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INTRODUCTION
We have previously shown that linear convolution of spatial 
information is the principal cause of the relatively low spatial
resolution and quantitative accuracy of DOT images 
reconstructed by linear perturbation approaches [1].  A 
deconvolution algorithm was developed that was shown to 
significantly improve qualitative and quantitative image 
accuracy, with a computational effort that is negligible 
compared to recursive iterative reconstruction techniques [2-
5].
A potential limitation of the earlier work is that it examined 
only cases where the target medium consisted of a number of 
convex inclusions embedded in a homogeneous background.  
Left open is the possibility that the positive results obtained 
are sensitive to the spatial extent of the mismatch between the 
optical parameters of the medium used for generating a 
deconvolution operator, or filter, and those of the medium to 
which the filter is subsequently applied.  Similarly, the 
effectiveness of deconvolution might be sensitive to 
increasingly complex parameter spatial distributions, or to 
increasingly irregular external geometries.  Here we present 
results of our examinations of these issues.

METHODS
The starting point for the geometrical model used here was a 
3D T1-weighted structural MRI of the human head.  The 
section shown in Figure 1, which lies at the level of the 
temporal bone to the mid-mandible and has a maximal 
horizontal total width of ~12.5 cm, intersects the pre-motor 
and primary motor cortices.  The region indicated by a red 
outline (~6 cm along the surface, 3 cm in depth), whose 
dimensions are typical of those of the tissue volume we 
interrogate in a dynamic DOT brain imaging studies, was 
chosen as the basis of a heterogeneous target medium for 
simulation studies.  Seven principal tissue types—scalp, 
muscle, skull, cerebrospinal fluid (CSF), gray matter, and 
white matter—were identified within the selected area, the 
interfaces between them, as well as the exterior boundary, 
were traced.  A 2D finite element model was created, taking 
the selected region’s borders and inter-tissue-type interfaces 
as the boundaries of surface sub-regions.  Next, a model with 
3D geometry was generated by extruding the 2D model in the 
orthogonal direction, producing the cylinder depicted in 
Figure 2(a).  Finally, an additional small sub-volume was 
created within the “gray matter” region of the 3D model, 
having no boundary in common with the model’s external 
surfaces, as shown in Figure 2(b).  Optical coefficient values 
can be assigned to each sub-region independently; thus the 
last volume added can be interpreted either as the portion of 
cerebral cortex that is activated by a specific task, or as a 
tumor or other lesion.

Shown in Fig. 2(a) are the 25 simulated source and 
detector locations for the simulated DOT measurements 
reported on here.  The array depicted closely approximates 
the arrangement of optical fibers typically used in performing 
finger-tapping studies or other measurements of 
hemodynamics associated with specific activations of the pre-
motor and/or primary motor cortices.

All surface detector data and internal photon intensities 
(the latter needed for computation of the transformation 
matrices used in image reconstruction [6]) were obtained by 
performing finite element method (FEM) computations to 
numerically solve the diffusion equation with Robin 
boundary conditions [7].  Each forward-problem computation 
was performed four times, once for each of the four values of 
μa assigned to the CSF (Table 1).

Sinusoidal temporal variation (Figure 3) was imposed on 
the absorption coefficient in two of the model tissue 
compartments, allowing us to evaluate the impact of all 
mathematical operations on the recoverability of dynamic 
information.  The inclusion volume and the gray matter in 
which the inclusion is embedded were the regions considered 
for this purpose.  Also, images were reconstructed from data 
that were either noise free, or were contaminated with white 
Gaussian additive noise (see Fig. 6).  Elementary temporal 
and spatial low-pass filtering techniques were applied, after 
the reconstruction and deconvolution steps [5], to assess the 
extent to which the effect of noise is reversible.

Deconvolution operators and detector-readings time 
series were computed for four combinations of time-averaged 
optical parameters (Table 1).  To examine the sensitivity of 
the image enhancement algorithm to a spatially complex 
mismatch between the optical parameters of the filter-
generating and target media, every deconvolution operator 
was applied to the images reconstructed from each medium’s 
detector data.  Spatial and temporal correlations (SC and TC, 
respectively) were computed, between the true properties of 
each target medium and all corresponding image time series.

Figure 3. Plots of μa vs. time, in the 
inclusion and gray-matter compartments 
of the 3D tissue model of Fig. 2(b),(c).
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Figure 1. Coronal section of a 3D T1-
weighted structural MRI of the human head, 
that was the starting point for the 
heterogeneous target medium use in this 
report’s simulation studies.  The section shown 
intersects the pre-motor and primary motor 
cortices.
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μs (cm-1) μa (cm-1) μs (cm-1) μa (cm-1) μs (cm-1) μa (cm-1)

Case1 10.0 0.080

Case2 5.0 0.040

Case3 1.0 0.010

Case4 0.5 0.005

Filter1 10.0 0.080

Filter2 5.0 0.040

Filter3 1.0 0.010

Filter4 0.5 0.005
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Table 1. Optical coefficient values (for 
tissue types with dynamic μa, tabulated 
number is the temporal mean) assigned to 
the different tissue compartments of the 
MRI-based 3D geometry, for all target 
(Case1-4) and reference (Filter1-4) media 
that were modeled.
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Figure 4. Volume rendering of the 
Fig. 2(b) target medium.  (a) 
Case1 detector data, Filter2 
reference medium (see Table 1), 
before deconvolution.  (b) Case1 
detector data, Filter2 reference 
medium, after deconvolution. (c) 
Case3 detector data, Filter2 
reference medium (see Table 1), 
before deconvolution.  (d) Case3 
detector data, Filter2 reference 
medium, after deconvolution. In 
each sub-figure, the range of μa
values plotted runs from μa

max/2 to 
μa

max.
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Figure 5. (a) Bar graph of relative percent change in image spatial correlation, comparing the image-to-target SC 
after and before spatial deconvolution, for all 16 Case/Filter pairings.  (b) Bar graph of the corresponding relative 
percent changes in image temporal correlation.  Annotations above bars indicate whether the reference-medium 
CSF optical coefficients match (‘M’), over-estimate (‘O’) or under-estimate (‘U’) those of the target medium 
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Figure 6. (a) Colormap of relative percent 
change in image spatial correlation, comparing 
the image-vs.-target SC after and before spatial 
deconvolution, for the four CaseN/Filter3 pairings, 
three noise levels, and four varieties of noise 
suppression.  (b) Colormap of the corresponding 
relative percent changes in image temporal 
correlation.  We used a noise model in which, for 
each source-detector channel, the standard 
deviation of the noise distribution is a pre-
selected percentage of the noise-free detector 
reading and grows as the fourth power of the 
distance between source and detector [5].  The 
minimal noise level (source and detector co-
located) was 1, 2 or 3%, while the maximal noise 
level was, respectively, 10, 20 or 30%.

RESULTS
Spatially convolved images are shown in Fig. 4(a),(c); the 
Fig. 4(a) result, Case1/Filter2, is computed using a weight 
function that under-estimates the CSF optical coefficients, 
while the Case3/Filter2 image [Fig. 4(c)] is obtained when 
weight functions are used that over-estimate the CSF optical 
coefficients.  The noteworthy features of Figs. 4(a),(c) are: 
they are qualitatively very similar; there is substantial depth 
location error, with the recovered μa perturbation apparently 
located within the skull; the size of the inclusion is over-
estimated in all cases; the magnitude of the μa perturbation is 
under-estimated in all cases.

Qualitative image accuracy is more variable after spatial 
deconvolution than before.  The result obtained for the 
Case1/Filter2 pairing is, as shown in Fig. 4(b), superior to the
Fig. 4(a) result in the three important respects of depth 
location, inclusion size, and quantitative perturbation 
magnitude.  In stark contrast, when the direction of the 
mismatch is reversed and the CSF optical coefficients are 
over-estimated [Fig. 4(d)], the high-absorption region of the 
deconvolved image splits into two parts, one still at the 
correct location and the other consisting of superficial 
artifacts.  Increasing the magnitude of the mismatch leads to a 
completely erroneous result (not shown) that consists almost 
exclusively of the superficial artifacts. Comparison of 
imaging results for all 16 Case/Filter pairings and all 100 time
frames show that the type of trend seen in Fig. 4 turns up 
consistently.

The effect of deconvolution was quantified by computing 
the relative differences between the SC and TC after vs. 
before this procedure.  The percent changes, for all 16 
Case/Filter pairings, are plotted in Figure 5(a) (spatial) and 
5(b) (temporal).  The white bars are data for the Case1 
medium, for which the CSF optical coefficients are never 
over-estimated; it is seen that deconvolution always brings 
about an increase in SC and TC.  The black bars are data for 
the Case4 medium, for which the CSF optical coefficients are 
never under-estimated; it is seen that effect of deconvolution
ranges from significant degradation of image quality to 
substantial improvement.  Results for the other Cases are 
intermediate between those for the preceding two.

Figure 6 shows the percent changes in SC [Fig. 6(a)] and 
TC [Fig. 6(b)], for all four CaseN/Filter3 pairings and all 
three noise levels.  As in Fig. 5, positive(negative) values 
indicate that the correlation is higher(lower) after 
deconvolution than before.  Inspection shows that: at the 
lowest noise level, which is typical of data collected in DOT 
brain measurements: 1) the SC invariably increases upon 
spatial deconvolution; 2) the loss of TC associated with 
deconvolution can be minimized by using sLPF and tLPF in 
combination.

CONCLUSIONS
The trend noted in Figs. 4,5 is readily explicable, and it does 
not cast doubt upon the utility of the deconvolution
algorithm; the error-inducing situation is easily avoided in 
practice.  The straightforward explanation for the asymmetric 
dependence of artifact on mismatch is that weight matrices 
computed for media with lower μs and μa values in the CSF 
assign greater importance to the regions lying deep to it, 
which in our model includes the inclusion sub-volume.

The practically significant conclusions of the noise 
studies are that, irrespective of the noise level: 1) the 
percentage increase in SC can be made larger by using LPFs, 
especially sLPF and tLPF in combination; 2) the loss of TC 
can be held to acceptable levels, provided that the reference-
medium CSF optical coefficients do not over-estimate those 
of the target medium.
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Figure 2. (a) Exterior view of the 3D model geometry 
generated from the MRI section shown in Fig. 1; 
source and detector positions also are indicated, as 
small white circles.  (b) Interior view of the 3D model 
from Fig. 2(a), revealing the inclusion embedded in the 
gray-matter zone.

(b)

4 cm

4 cm

6 cm

(a)

This work was supported in part by the National Institutes of Health (NIH) under Grants R41-
NS050007 and R43-NS49734, and by  the US Army under Grant DAMD017-03-C-0018.


