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We outline a computationally efficient image correction algorithm, which we have applied to diffuse
optical tomography (DOT) image time series derived from a magnetic resonance imaging (MRI)-based
brain model. Results show that the algorithm increases spatial resolution, decreases spatial bias, and
only modestly reduces temporal accuracy for noise levels typically seen in experiment, and produces
results comparable to image reconstructions that incorporate information from MRI priors. We demon-
strate that this algorithm has robust performance in the presence of noise, background heterogeneity,
irregular external and internal boundaries, and error in the initial guess. However, the algorithm
introduces artifacts when the absorption and scattering coefficients of the reference medium are
overestimated—a situation that is easily avoided in practice. The considered algorithm offers a practical
approach to improving the quality of images from time-series DOT, even without the use of MRI
priors. © 2007 Optical Society of America
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1. Introduction

As a technique for noninvasive monitoring of biomed-
ical function, diffuse optical tomography (DOT) offers
a number of practical, economic, and physiologic-
informational advantages relative to other imaging
modalities.1,2 The technology is compact, can be
brought to the bedside, and is easily combined with
other imaging technologies. In addition, by extending
the measurement to allow for the capture of a time
series, it can explore various dynamic phenomena,
in particular, those associated with the hemoglobin
signal.

An important methodological complexity that anal-
ysis of these data brings is the need for computation-
ally efficient reconstruction methods. Our approach
to this has been to employ a first-order linear recon-
struction algorithm3,4 that, among other favorable
attributes,5 is computationally efficient. While we

have shown that this method can recover dynamic
features with good fidelity,6–9 it would appear that
the images produced have reduced spatial resolution
and positional accuracy, when compared with results
obtained using computationally intensive methods
(i.e., iterative recursive image reconstruction algo-
rithms).10–13

In a series of recent reports, we have developed
an image correction methodology that significantly
improves on these limitations in a manner that
preserves computational efficiency.14–18 The method
applies a linear correction operator that is derived
from knowledge of a position-dependent information
spread function. The details of this function depend
on both the algorithm and the measurement geome-
try, but it is easily computed for any specific case.
Insight into this approach was derived from an un-
derstanding of principles used in magnetic resonance
imaging (MRI). In particular, we extended the idea of
frequency encoding of spatial information to an anal-
ogous temporal encoding scheme that serves to iden-
tify how spatial information from the object domain is
mapped to the image domain.

While previous reports have demonstrated that the
linear correction method is effective, these results
were based on test media that were idealized in sev-
eral respects.15–18 They were regular shapes with
smooth external boundaries, convex everywhere, and
had structural heterogeneity that consisted of a small
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number of spherical inclusions embedded in homoge-
neous, static backgrounds. Also, they were limited to
media having perturbations in only the absorption co-
efficient. For this paper, we have expanded our exam-
ination to systematically explore the effect of target
medium complexity on the performance of the correc-
tion scheme, based on computational models of the
head derived from 3D magnetic resonance images.

2. Methods

A. Target Medium Structure

The starting point for the geometric model used here
was a 3D T1-weighted structural MRI of the human
head [GE Medical Systems SIGNA, 1.5T, TR � 35
ms, TE � 5 ms, tip angle � 45°, 3D GRASS (Gradi-
ent Recalled Acquisition in Steady State) pulse se-
quence], publicly available in the form of 60 3 mm
thick coronal-section DICOM (Digital Imaging and
Communications in Medicine) images.19 The partic-
ular section shown in Fig. 1, which lies at the level of
the temporal bone to the midmandible and has a
maximal horizontal total width of �12.5 cm, inter-
sects the premotor and primary motor cortices. The
region indicated by a dashed outline (�6 cm along
the surface, 3 cm in depth) in Fig. 1, whose dimen-
sions are typical of the tissue volume interrogated in
our dynamic DOT brain-imaging studies,20 was cho-
sen as the basis of a heterogeneous target medium for
use in simulation studies. Six principal tissue types—
scalp, muscle, skull, cerebrospinal fluid (CSF), gray
matter, and white matter—were identified within the
selected area, and the interfaces between them, as well
as the exterior boundary, were traced. A 2D finite-
element model was created, with a commercial mesh-
generating package,21 taking the selected region’s
borders and inter-tissue-type interfaces as the bound-

aries of subregions, each of which is denoted by a dif-
ferent gray level in Fig. 2(a). Next, a model with 3D
geometry was generated by extruding the 2D model in
the orthogonal (z, by definition) direction, thereby pro-
ducing the cylinder (i.e., the geometry is 3D, but het-
erogeneous in only the x and y dimensions) depicted in
Fig. 2(b). Finally, an additional small subvolume was
created within the gray matter region of the 3D model,
having no boundary in common with the model’s ex-
ternal surfaces, as shown in Fig. 2(c). This volume can
be interpreted either as the portion of cerebral cortex
that is activated by a specific task or as a tumor or
other lesion.

B. Target Medium Optical Properties

1. Static Heterogeneity
Among the different physiological compartments in
the model, CSF has substantially weaker absorption
and scattering than surrounding tissues. In contrast,
differences between optical coefficients of the other
tissue types is of the same order of magnitude as
the variability within the values reported for each
type.22,23 Accordingly, heterogeneous media were mod-
eled by assigning one pair of absorption-coefficient ��a�
and scattering-coefficient ��s� values to the inclusion,
a second pair to the CSF, and a third to all other
compartments. Also, since an activated region, as
well as certain types of lesions, would be expected to
absorb near-infrared (NIR) light more strongly than
the surrounding unaffected tissue, a higher �a was
assigned to the inclusion than to the other tissue
types. The optical coefficients used were: �s � 10
cm�1, �a � 0.24 cm�1 in the inclusion; �s � 10, 5, 1, or
0.5 cm�1, �a � 0.08, 0.04, 0.01, or 0.005 cm�1 in the
CSF compartment; �s � 10 cm�1, �a � 0.08 cm�1 else-
where. The specific permutations of �a and �s values
modeled are given in Table 1.

2. Optical Coefficient Dynamics
Sinusoidal temporal variation was imposed on the
absorption coefficient in two of the model tissue
compartments, in order to explore spatial blurring
of dynamic information and our ability to spatially
isolate it.

The time-varying absorption assigned to the gray
matter and inclusion volumes were

�ag�t� � �ag0�1 � mr sin�2�frt � �r�
� mc sin�2�fct � �c�� (1)

for the gray matter (hence the subscript g), and

�ai�t� � �ai0�1 � mv sin�2�fvt � �v�� (2)

for the inclusion (subscript i). Plots of Eqs. (1) and (2)
are shown in Fig. 3. The mean-absorption coefficient
values �ag0 and �ai0 were taken from Table 1, while
the modulation frequencies were fr � 0.1 Hz (r �
respiratory), fc � 1.0 Hz (c � cardiac) and fv �
0.06 Hz (v � vasomotor). The corresponding initial
phases were �c � �r � �v � ��2, and the modulation
depths were mc � 0.02, mr � 0.1, mv � 0.2.

Fig. 1. Tissue model used to generate simulated data. The section
shown intersects the premotor and primary motor cortices.
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The forward- and inverse-problem computations de-
scribed below were carried out for a total of 100 suc-
cessive time frames, with a time interval �t � 0.5 s.

C. Forward Problem

Shown in Fig. 2(b) are the 25 simulated source and
detector locations for the simulated DOT measure-
ments reported on here. Taking the curvature of the
surface into account, the maximum source-detector
separation is �5 cm (�1 cm spacing between rows
and �0.67 cm between adjacent positions within a
row). The array depicted closely approximates the
arrangement of optical fibers typically used in per-
forming neurological function (e.g., finger-tapping)
studies,20,24 or other measurements of hemodynamics
associated with specific activation of the premotor
and�or primary motor cortices.

All surface detector data and internal photon in-
tensities were obtained by performing finite-element
method (FEM) computations to numerically solve the
diffusion equation with Robin boundary conditions.3,4

Each forward-problem computation was performed
four times, once for each set of optical coefficients
assigned to the CSF (Subsection 2.A and Table 1).

Three distinct FEM meshes were generated from
the multiple-compartment model geometry described
in Subsection 2.A, differing in their numbers of mesh

nodes. The coarsest (1339 nodes) is used for inverse-
problem computations (image reconstruction, spatial
correction), as described below. The intermediate-
density mesh (4375 nodes) is used for computation of
the detector data that enter into the generation of
image correction matrices (Subsection 2.E),15–17 and
the reference-medium detector readings and interior
photon intensities that enter into the image-
reconstruction calculations (Subsection 2.D). The fin-
est mesh [5360 nodes, and the one depicted in Fig.
2(b)] is used for computation of detector data, for
the media containing an inclusion with properties
distinct from those of the surrounding tissues (Ta-
ble 1: Target1–Target4).

When the dynamic (100 time frames) algorithm-
testing data were computed, the inclusion was as-
signed a time-averaged �a different from those of the
other compartments, as described above. However,
when the time-series (214 time frames) simulations
needed for computation of image correction matrices
were carried out, the inclusion region was assigned
the same time-averaged �a as the other non-CSF
compartments (Table 1: Reference1–Reference4).
Static media (i.e., one time frame) were used for the
reference-medium detector reading and interior-
intensity computations, with the �a of the inclusion

Fig. 2. (Color online) (a) Two-dimensional heterogeneous model geometry, with the subregions coded by gray levels, derived from the
portion of Fig. 1 bounded by a dashed curve. (b) Exterior view of the 3D model geometry generated by extruding the 2D model in the third
dimension, with source and detector positions indicated as small white circles. (c) Interior view of the 3D model from Fig. 2(b), revealing
the inclusion embedded in gray matter.

Table 1. Optical Coefficient Values Assigned to the Different Tissue Compartments, for All Target and Reference Mediaa

Calculation

CSF Inclusion Others

�s

(cm�1)
�a

(cm�1)
�s

(cm�1)
�a

(cm�1)
�s

(cm�1)
�a

(cm�1)

Target1 10.0 0.080 10.0 0.24 10.0 0.08
Target2 5.0 0.040 10.0 0.24 10.0 0.08
Target3 1.0 0.010 10.0 0.24 10.0 0.08
Target4 0.5 0.005 10.0 0.24 10.0 0.08
Reference1 10.0 0.080 10.0 0.08 10.0 0.08
Reference2 5.0 0.040 10.0 0.08 10.0 0.08
Reference3 1.0 0.010 10.0 0.08 10.0 0.08
Reference4 0.5 0.005 10.0 0.08 10.0 0.08

aFor tissue types with dynamic �a, tabulated number is the temporal mean assigned to the different tissue compartments, for all target
(Target1–Target4) and reference: (Reference1–Reference4) media.
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and gray-matter compartments set equal to the gray-
matter temporal mean value, �ag0.

D. Inverse Problem

Images were reconstructed by using the previously
described normalized difference method (NDM),3
which is a modified linear perturbation technique
that is highly robust to many difficult-to-eliminate
sources of experimental error and uncertainty asso-
ciated with DOT measurements. In the NDM, the
fundamental relation between detector data and me-
dium optical properties, for a given measurement
wavelength used for DOT measurements, is

�R � R0

R0 �
j

Rj
r � 	

k
�wjk

a ��a,k � wjk
s ��s,k�, (3)

where j and k index the source-detector channels and
FEM mesh nodes, respectively. Rj is the jth-channel
detector data for a particular time frame, and Rj

0 is
the jth-channel baseline value; Rj

r is the jth-channel
detector data acquired from a reference medium
whose optical coefficients are thought to closely ap-
proximate those of the target medium; wjk

a and wjk
s are

elements of the transformation, or weight, matrix
that relates optical coefficient perturbations within
the reference medium to their effects on data re-
corded at its surface; ��a,k is the difference, at the kth
FEM mesh node, between the absorption coefficients
of the target and reference media; and ��s,k is the
analogous perturbation of the scattering coefficient.
Forward-problem computations performed on the
intermediate-density FEM mesh (see Subsection 2.C)
are used in the computation of Rj

r, wjk
a , and wjk

s . The
latter two quantities are functions of photon intensi-
ties, and of their spatial gradients, within the refer-
ence medium.25,26 To minimize the computational
effort for the inverse problem, solutions were based
on a coarse mesh (1339 nodes). To retain accuracy for
the forward problem, results were initially computed

using the intermediate mesh density and then inter-
polated to the course mesh.27 Inverse solutions were
obtained using regularized LU decomposition.18 Mir-
roring the forward-problem computations, the num-
ber of time frames was 100 for the Target1–Target4
time series, and 214 for the Reference1–Reference4
time series. The latter calculation took less than 10
min to perform on a 2.8 GHz PC with 1 Gbyte of RAM.

To examine the effect of random error on the accu-
racy of recovered images, reconstructions and image
corrections were conducted four times. Noise-free de-
tector data were used in the first instance, and
Gaussian white noise was added to the normalized
detector data in the remaining three. [The normal-
ized detector reading for detector channel j is �R�R0�j.]
As in previous reports, here we used a noise model in
which the noise level (i.e., the standard deviation of
the noise distribution) is a preselected percentage—
which grows as the fourth power of the distance be-
tween source and detector— of the noise-free detector
reading.18 In the noise-added trials, the minimal
noise level (source and detector colocated) was 1%,
2% or 3%, while the maximal noise level was, respec-
tively, 10%, 20%, or 30%. The noise distributions
used for each trial were stationary, i.e., the noise
levels were not time varying.

The impact of systematic error in the estimates of
time-averaged tissue optical coefficients was studied
by pairing detector data computed for one assign-
ment of CSF �a and �s with a weight matrix com-
puted for a different set of CSF properties. All 16
target–reference combinations have been examined.

E. Image Correction

Images reconstructed by solving Eq. (3) were post-
processed via the image-correction algorithm that we
have previously described,15–18 which is based on a
numerical direct assessment of the information-
distorting properties of inverse-problem algorithms.
We proceed by first generating a time series of me-
dium states M (a Nn � Nt matrix, where here the
number of FEM mesh nodes is Nn � 1339, and the
number of time frames is Nt � 214), with distinguish-
able functional forms assigned to the �a dynamics of
the nodes, and then computing the corresponding
time series of reconstructed images M̂. Then the im-
age correction matrix, or filter, is simply the least-
squares solution of the overdetermined linear system
M � FM̂. Here, F is a square, Nn � Nn matrix whose
kth row is an estimator for the true optical-coefficient
perturbation at the kth node. To control for ill condi-
tioning, calculations of solutions to M � FM̂ (which
took less than 10 min on the same PC as used for
reconstructing images) employed the same zeroth-
order Tikhonov regularization method as was used in
solving Eq. (3).

After an image-correction matrix F has been gener-
ated, any image m̂ that is subsequently reconstructed
by using the same mesh and source-detector geometry,
and the same reconstruction algorithm as was used for

Fig. 3. Plots of �a versus time, in the inclusion and gray-matter
compartments of the 3D tissue model of Figs. 2(b) and 2(c).
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the computation of M̂, can be spatially corrected via a
simple matrix multiplication: m � Fm̂.

Four image-correction matrices F1–F4 were gener-
ated, corresponding to the four spatial distributions,
Reference1–Reference4, of �a that are considered
here (see Table 1). In the systematic-error study, each
image-reconstruction weight function is paired with
the corresponding image-correction matrix, com-
puted for the same assumed values of CSF �a and �s.
Thus we are able to determine the sensitivity of
this image-enhancement strategy to uncertainty–
imprecision in our knowledge of background optical
coefficients. Computations of F1–F4 employed the
same interpolation from the intermediate density
to coarse mesh, as described in Subsection 2.D, for
both the assigned reference-medium coefficient val-
ues and weight matrices.

F. Noise Suppression

The spatially corrected images that were recovered
from noisy detector data were subsequently treated
with three noise-suppression schemes. The first
method was temporal low-pass filtering (tLPF) with a
zero-phase far-infrared digital filter, using a trape-
zoidal frequency-response function with threshold
frequency set to 0.15 Hz and a 0.05 Hz roll-off (i.e., all
frequencies lower than 0.125 Hz are fully passed, all
frequencies greater than 0.175 Hz are completely
blocked, and the frequency response decreases lin-
early over the 0.125–0.175 Hz interval). The second
noise-suppression scheme was “pillbox” spatial low-
pass filtering (sLPF), wherein the image value at
each FEM node is replaced by a weighted average
of the values at that node and its near neighbors.28

The third approach employed both the tLPF and
sLPF operations. The effects of these procedures were
quantified by computing the spatial and temporal
correlations of the recovered images before and after
each one (see Subsection 2.6).

The tLPF operation was applied to the data time
series in each image pixel individually, without re-
gard to information present in other pixels. It should
also be noted that absolute frequencies are enumer-
ated in the preceding paragraph, i.e., they are not
normalized to the Nyquist frequency. But as the lat-
ter was precisely 1 Hz (see Subsection 2.B.2), here the
normalized and unnormalized frequencies are equal.

G. Quantification of Image Accuracy

The spatial and temporal correlations between target
medium and reconstructed images are used here as
the indices of spatial and temporal accuracy, respec-
tively, of recovered images.18 The spatial correlation
(SC) at a given time frame t0 is defined as

SC�t0� �
1

Nn � 1 	
k�1

Nn �uk � u�
su

��vk � v�
sv

�, (4)

where uk � u�rk, t0� is the true value of the �a per-
turbation at the kth FEM mesh node of the target
medium, vk � v�rk, t0� is the corresponding �a pertur-

bation of the recovered image, u� and v� are the spatial
mean values of u and v, su and sv are the correspond-
ing spatial standard deviations, and the summation
runs over all Nd mesh nodes (here, Nn � 1339). The
temporal correlation (TC) at a given location r0 is
defined as

TC�r0� �
1

Nt � 1 	
k�1

Nt �uk � u�
su

��vk � v�
sv

�, (5)

where uk � u�r0, ti� and vi � v�r0, ti� are contrast
parameter values of the target medium and recon-
structed image, respectively, and the summation
runs over all Nt time points (here, Nt � 100). In Eq.
(5), u� and v� are temporal mean values, and su and sv

are temporal standard deviations. All subsequently
reported TC values are spatial averages over the in-
clusion volume only. While this restriction was made
principally for convenience, our examination of the
region of interest does not degrade our ability to ex-
plore the spatial convolution of gray matter and in-
clusion volume, as this effect will be manifested by a
reduced value of the computed TC.

For the purpose of quantifying the degree of im-
provement or degradation of image quality that is
associated with spatial image correction, relative dif-
ferences between the SC and TC after versus before
this procedure frequently is more informative than
the raw indices computed using Eqs. (4) and (5). Ac-
cordingly, the relative percent changes (RPCs) in SC
and TC also have been computed, via the formulas

RPCs � 100
SCc � SCu

SCu
, (6)

RPCt � 100
TCc � TCu

TCu
, (7)

where the subscripts u and c indicate the correlations
computed for the images prior to and subsequent to
image correction.

3. Results

A. Influence of Reference-Medium Mismatch

1. Noise-free Data
In practice, it can be expected that application of the
image-correction scheme will involve a mismatch be-
tween the actual background properties of the target
medium and those assumed for the purpose of com-
puting the image formation (W) and correction (F)
operators. Here we explore the influence this system-
atic error has on our ability to improve image quality.
To do this, we have computed the effects that appli-
cation of the correction scheme has on the set of all
target–reference combinations (16 pairings). These
combinations explore the influence of over- and un-
derestimation of the background optical properties,
in particular those associated with the CSF. We con-
sider this because CSF is the one compartment most
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likely to have variations in its optical properties in
cases of pathology [e.g., subdural hematoma, cerebral
sepsis, liver disease (i.e., jaundice)].

Shown in Fig. 4 are results documenting the image
improvement achieved using the type-2 reference, ap-
plied to each of the four targets. Note that, because of
the relative independence of image quality on the
temporal variations in inclusion and background
properties, here we show only one of the 100 images
in each target image time series. Inspection shows
that prior to image correction, the location of the
recovered inclusion is closer to the surface than its
true position, its maximum amplitude is 	6% of its
true value, and its size is overestimated. In addition,
this trend is mainly independent of the mismatch
between the true and assumed background medium
properties, which is a finding consistent with proper-
ties of the NDM algorithm.3 Application of the cor-
rection procedure produces images that have much
greater location and coefficient accuracy (at least for
Target1 and Target2) but tend to underestimate the
inclusion size. It is worth emphasizing that the latter
is mainly a consequence of the minimum threshold
value, which by convention was 50% of the maximum
image value. Careful inspection of the coefficient gra-
dient in the recovered image shows that this function
is much steeper in the corrected image than in the
uncorrected one and is a finding we have consistently
seen in many other test cases.16–18 Reinforcing this
consideration are results shown in Fig. 5, which doc-

uments a large improvement in the spatial correla-
tion following image correction. The other finding of
interest indicated in Fig. 4 is that use of a correction
matrix corresponding to an overestimate of the back-
ground optical coefficients quickly leads to a degra-
dation in the quality of the corrected image. As
detailed in Fig. 5, this trend seems to hold for other
target–reference pairs as well, but the reverse bias
(i.e., using a correction operator that underestimates
the background optical coefficients) is much more ro-
bust to such systematic errors.

Shown in Fig. 5 are the relative changes in the
spatial and temporal correlations as a consequence of
applying the image-correction scheme, for the com-
plete set of target–reference combinations. It is not
surprising that the optimal improvement was seen
when the background properties of the reference
match those of the target. In the case of spatial cor-
relation, this improvement was in the range of 50%–
62% depending on the particular target considered
(maximum SC value obtained was 0.61). Qualita-
tively similar findings were seen for TC, but here the
improvement was more modest. This quantitative
difference, however, is not owing to any inherent lim-
itation in the ability to accurately recover temporal
behavior. Rather, it is because the value obtained was
already nearly optimal (0.94–0.95 for uncorrected
images, 0.96–0.99 for corrected images).

Also shown in Fig. 5 is the influence of a mismatch
between the backgrounds of the target and reference.

Fig. 4. (a) Volume rendering of the Target2 target medium, at time frame 100. (b)–(e) Volume renderings of images reconstructed from
Target1–Target4 detector data, respectively, by solving Eq. (3). For all four targets, the Rr, wa, and ws factors are computed from the
Reference2 medium (see Table 1). (f)–(i) Volume renderings of the Target1–Target4 images, respectively, after they have been spatially
deconvolved, using the method of Subsection 2.E. In each subfigure, the range of �a values plotted runs from �a

max�2 to �a
max.
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Inspection shows that when the reference back-
ground optical coefficients overestimate those of the
target, the SC and TC quickly decline. In contrast,
when the bias is reversed, the accuracy measures are
stable and indicate that the corrected images have
significantly improved spatial accuracy and retain
good temporal accuracy. It is also worth noting that
the SC findings obtained were mainly independent
of fluctuations in background mismatch caused by
the temporal variability in the inclusion and gray
matter (results not shown).

2. Impact of Noise
The influence of measurement data noise on image
correction is shown in the results presented in Figs.
6–8. Seen in Fig. 6 are results obtained when the
background properties for the target and reference
are matched. Each column corresponds to a different
noise level: 1%–10% in Figs. 6(a), 6(d), and 6(g), 2%–
20% in Figs. 6(b), 6(e), and 6(h), and 3%–30% in Figs.
6(c), 6(f), and 6(i). Each row corresponds to a different
treatment of the imaging data: in Figs. 6(a)–6(c),
images have been reconstructed and corrected, but no

Fig. 5. (a) Bar graph of relative percent change in image spatial correlation, comparing the image-to-target SC [Eq. (4)] after and before
spatial image correction, for all 16 target–reference pairings. (b) Bar graph of the corresponding RPCs in image TC. Each bar represents
the average RPCs [Eq. (6)] or RPCt [Eq. (7)] across all 100 time frames. Annotations indicate whether the reference-medium CSF optical
coefficients match (M), overestimate (O) or underestimate (U) those of the target medium.

Fig. 6. Spatially corrected images, for time frame 100, reconstructed from noisy detector data. (a), (d), (g) Noise level 1: noise standard
deviation is 1%–10% of noise-free detector reading. (b), (e), (h) Noise level 2: noise standard deviation is 2%–20% of noise-free detector
reading. (c), (f), (i) Noise level 3: noise standard deviation is 3%–30% of noise-free detector reading. (a)–(c) No noise suppression method
is used. (d)–(f) tLPF used to suppress noise. (g)–(i) sLPFs and tLPFs used to suppress noise.
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noise suppression technique has been applied; in
Figs. 6(d)–6(f), a tLPF has been applied to the image
time series after the correction step; and in Figs.
6(g)–6(i), a sLPF has been applied to the corrected
and temporally filtered images. The primary mani-
festation of noise is the appearance of superficial ar-
tifacts in the image, whose magnitude and number
increase with noise level [similar to the ones seen in
Figs. 4(h) and 4(i)]. Unlike the systematic-error re-
sults, however, these are not associated with appre-
ciable losses in quantitative accuracy. Application of
the tLPF reduces but does not eliminate the artifacts,
and does not have any noticeable impact on the size,
shape, location, or on quantitative accuracy of the
recovered inclusion. The images that are denoised
with both temporal and spatial LPFs, and the analo-
gous sLPF-only denoised images (not shown), retain
none of the artifacts. In addition, the recovered inclu-
sion more closely approximates the ideal shape [see
Fig. 4(a)] after application of the sLPF than before.
These improvements, however, come at the cost of
lower quantitative accuracy.

The time dependence of the image SC computed
from noisy data and the ameliorating effects of the
denoising operations are illustrated in Fig. 7. Results
presented here are derived from data with the high-
est, 3%–30%, noise level considered. Prior to the ap-
plication of any denoising technique [Fig. 7(a)], the
uncorrected-image SC, while low, is nearly constant
across time. Furthermore, its average value of 0.37 is
less than 0.5% lower than the average SC for noise-
free data. The SC for the corrected images is more
variable across time, with a mean value of 0.35. The
latter number is significantly worse than the 0.55
average SC that is computed from noise-free data
(corresponding averages for the 1%–10% and 2%–
20% noise level are 0.51 and 0.43, respectively).
Following application of the tLPF [Fig. 7(b)], the
uncorrected-image SC is nearly indistinguishable, in
both average value and temporal variability, from the
noise-free-data SC (not shown). The same noise-
suppression scheme yields a 0.51 average SC, which
is only 1.2% lower than the corresponding noise-free
value, for the corrected-image time series, but with
significantly greater temporal variability than in the
noise-free results. Marked improvements in the SCs
of both uncorrected and corrected images are pro-

duced by using both the tLPF and the sLPF [Fig.
7(c)]. The average uncorrected-image SC is 0.47, and
the average corrected-image SC is 0.7, when tempo-
ral and spatial filtering are used in tandem. The
former value is only 0.5% greater than the average
uncorrected-image SC obtained when only the sLPF
technique is used to suppress noise, but the latter is
significantly higher than the 0.53 average sLPF-only
SC of the corrected images. Thus these results dem-
onstrate that the combination of temporal and spatial
LPFs produces the highest quality corrected image,
and that the dual-LPF result is appreciably better
than that produced by either one alone.

In agreement with a previous report,18 we find
that in the presence of noise, image correction typ-
ically is associated with a lower TC in the inclusion
region, but that using LPFs can minimize the re-
duction. Examination of TCs computed for different
target–reference pairings and noise levels gives re-
sults that largely parallel those for spatial accu-
racy: the best final result (i.e., TC closest to that of
the original, uncorrected image) is obtained when
both temporal and spatial LPFs are used. An im-
portant difference in detail is that, when the noise-
suppression methods are ranked in order of the
degree of improvement obtained, we get sLPF �
tLPF 
 tLPF 
 sLPF for the TC and sLPF �
tLPF 
 sLPF 
 tLPF for the SC. Additionally, when
the highest noise level is combined with a refer-
ence that overestimates the CSF optical coefficients
of the target (i.e., the worst case in terms of both
systematic and random errors), image correction
tends to cause a reversal of the algebraic sign of the
TC. This is not remedied by the application of either
or both types of LPF.

Summarizing the preceding descriptions, Fig. 8
shows contour maps of (RPCs [Fig. 8(a)] and RPCt

[Fig. 8(b)], for all four TargetN–Reference3 pairings
and all three noise levels. As in the systematic-error
study, positive (negative) values indicate that the cor-
relation is higher (lower) after image correction than
before. Inspection of these plots shows that at the
lowest noise level, which is typical of data collected in
DOT brain measurements, the SC invariably in-
creases upon image correction. We also see that irre-
spective of the noise level, the percentage increase in
SC can be made larger by using LPFs, especially

Fig. 7. Plots of image-versus-target spatial correlation versus time frame, before (dashed curves) and after (solid curves) spatial
correction, for images recovered from data contaminated with level-3 noise. (a) No noise-suppression method is used. (b) tLPF used to
suppress noise. (c) sLPFs and tLPFs used to suppress noise. �D � uncorrected image, �D � corrected image.
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sLPF and tLPF in combination. At the lowest noise
level, the loss of TC associated with image correction
can also be minimized by using sLPF and tLPF in
combination. Furthermore, at all noise levels, the
loss of TC can be kept within acceptable limits,
provided that the reference-medium CSF optical co-
efficients do not overestimate those of the target
medium.

B. Image Correction without Anatomical Prior Information

A secondary issue we have considered is that, even
though the use of anatomical priors can be advanta-
geous, in practice this involves an added effort for
which automated routines are generally not avail-
able. It is thus useful to explore whether effective
alternative strategies can be found. One possible ap-
proach is to employ nonlinear reconstruction meth-
ods to yield a heterogeneous reference medium, from
which the image-reconstruction and image-correction
operators are computed. It should be noted that the
computational burden for this approach is a small
fraction of that for most iterative reconstruction
methods, in that the updating process need be carried
out only once, and is not repeated for each time
frame.

Results in Table 2 identify the image quality im-
provements that can be achieved, for the four targets
considered here, when the above approach was im-
plemented. For comparison, the corresponding values
for homogeneous-reference and MRI-based-reference
image reconstructions also are included. All values in

the table were computed from noise-free images. The
highlighted entries are those for which there is a
match between the optical parameters of the target
and reference media. An intuitive expectation is that
these would have the highest SC and TC among the
three approaches, and that in all cases the iterative-
update result would be intermediate between the
other two. With the exception of the uncorrected-
image SC, where the iterative approach produced
values higher than those for the MRI priors, this
expectation is observed.

In detail, it is seen that SC for uncorrected images
is higher under the iterative-update approach than
for either of the others but remains low overall. The
SC for the corrected-image results is never maximal
for the iterative-update data, and this approach does
not yield as much relative improvement as the MRI-
prior method (average RPCs � 27% for the former
and 47% for the latter). Moreover, the iterative-
update approach always gives qualitatively improved
corrected images, even though its starting point is the
same homogeneous reference medium that degrades
image quality in the mismatched cases (Target3–
Reference1 and Target4–Reference1 pairings).

With regard to recovery of dynamic information, it
is seen that the uncorrected-image TC value is de-
pendent on the strategy for computing the reference
medium. The ordering observed is MRI prior � iter-
ative update � homogeneous reference for all four
targets. The MRI-prior � iterative-update ordering
holds for the corrected-image TC results as well.

Fig. 8. (Color online) (a) Contour map of RPC in image spatial correlation, comparing the image-versus-target SC [Eq. (4)] after and before
spatial correction, for the four TargetN–Reference3 pairings, three noise levels, and four varieties of noise suppression. (b) Contour map
of the corresponding RPCs in image temporal correlation. Each square represents the average RPCs [Eq. (6)] or RPCt [Eq. (7)] across all
100 time frames.

Table 2. Spatial and Temporal Image-Versus-Target Correlations, before and after Image Correction, for Different Strategies for Applying the
Correction Schemea

Target
Medium

SC TC

Uncorrected Corrected Uncorrected Corrected

Homogeneous Iterative Prior Homogeneous Iterative Prior Homogeneous Iterative Prior Homogeneous Iterative Prior

Target1 0.339 0.371 0.353 0.541 0.462 0.511 0.938 0.948 0.958 0.961 0.925 0.980
Target2 0.345 0.379 0.363 0.498 0.485 0.527 0.939 0.947 0.958 0.966 0.931 0.986
Target3 0.333 0.382 0.368 0.154 0.499 0.554 0.909 0.917 0.934 �0.503 0.920 0.984
Target4 0.324 0.381 0.368 0.0206 0.480 0.549 0.849 0.870 0.891 �0.677 0.571 0.928

aHighlighted entries indicate exact match between the optical coefficients of the target and the reference media.
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However, when the homogeneous-reference and
iterative-update approaches are compared, the or-
dering is medium dependent. The homogeneous ref-
erence yields the higher corrected-image TC for
Target1 and Target2, while for Target3 and Target4
the iterative-update approach performs significantly
better. Overall, we find that even a single update of
the reference-medium estimate allows for generation
of corrected images that are substantially similar to
those obtained using the MRI priors.

4. Discussion

Time-series DOT, with its capacity to explore the
temporal dynamics of the hemoglobin signal using
compact and portable technology, provides new op-
portunities to explore the spectrum of functional
states associated with blood delivery to tissue. Given
the expectation that a single study can generate data
corresponding to thousands to tens of thousands of
volumetric images, consideration of the computational
effort required to analyze this data is key to develop-
ing practical systems. First proposed by our group
was a linear perturbation formulation,29,30 which has
since been adopted by many other groups.31–34 In
principle, this strategy can yield absolute measures
of tissue chromophore levels. In practice, however,
experimental uncertainties, such as imperfect knowl-
edge of external tissue geometry, tissue optical prop-
erties, transmission efficiencies of the measuring
system, and contact fidelity between optodes and tis-
sue, produce solutions that are easily biased. Recog-
nizing that measures of relative changes in biological
signal levels are often useful, we later introduced a
modified formulation based on such variations that
has proven robust to many of the experimental un-
certainties.3 Characterization of this method has
shown that dynamic phenomena can be recovered
with remarkable accuracy, even in the limit of spa-
tiotemporal coincident states.5 As the method is
limited to a first-order linear reconstruction, it is per-
haps not surprising that the coefficient accuracy and
spatial resolution obtained is less than can be
achieved using more computationally intensive re-
cursive iterative methods.10–13 Yet another element
common to first-order reconstructions, especially for
backreflection studies (e.g., brain imaging), is that
the locations of recovered features are biased toward
the tissue surface.24 Currently available methods are
thus either overly computationally intensive or pro-
duce solutions having less than ideal spatial and co-
efficient accuracies.

Taking cues from MRI, we have recently developed
an image-correction procedure that is both computa-
tionally efficient (i.e., simple matrix multiplication)
and provides for solutions that have substantially
improved coefficient accuracy (usually by a factor of
10), object localization, and spatial resolution.14–18

The correction kernel is a quantitative description of
the convolution of spatial information inherent in
linear operations. We have referred to this as an
information spread function, which is analogous to a
point-spread function. The details of this blurring

and displacement are both target dependent and al-
gorithm dependent. The converse consideration is
worth noting. Demonstrating that spatial blurring
and displacement occur with linear solvers raises the
question of why we need to turn to nonlinear solvers
to overcome a situation that can be addressed by
using methods that inherently are more computa-
tionally efficient. As with any scheme, its practical
utility is dependent on demonstrating sufficient ro-
bustness with targets of interest (e.g., 3D complex
media), which is the focus of this paper.

It has been suggested, in response to various pre-
sentations of these findings,35–37 that the image cor-
rection achieved might well be attributable to the fact
that a suboptimal degree of regularization was ini-
tially selected. As demonstrated in Fig. 9, we have
directly tested this by using Tikhonov regularization
parameters that straddle the optimal value as deter-
mined by an L-curve analysis. Inspection shows that
in all cases, the corrected images are more accurate
(i.e., lower spatial root-mean-squared difference be-
tween image and target media) than the uncorrected
images.

The end point of functional imaging studies is not
just the recovery of an image time series but the
extraction of a variety of features. These features can
serve as markers for disease,38 as surrogates of other
signals of interest that are not easily observable [e.g.,
BOLD (i.e., blood oxygen-level dependent) signal for
neuroactivation],39 or, in the case of state-space prob-
lems,40 as the outputs of yet other more basic phe-
nomenologies. Important to these interpretations is
the question of how the known limitations of DOT
impact on the extracted features. As mentioned, DOT
images typically have low spatial resolution and,
when limited to first-order solutions, can be spatially
biased. A brute-force approach to addressing this con-
cern might be to implement a recursive solver and
apply it to the complete time series. Given current
computing speeds, absent of a grid computing ap-
proach,41 this would seem infeasible. Alternatively,

Fig. 9. Plot of rmsd versus Tikhonov regularization parameter �,
for the Target3–Reference3 combination and level-1 noise. The
dotted vertical line indicates optimal value of �, as derived from an
L-curve analysis. �D � uncorrected image, �D � corrected image.
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in an effort to retain computationally tractable solu-
tions, one can ignore the additional spatial blurring
and bias that first-order solutions introduce.

The aforementioned distortions can have signifi-
cant effects on the information content derived from
functional neuroimaging studies, which include iden-
tification of structure-function relationships in re-
gions of interest and functional connectivities among
end target tissues. In the case of the former, spatial
bias can have the effect of displacing the response to
areas outside of expected targeted areas. In contrast,
blurring expands the area of activation but does not
displace its centroid. These distortions can lead to
mistaken association of areas that are not, in reality,
functionally connected. It can also be expected that
spatial bias and blurring will make it more difficult to
correctly identify responses that are independent or
uncorrelated, which are strategies commonly em-
ployed in functional neuroimaging studies.42,43 Thus,
when spatial distortions are ignored, conclusions
based on subsequent analysis may be more difficult to
justify.

In summary, we have demonstrated that the
image-correction procedure described here is capable
of computationally efficient reduction in the system-
atic spatial bias and blurring of first-order DOT im-
ages of complex 3D media. In the accompanying
paper, we extend these findings to the correction of
images of scattering coefficients and demonstrate im-
provements similar to those seen for absorption.44
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