
to essentially any field in which a linear transformation is
used to convert sets of observations or measurements into
interpretable results.

In several earlier papers we have showed that the decon-
volution approach does, in fact, enhance image quality to the
extent that we anticipated, in both 2-D �Refs. 21 and 23� and
3-D �Ref. 22� instances of DOT. It has been found equally
successful in full-view tomographic, partially restricted-view
�e.g., 3-D hemispheric medium with sources and detectors
distributed about the curved surface, but none on the planar
surface�, and single-view �e.g., 2-D rectangular media with
transmission-only or reflection-only source-detector arrange-
ments, 3-D slab with reflection-only arrangement� test cases.
In the examples presented in the cited works, the deconvolved
images were remarkably accurate in terms of the identity,
number, location, shape, and size of inclusions, and frequently
also in terms of the quantitative value of the recovered optical
coefficient. At the same time, some of the uncorrected optical
coefficient images, especially in the reflection-only cases,
bore almost no resemblance to the target medium. However,
we recognized the ways in which those same examples were
idealized. Two of particular importance are �1� the target me-
dia considered before were static, which made it impossible to
examine the question of whether and to what degree the spa-
tial corrections are accompanied by degradation of temporal
information in the image time series; and �2� the impact of
noise in detector data, and ways of ameliorating its effects,
were touched on only superficially. For this paper, we have
extended the earlier studies by examining these two issues in
detail.

The principal conclusions to be drawn from the new results
presented here are �1� application of our spatial deconvolution
method does lead to a reduction in the accuracy of recovered
dynamic-feature information, but the degree of reduction is
highly noise-level-dependent �see Fig. 11�; �2� noise also de-
grades the spatial accuracy of optical coefficient images at
individual time frames; and �3� elementary spatial and tempo-
ral denoising methods can, especially when used in tandem,
almost eliminate the second problem and substantially ame-
liorate the first. While the accuracy of temporal information is
never as high after deconvolution as before, except in the case

of noise-free data, it remains usefully high even at levels of
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noise that are typical of what we find in experimental data
taken with our dynamic DOT instrumentation.36

This rapid loss of temporal accuracy with increasing noise
level is understandable and predictable. Noise in detector data
causes artifacts in the reconstructed images and these artifacts
are amplified by deconvolution; the amplification occurs be-
cause the forward-problem solutions used to generate the de-
convolution operator are noise-free, and so all image informa-
tion, including the artifacts, is treated as if it were real �i.e.,
noise-free� information and is “corrected” by the deconvolu-
tion operator. The mathematical effect of that operator is to
replace the reconstructed image value at each FEM mesh
node with some linear combination of the values at all nodes,
and the sum of noise contributions from all the nodes causes a
reduction in the TC between the true and recovered time se-
ries. As shown here, direct suppression of noise can be an
effective method of reducing the degradation in temporal ac-
curacy. In addition to the simple LPF technique considered
here, our plans for future studies include examining the ef-
fects of many other well-established denoising techniques, in-
cluding wavelets37 and von Hann filters.38 Another approach
that will be investigated in tandem is to further explore opti-
mization of parameters that already have been shown to affect
the performance of deconvolution operator. These include the
number of sampled optical coefficient distributions and the
amplitude of sinusoidally time-varying optical coefficients.22

It may be possible to generate deconvolution filters that are
less sensitive to noise via optimization of these parameters.

Our emphasis on presenting results for simple sinusoidal
temporal fluctuations in the inclusions’ �a might strike some
as uninteresting, but has a sound physiological basis: an im-
portant goal in clinical dynamic DOT studies is to follow and
quantify spatiotemporal vasomotor fluctuations; these are
low-frequency ��0.2 Hz�, narrowband �i.e., approximately
sinusoidal� phenomena.39 The technique employed here, of
applying a LPF whose threshold frequency is just 0.05 Hz
higher than the frequency of the �a perturbation, therefore
mimics the manner in which we actually treat experimental
data.

We further anticipate that some may wonder whether the
effect of denoising via a temporal LPF depends on whether it
is applied prior to image reconstruction, between reconstruc-
tion and deconvolution, or, as in the examples presented here,
after deconvolution. We examined the issue and found that
there is no effect; the final image is exactly the same, whether
denoising is the first, second, or third operation carried out. In
retrospect, this outcome is not surprising, because the LPF
implementation we used is linear in the time domain.

It was previously observed22 that the success of the spatial
deconvolution approach has an important implication with re-
spect to the origin of the low spatial resolution frequently seen
in DOT images reconstructed with linear algorithms. Namely,
it is only for large optical-coefficient perturbations, relative to
the reference medium, that the nonlinear relationship between
medium properties and detector data becomes the primary
source of error in the image. More commonly, linear convo-
lution of spatial information introduced by the reconstruction
algorithm is the more important factor. We fully expect, how-
ever, that the most generally useful, and computationally ef-
ficient, reconstruction strategy is to combine the �linear� de-

convolution and iterative �nonlinear� strategies, applying them
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in an alternating manner. We anticipate that this would enable
successful reconstruction of images of media with almost any
type and magnitude of optical coefficient perturbations, in a
time frame acceptable for clinical applications. A hybrid algo-
rithm that is based on the reconstruction methods we have
previously described16,17 would have the additional benefit of
their demonstrated robustness to known, not easily elimi-
nated, types of measurement error.

To clarify one final point, note that a blind deconvolution
method in DOT was recently studied by Jefferies et al.35 and
by Matson.29 Although our scheme and their method are both
called “deconvolution,” the meanings of deconvolution are
very different in our usage and in theirs. The goal of the blind
deconvolution method is to deblur the 2-D image that is pro-
duced by subtracting, from the blurred target measurement, a
second measurement of the same turbid medium without a
target present, while that of our spatial deconvolution is to
obtain a complete 2-D or 3-D reconstruction of the target in
the turbid medium.

In summary, we investigated the effectiveness of the linear
deconvolution method applied to image time series recon-
structed by solving a first-order perturbation equation. From
the qualitative and quantitative results obtained in this report,
we can reach the following conclusions. First, for noise-free
or low-noise �K0=0.5% and KW=5%� data, high spatial and
temporal accuracy are achieved by the deconvolution method.
Second, simple time-series features �e.g., sinusoidal� are
easier to recover than complex time-series features �e.g., vari-
able frequency�. Third, for noisy data, deconvolution proce-
dures can significantly improve the spatial accuracy of time-
series images, but the temporal accuracy is concomitantly
degraded. Fourth, denoising techniques can enhance the per-
formance of the deconvolution method. Finally, combined
with temporal and spatial LPFs, satisfactory spatial and tem-
poral accuracy �spatial correlations �0.6 and temporal corre-
lations �0.7� can be obtained by use of the deconvolution
method for noisy data at noise levels typical of experimental
data �K0=2% and KW=20%�.

5 Appendix
As indicated in Sec. 2.6, here we show an alternative repre-
sentation of the 3-D reconstructed images shown in Fig.
5�a.3� and Fig. 5�a.4�. Each panel of Fig. 12 contains three
mutually orthogonal 2-D sections �upper left, lower left, and
lower right subfigures� intersecting at a point in the 3-D im-
age, while the upper right subfigure shows the orientations of
the 2-D sections and the point of intersection. Figures 12�a�
and 12�b� show sections through the deconvolved-only image
�compare to Fig. 5�a.3��, and Fig. 12�c� and 12�d� show the
matching sections through the deconvolved�denoised image
�compare to Fig. 5�a.4��.

There is no thresholding in the graphical presentation
mode used in Fig. 12. Each plotted 2-D section contains the
entire range of recovered image values within that section.
From inspection of these results, it is apparent that the cor-
rected image produced by applying the spatial deconvolution
method outlined in this paper shows sharp transitions between
the inclusions and the surrounding background medium. Thus

the appearance of well-localized, correctly sized inclusions in
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Figs. 4–7 is not an artifact of the threshold-level selection
process.
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