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Systematic characterization studies are presented, relating to a previously reported spatial deconvolution
operation that seeks to compensate for the information-blurring property of first-order perturbation
algorithms for diffuse optical tomography (DOT) image reconstruction. In simulation results that are
presented, this deconvolution operation has been applied to two-dimensional DOT images reconstructed
by solving a first-order perturbation equation. Under study was the effect on algorithm performance of
control parameters in the measurement (number and spatial distribution of sources and detectors,
presence of noise, and presence of systematic error), target (medium shape; and number, location, size,
and contrast of inclusions), and computational (number of finite-element-method mesh nodes, length of
filter-generating linear system, among others) parameter spaces associated with computation and the use
of the deconvolution operators. Substantial improvements in reconstructed image quality, in terms of
recovered inclusion location, size, and contrast, are found in all cases. A finding of practical importance
is that the method is robust to appreciable differences between the optical coefficients of the media used
for filter generation and those of the target media to which the filters are subsequently applied. © 2005
Optical Society of America

OCIS codes: 170.3880, 170.3010, 100.1830, 100.6950, 100.6890.

1. Introduction

In earlier reports,1,2 a linear deconvolution strategy
was presented that was shown to bring about
substantial qualitative improvement in two-
dimensional (2D) and three-dimensional (3D) images
reconstructed from steady-state (cw) diffuse optical to-
mographic (DOT) measurement data. The cases that
were studied used approximations to measurement
geometries commonly employed in DOT mam-
mography3–6 and in DOT functional brain imaging7–10

studies, and some took into account the effect of mul-
tiplicative noise on the performance of the deconvolu-
tion procedure. Among the important questions left
unanswered, however, were the limits of spatial reso-
lution and of qualitative (i.e., position, shape, and size

of inclusions) and quantitative (i.e., magnitude of re-
covered absorption and scattering coefficients) accu-
racy that can be achieved by this method, for different
permutations of target, measurement, and computa-
tional parameters. Addressing these questions is the
subject of the present paper.

As explained in Ref. 2 and subsequently in Section
2, the image-correction process we have devised bears
analogies to the use of a physical optics device’s point-
spread function to sharpen its output, to the calibra-
tion of a piece of laboratory equipment with
standardized test inputs, or to the localization of ra-
dio frequency signals in magnetic resonance imaging
(MRI) by means of a frequency-encoding magnetic
field gradient. The application of the same concept to
DOT image reconstruction entails tagging the optical
parameters of each target medium area or volume
element in some way. This permits the computation
of an information-spread function (ISF) that de-
scribes the spatial distribution of the target medium’s
properties in the reconstructed image. The method
used in Refs. 1 and 2 and here is to tag the properties
of simulation media voxels by causing them to fluc-
tuate at location-specific frequencies and then to lo-
cate and quantify the contribution of each voxel to the
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reconstructed image by solving a system of linear
equations as described in Subsection 2.A.

Specific issues that we examine here include the
effect on image quality of varying the number of
sources and detectors; the measurement geometry
(full tomographic versus limited views); the number
of pixels in the inverse-problem mesh; the number
and size of regions containing optical parameter val-
ues that are different from those of the background
(i.e., inclusions); the distance separating multiple in-
clusions and their distance from the medium bound-
ary; the quantitative inclusion-versus-background
optical parameter contrast; and the external geome-
try of the medium (circular versus rectangular). Also
studied was the effect of the discrepancy between the
bulk optical parameters of the media used in deriving
a deconvolution operator and those of the target me-
dium to which it subsequently is applied. The quality
of the images, both before and after application of
spatial deconvolution, was quantified by means of
several local [i.e., coordinates of inclusion center, in-
clusion full width at half-maximum (FWHM)] and
global (spatial correlation and root-mean-squared dif-
ference between medium and image11) indices of re-
construction accuracy. Strictly as a matter of
convenience with regard to computing the accuracy
indices and displaying the results of those computa-
tions, the simulation studies conducted here used 2D
media.

Although the results obtained in the studies out-
lined in the previous paragraph are the primary find-
ings for the current report, several other questions
related to the method’s ultimate limitations, and to
its performance relative to other DOT imaging strat-
egies, have been examined as well. These include an
attempt to reproduce as nearly as possible an imag-
ing problem considered by Pogue et al.,12 which al-
lows us to compare the performance of the spatial
deconvolution approach and a well-characterized it-
erative nonlinear reconstruction algorithm. As re-
ported below, the iterative algorithm yields a better
quantitative (maximum recovered absorption coeffi-
cient value) accuracy than the deconvolution ap-
proach, but the two have nearly identical qualitative
accuracy (inclusion depth and FWHM); thus the net
advantage associated with the former method may in
some cases be too small to justify its additional com-
putational burden. Furthermore, the comparison
suggests that the most efficient approach, in cases in
which additional refinement beyond that provided by
the deconvolution approach is needed, is to incorpo-
rate it into the iterative method to lower the number
of iterations required.

2. Methods

A. Spatial Deconvolution Algorithm

The derivation that follows is complementary to that
of Ref. 2. Some important properties of the deconvo-
lution operator that are not self-evident in the previ-
ously published derivation are made explicit here.

To compute ISFs and deconvolution operators for a

given medium, we begin by assigning a fixed numer-
ical ordering to the Np elements [e.g., nodes in a
finite-element-method (FEM) mesh] whose optical
parameter values are the inverse-problem un-
knowns, as indicated in Fig. 1. Then each element, or
pixel, is assigned a time-dependent absorption or
scattering coefficient, as also indicated in Fig. 1. The
particular choice of functional form shown here, and
used for the examples subsequently discussed, is a
set of sinusoids with incommensurate frequencies,
whose amplitudes (ac) were equal to 2% of their mean
(dc) values. (For presentation purposes the sinusoids
are drawn in Fig. 1 as if they were in phase at time
t � 0, but in practice a random initial phase shift is
assigned to each one.) These optical parameter func-
tions are sampled at a constant interval �t, until a
total number Nt of spatial distributions are recorded.
For each of these distributions a forward-problem
solution is computed, using a specified fixed set of
sources and detectors, such as one of the configura-
tions sketched in Fig. 2 below (see Subsection 2.B).
Images of the spatial distributions of medium prop-
erties at each of the Nt sample times are reconstruct-
ed; the original, or true, and reconstructed spatial
distributions of medium optical parameters are accu-
mulated in two Np � Nt matrices Y and Ŷ. An impor-
tant assumption underlying this approach to image
enhancement is that the optical parameter informa-
tion that resides in an individual pixel of the medium
is in some manner smeared out within the entire
spatial domain of the reconstructed image. (There is
no spreading in the temporal dimension because the
data from each time slice is processed independently
of all the others. Naturally, both spatial and temporal
convolution would have to be addressed if an algo-
rithm that simultaneously processes data acquired
over many time slices13,14 were used.) A second as-
sumption is that the contribution of a given medium
element to each image element is the same at all
times, which is a reasonable expectation if the mag-
nitudes of the optical parameter fluctuations are not
large. Then these contributions can be determined by
solving a linear system with Np unknowns: Y � FŶ,
where F is a Np � Np matrix and is called the decon-
volution operator or filter, which contains the contri-

Fig. 1. Schematic illustration of the process of assigning a unique
temporal modulation to the absorption or scattering coefficient of
each medium pixel. The functional form shown is a set of sinusoids
with incommensurate frequencies. For presentation purposes they
are drawn as if in phase at time t � 0, but in practice a random
initial phase shift is assigned to each one.
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bution of each medium element to all the image
pixels.

In the preceding description, no notice was taken of
the ratio Nt�Np. If Nt�Np � 1, as we have already
indicated is the case in practice,1,2 then F is the least-
squares solution to an overdetermined problem. It
follows that the matrices Y and FŶ are not equal, but
that the Frobenius norm of Y � FŶ is minimized.
That is, F is the transformation that yields the best
possible approximation to Y as a linear combination
of rows of Ŷ.

Next note that every column in the linear equation
Y � FŶ contains the spatial distributions of optical
parameters in the medium and image at a single time
slice. Selecting the jth column gives us Y�1:Np, j�
� FŶ�1:Np, j�, which suggests the manner in which F
can be used to correct reconstruction artifacts result-
ing from the information-spreading effect of the re-
construction algorithm. Let z denote the optical
parameter values of a target medium that is not in
the training set Y. (Note also that, although Y nec-
essarily consists of simulated media, z can be a lab-
oratory phantom or other physical structure.) Then
we reconstruct the image ẑ from the computed or
measured detector readings and then multiply by F
to obtain the corrected image ẑ� � Fẑ � z.

Algebraically, the forward problem for the jth col-
umn of the system takes us from the medium with
properties Y�1:Np, j� to the detector data vector xj; the
length of xj is the total number of source–detector
(S–D) channels. Solving the inverse problem then
produces Ŷ�1:Np, j� � W�xj, , where W is the Jacobian
or weight matrix and W� is its pseudo-inverse (in-
cluding a regularization term, as described in Sub-
section 2.D). Combining equations for all Nt time
slices gives us Ŷ � W�X, wherein xj is the jth column
of X. Meanwhile, the system Y � FŶ has a least-
squares solution given by F � YŶ� � YŶT�ŶŶT��1.
Substituting the preceding expression for Ŷ into this
last equation leads to

F � YXTW�T(W�XXTW�T)�1, (1)

which gives the spatial filter operator in terms of the
properties of the training set (Y), the corresponding
detector data (X), and the image reconstruction algo-
rithm (W).

For the target medium z with corresponding detec-
tor data v, the image ẑ is reconstructed by solving the
(usually underdetermined) linear system v � Wz.
Thus ẑ � W�v � W�Wz. Applying the deconvolution
operator as described two paragraphs earlier yields

ẑ� � [YXTW�T(W�XXTW�T)�1W�W]z, (2)

which gives the dependence of the corrected image on
the properties of the training set and the correspond-
ing detector data, the image reconstruction algo-
rithm, and the true properties of the target medium.

Depending on the value of Np, the overall compu-
tation time (Nt forward problems, Nt inverse prob-
lems, and solving Y � FŶ) for generation of each
deconvolution operator used in the studies is within
the range of 1 to 4 h, using a 2.4-GHz processor.

B. Medium and Measurement Geometries for Filter
Characterization Studies

As explained in Section 1, although successful appli-
cation of the image-enhancing procedure has been
demonstrated for 3D DOT imaging problems, all com-
putations reported here were carried out on 2D me-
dia. As a practical matter, the computation and
display of the various indices of reconstruction accu-
racy (see Subsection 2.E) are more readily carried out
in two dimensions. To study the dependence of algo-
rithm performance on all the control variables listed
in the Introduction, we have made use of a large set
of medium shapes, material properties, finite-
element meshes, and S–D configurations. The data
presented in Section 3 were obtained from 12 simu-
lation experiments, each designed to examine the de-
pendence of the spatial filtering scheme’s
performance on a different subset of the control pa-
rameters. The parameters that were varied in each of
the simulation studies, and the type of inclusions
used (i.e., single or multiple, single node or spatially
extended), are summarized in Table 1.

The first simulation experiment was a study of the
location accuracy, quantitative accuracy, and spatial
resolution for a circular medium containing an inclu-
sion that consisted of elevated absorption coefficient
�a at a single FEM mesh node, as a function of the
inclusion’s distance from the boundary and of the
coarseness of the mesh. In the second, the diameter of
the inclusion was varied while its center remained
fixed at one of two positions within the medium. In
both of these cases the effectiveness of our image-
enhancing algorithm on spatial resolution was as-
sessed by computing the FWHM of the inclusion in
the reconstructed �a image, before and after applica-
tion of the spatial deconvolution operator, and com-
paring these with the known diameter of the
inclusion in the target medium. In addition, in study
1 the distance between the central point in the recov-
ered inclusion and its known location in the target
medium was computed, before and after deconvolu-
tion, to quantify the effect of our procedure on loca-
tion bias.

Studies 3–6 were all concerned with examining the
effects of different control parameters on the image-
enhancement method’s resolving power, for two
matched (i.e., having the same diameter and the
same �a) circular inclusions in a disk-shaped me-
dium: interinclusion separation and coarseness of the
FEM mesh (study 3), the number and density of S–D
channels (study 4), the inclusions’ distance from the
boundary (study 5), and the inclusion-versus-
background contrast, i.e., the ratio �a

incl��a
bkgr (study

6).
In the preceding cases, the background optical pa-
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rameters of each inclusion-bearing medium were pre-
cisely equal to those of the medium used in the
corresponding filter-generating computation. How-
ever, by employing inclusions whose �a values exceed
the amplitudes of the tagging functions used in the
filter-generation computations, they begin to bear on
an important practical consideration. Namely, the
robustness of the filtering approach to mismatches
between properties of the media, which relates to the
question of whether successful application of a com-
puted filter to a physical (laboratory or clinical) target
medium can be expected and to the size of the filter
library needed to accommodate the probable range of
target medium properties. The seventh simulation
study reported here more fully addresses the issue of
robustness. The single image-correcting filter used
here was computed using a medium that had ��a�
� 0.002 mm�1 and �s� � 1.0 mm�1 [where ��a� de-
notes the temporal average value of �a], whereas the
background �a of the heterogeneous test media
ranged from 0.0005 to 0.02 mm�1, and their �s�
ranged from 0.3 to 3.0 mm�1.

The purpose of the eighth experiment was to
directly compare the performance of spatial deconvo-
lution and of a well-characterized iterative Newton–
Raphson reconstruction algorithm. In this case the
same geometries and optical properties of the me-
dium and inclusion as those in Ref. 12 are used for the
comparison. Because detector noise was explicitly
modeled in Ref. 12, we have included it in our com-
putations as well.

The ninth study was similar to the sixth in that the
spatial resolution for two disk-shaped inclusions in a
circular medium was examined as a function of
�a

incl��a
bkgr; the difference is that here a limited-view

S–D distribution was modeled, with all sources and
detectors lying along one half of the medium’s perim-
eter. The tenth study is a comparison of the perfor-
mance of spatial filtering and a recursive iterative

reconstruction algorithm for this same S–D configu-
ration.

Additional limited-view studies were conducted in
the eleventh and twelfth simulation experiments,
where a rectangular FEM mesh was used to deter-
mine whether the effectiveness of our image-
enhancement approach is strongly influenced by the
medium’s external geometry. A single-view backre-
flection measurement was modeled in study 11, a
single square-shaped inclusion was employed, and
the qualitative and quantitative accuracy of the re-
constructed images, before and after application of
the spatial filter, was assessed as a function of the
distance of the inclusion from the sources and the
detectors. A single-view transmission measurement
(intended in part to approximate the geometry of the
simulation experiment that Markel and Schotland15

conducted to illustrate the principal conclusions of
their paper) was modeled in study 12, the inclusion
was a point (one mesh-node) absorber, and the qual-
itative and quantitative accuracy of the reconstructed
images, before and after application of the spatial
filter, was assessed as a function of the number and
density of sources and detectors.

The various permutations of medium properties
used for filter-generation computations are cata-
logued in Table 2, and the medium geometries, di-
mensions, and representative S–D distributions are
shown schematically in Fig. 2. A point that merits
emphasis is that only �a was allowed to fluctuate in
the simulation studies, whereas the scattering coef-
ficient �s� was held constant with a value of
1.0 mm�1. The computations were conducted in this
manner only to lower the associated volatile com-
puter memory requirement, and they do not reflect a
limitation on the applicability of the method. In fact,
�s� and �a can be simultaneously tagged, and the
utility of doing so as a way of quantifying interpa-

Table 1. Control Parameters Considered in the Reported Simulation Experiments

Study
Number

Inclusion Properties
Number of
FEM Mesh

Nodes
Number of
S–D Pairs Noise

Systematic
Error

Spatial
Versus

Recursive
FilteringTypea Depth Separation Size Contrast

1 P ✓ — — — ✓ — — — —
2 s ✓ — ✓ — — — — — —
3 m — ✓ — — ✓ — — — —
4 m — — — — — ✓ — — —
5 m ✓ — — — — — — — —
6b m — — — ✓ — — — — —
7 m — — — — — — — ✓ —
8 s — — — — — — ✓ — ✓

9b m — — — ✓ — — — — —
10 s, m — — — — — — — — ✓

11 s ✓ — — — — — — — —
12 P — — — — — ✓ — — —

as � single inclusion, m � multiple inclusions; P � point inclusion (i.e., exactly one FEM mesh node).
bThe distinction between these two cases lies in the S–D configuration: full tomographic in study 6; limited view in study 9.
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rameter cross talk in reconstructed images has been
demonstrated.11

The simulations that were performed to generate
data for the filter application tests used media with
the same shapes and dimensions, and with the same
S–D configurations, as those in Table 2. The key
differences between the filter-generating and filter-
testing media are that the latter are static, have
spatially heterogeneous absorption, and contain
finer FEM meshes than the former. In particular,
the circular media used for this part of the studies
have meshes with 2771 nodes and 5372 elements,
and the rectangular media have meshes with 3969
nodes and 7680 elements. The spatial heterogeneity
took the form of discrete inclusions embedded in an
otherwise homogeneous background. With the ex-
ception of the systematic error study, the back-
ground �s� was the same as that in the corresponding
filter-generating medium, and the background �awas
equal to the time-averaged value of absorption in the
filter-generating medium. The inclusions were re-
gions of elevated �a, although they had the same �s�
as the background. The numbers, dimensions, loca-
tions, and other pertinent information about the in-
clusions are given in Table 3.

C. Solution of the Forward Problem

Tomographic data for the simulated tissue models
were acquired by means of the FEM to solve the
diffusion equation with Robin boundary conditions
for a dc source.16 For a spatial domain � with bound-

ary 	
, this is represented by the expression

� · �D(r) � �(r)� � �a(r)�(r) � � (r � rs), r � 
,
(3)

where ��r� is the photon intensity at position r, rs is
the position of a dc point source, and D�r� and �a�r�
are the position-dependent diffusion and absorption
coefficients, respectively. Here the definition used for
the diffusion coefficient was D�r� � 1�	3��a�r�
� �s��r��
, where �s��r� is the position-dependent scat-
tering coefficient. For all computations considered in
this paper, all media had spatially homogeneous and
temporally invariant scattering. With the exception
of the systematic error study (study 12; see Table 1),
the value of the scattering coefficient was �s�
� 1.0 mm�1.

Imaging operators (see Subsection 2.D) were com-
puted, in the manner described in Ref. 16, for each
S–D channel. In brief, each row of the matrix Wr [Eqs.
(4) and (5), below] is a function of two forward-
problem solutions: a product of forward and adjoint
intensities for perturbations of �a and a dot product of
forward and adjoint intensity gradients for perturba-
tions of D. For each combination of medium geometry
and S–D configuration, a single set of imaging oper-
ators was used for all inverse-problem computations.
These were computed for a homogeneous reference
medium with the same shape, size, and measurement
geometry as the (heterogeneous) target and with op-
tical parameters equal to the background values of
those in the target.

D. Solution of the Inverse Problem

The reconstruction algorithm that was used to generate
the results presented in Section 3 solves a regularized
modified perturbation equation, by computing

x � Wr
T(WrWr

T � �I)�1Ir, (4)

or

x � (Wr
TWr � �I)�1Wr

TIr, (5)

depending on whether the overall number of S–D
channels Nc is less than [Eq. (4)] or greater than [Eq.
(5)] Np. In these equations x is the vector of differ-
ences between the optical properties (e.g., absorption
and scattering or diffusion coefficients) of a measured
target and a defined reference medium; Wr, the im-
aging operator or weight matrix, is the matrix de-
scribing the influence that each voxel has on the
surface detectors for the selected reference medium; �
is the zero-order Tikhonov regularization parameter
(the numerical value used for all inverse-problem
computations was �0.05);17 and I is proportional to
the difference between detector readings obtained
from the target in two distinct states (e.g., difference
between data collected at two different instants, or

Fig. 2. Medium geometries and S–D configurations used for
forward-problem computations, in the filter-generating and filter-
testing phases of the reported studies: (a) circular disk, full tomo-
graphic measurement (256-channel S–D configuration shown); (b)
circular disk, limited-view (backscattering) measurement; (c) rect-
angular medium, limited-view (backscattering) measurement; (d)
rectangular medium, limited-view (transmission) measurement.
Indicated S–D locations are only suggestive; see Table 2 for exact
numbers and patterning.
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the difference between instantaneous and time-
averaged data).

The distinction between Eqs. (4) and (5) and a stan-
dard linear perturbation equation lies in the struc-
ture of the term Ir on the right-hand side. Here we
used the previously described normalized difference
method (NDM),18 in which Ir is defined by

(Ir)i �
(I � I0)i

(I0)i
(Ir)i. (6)

In Eq. (6), Ir is the computed detector readings cor-
responding to a selected reference medium. For the
filter-generating computations, I and I0 represent the
intensity at a specific time point and the time-
averaged intensity, respectively, whereas the me-
dium used for the Ir computation has the same �s� as,
and �a equal to the time-averaged value for, the filter-
generating medium. For the filter-testing computa-
tions, I and I0 are the intensities (i.e., detector
readings) computed for the heterogeneous target me-
dium and a homogeneous medium with optical coeff-

icients identical to those of the target medium’s back-
ground region,19 respectively, and Ir is identical to
I0.20

A Levenberg–Marquardt (LM) algorithm was used
to compute numerical solutions to Eqs. (4) and (5).21

In these computations, the x that was solved for
included position-dependent perturbations in both �a

and D. No use was made of any a priori information
regarding the spatial distributions of either coeffi-
cient. Thus the number of unknowns in each inverse-
problem computation was twice the number of mesh
nodes. Accordingly, the dimensions of the quantities
in Eqs. (4) and (5) are Nc � �2Np� for Wr, Nc � 1 for Ir,
and �2Np� � 1 for x.

Most of the characterization studies made use of
noise-free data. Since the robustness of the deconvo-
lution method to detector noise was already exam-
ined in Ref. 2, neglecting noise effects in the present
paper is not an oversight. However, in the case of
study 8 (see Subsection 2.B and Table 1) the decision
to include noise was taken to reproduce as closely as
possible the conditions of a computation reported in
Ref. 12. Accordingly, the detector readings were corr-

Table 3. Properties of Inclusions Used in Deconvolution Procedure Characterization Simulations

Medium and
Measurement Type

Inclusion Properties

Study NumberNumber Shape
Dimensionsa

(mm) Coordinates of Center (mm)
�a �mm�1�;
�a

incl��a
bkgr

80-mm-diameter circle Point (one FEM
mesh node)

�1.6b X � 0�35 ��X � 1�, Y � 0 0.02; 4 1

Full tomographic 1 Circle 2, 6, 8, 10, 15, 20
2, 6, 8, 10, 15, 18

X � 10, Y � 0
X � 30, Y � 0

0.01; 2 2

2 Circle 6 X1 � �5, X2 � 5, Y � 0 0.01; 2 3
X1 � �7, X2 � 7, Y � 0 3, 5
X1 � �10, X2 � 10, Y � 0 3, 4
X1 � �7, X2 � 7, Y � 15 5
X1 � �7, X2 � 7, Y � 25

4 10 X1 � �10, X2 � 10, Y � 15 0.0075; 1.5 6
0.01; 2
0.015; 3

6 X1 � 15, X2, 3 � 0, X4 � 15,
Y1, 4 � 0, Y2 � �15, Y3 � 15

see Fig. 11; 2 7

Limited view 1 Circle 6 X � 15, Y � 0 0.01; 2 10
2 X � 0, Y1 � �15, Y2 � 15 0.006; 1.2 9

0.01; 2 9, 10
0.02; 4 9
0.04; 8

86-mm-diameter circle 1 Circle 20 X � 15, Y � 0 0.02; 2 8
Full tomographic

Rectangle, backreflection 1 Square 10 � 10 X � 0, Y � 20
X � 0, Y � 10

0.02; 2 11

X � 0, Y � 0
X � 0, Y � �10

Rectangle, transmission 1 Point (one FEM
mesh node)

�1.6b X � 0, Y � 0 0.02; 2 12

aTabulated dimension is the diameter for circular inclusions, length � width for rectangular and square inclusions.
bThis approximate linear dimension is the square root of the mean area of the forward-problem finite elements.
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upted with multiplicative Gaussian noise at a uni-
form level of 1%; that is, the noise–vector element
corresponding to the ith S–D channel was sampled
from the Gaussian distribution N�0, 0.01�I0�i�. Then
I� � I � n, where n is the noise vector, was substi-
tuted for I in Eq. (6).

E. Quantification of Reconstructed Image Quality and
Accuracy

For the first simulation study, in which the inclusion
consisted of a single FEM mesh node, the qualitative
accuracy of the recovered images, before and after
application of the spatial deconvolution step, was as-
sessed by computing two “local” indices of agreement
between image and target media: the inclusion’s
FWHM and the absolute error in the �X, Y� coordi-
nates of its center. The manner in which these quan-
tities are defined for this paper are illustrated in Fig.
3. Shown in Figs. 3(a)–3(c) are the spatial distribu-
tions of �a in a selected target medium, in the image
reconstructed by solving Eq. (4) or (5), and in the
corrected image that is obtained by applying Eq. (2),
respectively. The curves plotted in Figs. 3(d) and 3(e)
are the recovered �a along the one-dimensional (1D)
sections shown as white solid lines in Figs. 3(b) and
3(c); the white lines intersect at the known coordi-
nates of the mesh node with elevated �a. As indicated
in Figs. 3(d) and 3(e), the maximal and baseline val-
ues of recovered �a ��a

max and �a
bkg, respectively) are

identified in each of the 1D sections, after which the
two positions X50,1 and X50,2 for which �a � ��a

max

� �a
bkg�x�2, and the two positions Y50,1 and Y50,2 for

which �a � ��a
max � �a

bkg�Y�2 are found. The FWHM
values shown in Section 3 are defined as FWHMX

� |X50,2 � X50,1|, FWHMY � |Y50,2 � Y50,1|, and the
inclusion center coordinates are defined as �Xc, Yc�
� ��X50,2 � X50,1��2, �Y50,2 � Y50,1��2�. The results of
these computations do not differ appreciably from
those obtained by finding the center of mass and the
average radius of the image’s �a spatial distribu-
tion.11

The absolute errors EX � |Xc,img � Xc,tgt| and EY

� |Yc,img � Yc,tgt|, where “img” and “tgt” denote the
reconstructed image and target medium, respec-
tively, were computed for both the uncorrected and
corrected images. The spatial filtering operation is
deemed to have a beneficial effect on qualitative ac-
curacy if it leads to reductions in EX, EY, FWHMX, and
FWHMY.

The quantitative image accuracy in the case of
study 1 was assessed via direct comparisons of �a

max

and �a
bkg of the target medium and the uncorrected

and corrected reconstructed images. The spatial fil-
tering operation is deemed to have a beneficial quan-
titative effect if it leads to reductions in both
|�a, img

max � �a,tgt
max | and |�a,img

bkg � �a,tgt
bkg |.

For the simulation studies that made use of one
or more spatially extended inclusions, the effect of
spatial filtering on qualitative accuracy was as-
sessed by computing the increase in spatial corre-
lation rs between the target and image, and the
effect of spatial filtering on quantitative accuracy
was assessed by computing the decrease in the root-
mean-squared error (RMSE) ε between the target
and the image.11 The formulas defining these
“global” indices of agreement between image and
target media are

Fig. 3. Study 1: definitions of spatial resolution and of inclusion center coordinates for reconstructed images. (a) Point-like inclusion
located at �20, 0� mm; (b) image before deconvolution; (c) image after deconvolution; (d) 1D recovered �a distribution along y � 0 before
(dashed curve) and after (solid) deconvolution; (e) �a distribution along x � 20 mm. Gray-scale [(a)–(c)] and ordinate axis [(d), (e)] values
are 1000 � �a.
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rs �
�
i�1

Np

(�a,img
i � ��a,img)(�a,tgt

i � ��a,tgt)

�
i�1

Np

(�a,img
i � ��a,img)

2 · �
i�1

Np

(�a,tgt
i � ��a,tgt)

2�1�2, (7)

(where ��a denotes the spatial average value of �a) and

� �  1
Np

�
i�1

Np

(�a,img
i � �a,tgt

i)2�1�2

, (8)

respectively.
Careful inspection of Figs. 3(b)–3(e) reveals two

additional features that must be taken into account
for proper interpretation of rs and ε data. One is the
presence of the analogue of ringing artifacts22 about
the inclusion, the amplitudes of which are larger in
the corrected than in the uncorrected images. Al-
though algorithms for the suppression of such arti-
facts are available,23 none was used in generating
results presented in this paper in order to avoid the
introduction of confounding variables. The second is
that the peak value of the recovered absorption con-
trast, although five times larger in the corrected ver-
sus the uncorrected images, is not close to the 4:1
ratio present in the target medium in either result.
Consequently, it is not realistic to expect numerical
values of rs and ε to be close to the theoretical ideals
of 1 and 0, respectively. As a practical matter, the
percentage increase in rs and decrease in ε after the
application of spatial deconvolution are more mean-
ingful measures of that operation’s effectiveness.

3. Results

As outlined above in Subsection 2.B, the first simu-
lation study was concerned with resolution limits and
accuracy of images of (circular, full tomographic mea-
surement) target media in which the inclusion con-
sisted of a single node in the forward-problem FEM
mesh (with �a and absorption contrast fixed; see Ta-
ble 3). Intuitively it would seem that the finest spatial
resolution achievable is determined by the distance
between nodes in the inverse-problem FEM mesh,
whereas the smallest possible location error should
be the distance between the perturbed node in the
forward-problem mesh and the nearest inverse-

problem mesh node, when the two meshes are over-
laid. In practice, of course, the location error and
resolution actually achieved can be considerably
worse than these limiting values. An example of this
is seen in Fig. 3(b), in which the absolute location
error EX and the resolution indices FWHMX and
FWHMY are all noticeably greater than the internode
separation. To explore this further, we computed the
four quantities EX, EY, FWHMX, and FWHMY as a
function of the location of the perturbed node on the
X axis [see Fig. 2(a)], which ranged from 0 to 35 mm
at intervals of 5 mm. At each position along the X
axis, the node used as the inclusion was the one
whose Y coordinate was closest to zero. In Fig. 4 we
show plots of FWHMX and FWHMY, EX, and EY, ver-
sus the distance from the medium center for both
uncorrected and corrected reconstructed images.
These data were obtained when a fixed 1024-channel
S–D configuration and a fixed 1019-node inverse-
problem mesh were used.

The most striking feature of Fig. 4 is that all four
local accuracy indices are smaller (i.e., better, with
the ideal value being zero) in the corrected image, for
all positions of the inclusion. This was not unex-
pected, at one level, given the previous demonstra-
tions of image enhancement. However, the results
provide a previously unavailable quantification of the
degree of improvement achieved. For example, when
X � 20 mm we find that EX declines from 4.8 to
0.8 mm (83% decrease), EY from 0.16 to 0.01 mm
(94%), FWHMX from 19.2 to 10.2 mm (47%), and
FWHMY from 17.2 to 9.2 mm (47%). Also of interest is
the trends seen in the curves. Resolution [Fig. 4(a)]
either remains nearly constant or slowly worsens
with increasing distance from the center when the
inclusion lies closer to the center than to the bound-
ary, but it rapidly improves with increasing distance
from the center once the inclusion has passed the
halfway point—a not unexpected boundary layer ef-
fect (see Section 4). The location error EX [Fig. 4(b)]
has a maximum value at X � 20 mm, decreasing as
the inclusion approaches either the center or the
boundary. This trend is consistent with the behavior
of optical tomographic reconstruction algorithms as
observed by many groups24,25: Recovered superficial
features are displaced toward the boundary, whereas

Fig. 4. Study 1: position dependence of spatial resolution and absolute location error of recovered images. (a) Image resolution, in which
curves with 	 and □ markers are the FWHMX and FWHMY, respectively, before deconvolution, and curves with * and Œ symbols are the
FWHMX and FWHMY, respectively, after deconvolution; (b) inclusion’s absolute location error EX before (	) and after (*) deconvolution;
(c) absolute location error EY before (□) and after (Œ) deconvolution. The mesh and S–D geometry are the same as in Fig. 3.
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deep ones are displaced toward the region of lowest
weight [Eqs. (4) and (5)], which typically is at the
center for a full tomographic measurement. Finally,
the curves plotted in Fig. 4(c) indicate a maximum in
the location error EY when X � 10 mm. However,
additional data presented next demonstrate that this
maximum is an idiosyncratic feature of the particular
FEM mesh that was used for the inverse-problem
computations.

The remainder of study 1 involved repeating
the entire set of computations an additional two
times while using different inverse-problem
meshes—one coarser �Np � 717� and the other finer
�Np � 1610�—than the 1019-node mesh that pro-
duced the data shown in Fig. 4. Plots of the four local
accuracy indices of the corrected images and for all
three meshes, as a function of location of the per-
turbed node on the X axis, are shown in Fig. 5. In
every case, all four plotted indices are smaller than
the corresponding values for the uncorrected images
(which are not plotted here). Inspection of the reso-
lution curves in Fig. 5(a) reveals that both FWHMX

and FWHMY improve as the mesh becomes finer and
that both exhibit a boundary layer effect at all values
of Np. The former phenomenon was expected, in light
of the reduction in the average internode distance �s�
with increasing Np, but the magnitude of the im-
provement in resolution is not proportional to the
percentage decrease in �s�. Instead, a larger improve-
ment in resolution is achieved by increasing Np from
717 to 1019 (�s� decreases by 0.17 mm) than by in-
creasing it from 1019 to 1610 (�s� decreases by

0.19 mm); this may be associated with the transition
from overdetermined to underdetermined inverse
problems that occurs when Np exceeds the total num-
ber of S–D channels (1024), or it may be indicative of
a fundamental limit to the spatial resolution of DOT
reconstructed images. The existence of such a limit is
not unexpected, in light of the analytical findings
reported by Markel and Schotland.15

Inspection of the EX-versus-X curves in Fig. 5(c)
reveals that they all have similar qualitative forms,
with the location error maximal for an inclusion at
X � 20 mm for all three meshes but decreasing with
increasing Np for almost all inclusion positions. On
the other hand, comparison of the EY-versus-X curves
for the three meshes indicates that there is no con-
sistent pattern to the dependence of EY on the posi-
tion of the inclusion on the X axis. The range of values
plotted along the ordinate in Fig. 5(d) is an order of
magnitude smaller than that on the corresponding
axis of Fig. 5(c). Presumably, repeating all computa-
tions using the same three values of Np, but different
geometrical arrangements of the nodes, would yield a
completely different set of EY curves. It is our expec-
tation that detailed features such as the crossings of
the FWHMX,cor and FWHMY,cor curves in Fig. 4(a)
would likewise prove to be idiosyncratic.

Inclusions of finite diameter d �2–20 mm� were
modeled in the second simulation experiment, the
point of which was to characterize the accuracy with
which the inclusion size can be recovered. The prin-
cipal result is shown in Fig. 6, in which we plot
FWHMX,cor versus d [Fig. 6(a)] and FWHMY,cor versus

Fig. 5. Study 1: resolution and absolute location error of recovered inclusion for three different meshes. (a) FWHMX; (b) FWHMY; (c) EX;
(d) EY. All results shown are for deconvolved images; *, Œ, and □ labels denote results for 717-, 1019-, and 1610-node meshes, respectively.
The same medium and S–D geometry used in Fig. 3 were also used here.

Fig. 6. Study 2: FWHMs for finite-diameter inclusions. (a) FWHMX versus true diameter and (b) FWHMY versus true diameter. Results
shown are for corrected images; curves with □ and Œ symbols are the results for inclusion centered at �30, 0� mm and at �10, 0� mm,
respectively; solid lines are ideal results. The same mesh and S–D geometry used in Fig. 3 were also used here.
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d [Fig. 6(b)] for a single inclusion located one-fourth of
the way from the medium’s center to its boundary
(curves with Œ symbols) and for a single inclusion
located three-fourths of the way from the center to
the boundary (curves with □ symbols). The observa-
tion that the FWHMs of the reconstructed inclusion
are nearly independent of d at the small-diameter
end of the curves is not unexpected, because here the
finite internode separation ��s�� 0.9 mm� of the fixed
1019-node FEM mesh determines the size of the in-
clusion in the image. For values of d larger than �s�,
however, the FWHM values are nearly proportional
to d, with a discrepancy smaller than 3 mm for both
inclusion locations and all diameters.

As described in Subsection 2.D above, the simula-
tion studies 3–6 all involved the use of a pair of
finite-diameter inclusions (with the same d and the
same �a) in a circular medium with full tomographic
S–D configurations while different groups of control
parameters were varied. The effect of varying the
coarseness of the inverse-problem mesh while the
number of S–D channels Nc is held constant was
considered in study 3, which made use of 1024 S–D
channels and either 717 or 1019 nodes in the inverse-
problem mesh. Although it might be thought that
increasing Np would necessarily improve resolving
power, it is also possible that the direct benefit de-
rived from reducing the internode separation would
be offset by increasing the degree of underdeter-
minedness of the inverse problem (recall that the
numbers of unknowns solved for are two times Np, or
1434 and 2038).

The reconstructed images obtained after applica-
tion of the deconvolution operator are shown in Fig. 7
for both meshes and for three different interinclusion
separations. [The uncorrected images are not shown

for this study owing to space limitations, but in all
cases the inclusions are unresolved and the appear-
ance of the image is similar to that of Fig. 7(a).] It is
seen that the two inclusions are not well resolved at
their smallest separation when points on their
boundaries approach to within 4 mm, which is
smaller than their 6-mm diameters. The finer mesh is
capable of resolving the inclusions when they are
separated center to center by 14 mm, but the coarse
mesh resolves them only at the largest separation
modeled. Within the range of Np values considered
here, the qualitative advantage gained by decreasing
�s� outweighs any disadvantage resulting from mak-
ing the inverse problem more underdetermined.

Quantitatively, the corrected images yield global
spatial correlation �rs� values that are 35.1%, 35.9%,
and 37.0% larger for Np � 1019 than for Np � 717,
when the interinclusion separation is 10, 14, and
20 mm, respectively. Simultaneously, the RMSE (ε)
is 3.6%, 1.1%, and 6.8%, respectively, lower in the
fine-mesh image than in the corresponding coarse-
mesh result. These trends agree with the qualitative
trends seen on inspection for the 14- and 20-mm in-
terinclusion separations, and they reveal that a com-
parable degree of improvement is achieved even in
the 10-mm separation case [Figs. 7(a) and 7(b)], in
which the difference between the coarse- and fine-
mesh corrected images is not as apparent to the eye.

As a complement to the preceding case, the effect of
varying the number of S–D channels with a fixed
inverse-problem mesh was considered in study 4,
which combined Nc � 256, 768, or 1024 with Np

� 717. Deconvolved reconstructed images are shown
in Fig. 8 for each of the three values of Nc, along with
an uncorrected image for the 1024-channel case. Un-
corrected images for the other two cases are not

Fig. 7. Study 3: deconvolved images for two FEM meshes and three different interinclusion separation distances. (a) 717-node mesh,
10-mm center-to-center separation; (b) 1019 nodes, 10 mm; (c) 717 nodes, 14 mm; (d) 1019 nodes, 14 mm; (e) 717 nodes, 20 mm; (f) 1019
nodes, 20 mm. All inclusions have 6-mm diameter and �a

incl��a
bkgr � 2. Gray-scale values are 1000 � �a.
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shown, because, under both visual inspection and
quantitative analysis, they are almost indistinguish-
able from the result in Fig. 8(d). (Quantitatively, the
largest rs value exceeds the smallest by 4.2%,
whereas the greatest difference between ε values is
only 0.2%.) Spatial deconvolution enhances the re-
solving power irrespective of the number of S–D
channels, and the degree of improvement increases
with increasing Nc. These differences between the
uncorrected and the deconvolved images, which are
apparent under visual inspection, are corroborated
by the quantitative accuracy indices: rs increases by
23.8%, 31.3%, and 56.2% for Nc � 256, 768, and 1024,
respectively; the corresponding decreases in ε are
3.4%, 4.0%, and 7.3%.

These results also indicate that, although there
exists a fundamental limit to the quantity of inde-
pendent information that can be obtained with sur-
face measurements,15 that limit has not yet been
reached with the largest Nc employed in this simula-
tion experiment. However, if the image-enhancement
procedure were not employed, the opposite conclusion
could be easily drawn from the uncorrected images.
As pointed out in Ref. 2, a question worth investigat-

ing is whether earlier assessments of the limits on
image quality obtainable with linear DOT recon-
struction algorithms may have been overly pessimis-
tic.

The spatial resolution curves in Figs. 4 and 5 led us
to expect that the limited resolving power seen in the
coarse-mesh images of Fig. 7 is also depth dependent.
To test that prediction, we conducted simulation
study 5, wherein all conditions are identical to those
used to generate the image shown in Fig. 7(c) (i.e.,
Nc � 1024, Np � 717, 6-mm diameter inclusions sep-
arated by 14 mm center to center) except that the
inclusions were translated along the Y axis, from a
starting position of 0 to either 15 or 25 mm. Recon-
structed images before and after spatial deconvolu-
tion are shown in Fig. 9 for each of the three inclusion
positions. It is clear that the resolving power (which
of course could be further improved by increasing Np,
as in Study 3) does increase with increasing distance
from the center, as expected. Likewise, when the un-
corrected and corrected images are compared quan-
titatively, the increase in rs grows from 20.4% when
Y � 0 to 78.1% when Y � 25 mm, while the decrease
in ε concomitantly rises from 5.3% to 13.7%. A prac-

Fig. 8. Study 4: images for different numbers of S–D channels, Nc. (a)–(c) Corrected images for Nc � 256, 768, and 1024, respectively. (d)
Uncorrected image, Nc � 1024. Inclusion center-to-center distance is 20 mm. A 717-node mesh was used for all reconstructions. The
inclusion diameter, absorption contrast, and FEM mesh are the same as in study 3 (Fig. 7). Gray-scale values are 1000 � �a.

Fig. 9. Study 5: images for different inclusion depths. (a), (b) Images before and after deconvolution, with inclusions at y � 0. (c), (d)
Inclusions at y � 15 mm. (e), (f) Inclusions at y � 25 mm. Inclusion diameter, absorption contrast, and FEM mesh are the same as in study
4 (Fig. 8), and the center-to-center distance is 14 mm. Gray-scale values are 1000 � �a.
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tical benefit of studies of this type is that their results
could guide us in the generation of depth-dependent
regularization parameters26 that are optimized for a
given medium, mesh, and S–D configuration.

The final control parameter that was included in
this group of simulation experiments was the
inclusion-versus-background absorption contrast. A
motivating concern, as also for the subsequent sys-
tematic error study, is the possibility that the effect of
using a given F matrix might be deleterious rather
than beneficial if the target medium contains optical
coefficient values well outside the range that was
modeled in the computations that generated F. Ac-
cordingly, in study 6 the mesh, S–D configuration,
and inclusion positions were all fixed while the inclu-
sions’ �a was varied from 1.5 to 3 times that of the
background. It should be noted (see Subsection 2.A)
that in the filter-generating computations, �a devi-
ated from the background value by at most 2%. De-
convolved reconstructed images are shown in Fig. 10
for each of the three contrast levels, along with
the uncorrected image obtained when �a

incl

� 0.0075 mm�1; uncorrected images for the other two
cases are almost indistinguishable from the result in
Fig. 10(a) and are not shown. It is found that the
motivating conjecture is not borne out, and that the
resolving power in fact improves with increasing con-
trast.27,28 Additional insight into the latter observa-
tion is obtained by examining 1D transects through
the recovered inclusions, which are plotted in Figs.
10(e)–10(g). The (dashed) curves corresponding to the
corrected images reveal that as contrast increases the
quantitative discrepancy between the target and the
image grows (e.g., the absolute value of ε is about 4
times larger for �a

incl��a
bkgr � 3 than for �a

incl��a
bkgr

� 1.5) but that the recovered �a in the regions corre-
sponding to the inclusions grows more rapidly than
does the recovered �a in the interinclusion region.
Thus, in comparing the corrected with the uncor-

rected images, the percentage decrease in ε actually
grows slightly from the lowest-contrast (17.1%) to the
highest-contrast (17.6%) case, and the percentage in-
crease in rs concomitantly grows from 70.7% to 78.0%.

Results from study 6 have an important practical
consequence; namely, they indicate that the utility of
a particular deconvolution operator does not require
extremely close agreement between the properties of
the filter-generating and the target media. To further
pursue the same issue, we conducted study 7, in
which mismatch between both �a and �s� of the target
medium and filter-generating medium was modeled.
(See Subsection 2.B and Tables 2–3 for details.) In
these computations all target media contained four
6-mm diameter inclusions embedded in a
80-mm-diameter background medium. The inclu-
sions were located at the corners of a square, with a
minimum center-to-center separation of 21 mm, and
in all cases the inclusion-background absorption con-
trast was exactly 2. The resulting set of 56 decon-
volved reconstructed images (8 values for target �a, 7
values for target �s�) are shown in Fig. 11. The single
case for which the optical coefficients of the filter-
generating medium match those of the target me-
dium is indicated by means of a square drawn around
the image. The uncorrected image for this case is also
shown below the matrix of corrected images; the re-
maining 55 are all qualitatively similar to this one.
The corresponding values for the percentage increase
in rs and the percentage decrease in ε (comparing
corrected and uncorrected images) for selected decon-
volved images are given in Table 4. Inspection of Fig.
11 reveals that the single image-enhancing filter
used had beneficial effects in a significant percentage
of cases. These results run in a broad swath from the
lower left to the upper right of Fig. 11 and include
cases wherein there is appreciable mismatch in both
�a and �s�. In a finding complementary to that of
study 6, the quantitative index data in Table 4 reveal

Fig. 10. Study 6: images and 1D �a distributions for different inclusion contrasts. (a) Uncorrected image, �a
incl��a

bkgr � 1.5. (b)–(d) Corrected
images, �a

incl��a
bkgr � 1.5, 2, and 3, respectively. (e)–(g) �a distributions along y � 15 mm, �a

incl��a
bkgr � 1.5, 2, and 3, respectively. The solid

curve is ideal values; dotted and dashed curves are sections through the uncorrected and corrected images, respectively. Each inclusion
diameter is 10 mm; inclusions are located at y � 15 mm, with center-to-center distance of 20 mm. The FEM mesh is the same as in study
5 (Fig. 9). Gray-scale [(a)–(d)] and ordinate axis [(e)–(g)] values are 1000 � �a.
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that for some combinations of target medium prop-
erties the percentage increase in rs and percentage
decrease in ε are larger than those obtained for the
perfect-match case. It can reasonably be concluded
that the method presented here and in Refs. 1 and 2
is sufficiently robust to incomplete knowledge of the
target medium’s average optical coefficients that it
could be applied to laboratory or clinical data, and
that the library of F matrices needed to handle the

expected range of medium properties need not be
prohibitively large.

The final simulation experiment that made use of a
full tomographic S–D configuration (study 8) was con-
ducted to compare the effects of the linear spatial
deconvolution technique with an iterative Newton–
Raphson reconstruction algorithm. As explained in
Refs. 1 and 2, the two approaches proceed from dif-
ferent conceptual premises regarding the origin of the

Fig. 11. Study 7: application of a filter generated for a medium with one set of optical coefficients to target media with different
background properties. The filter-generating medium had �a � 0.002 mm�1 and �s� � 1.0 mm�1. For the 56 test media, the background
�a and �s� ranges were 0.0005–0.02 and 0.3–3.0 mm�1, respectively. Also shown is the uncorrected image for the target medium with
�a � 0.002 mm�1 and �s� � 1.0 mm�1; the remaining 55 are qualitatively similar. In every case �s� was spatially homogeneous and
�a

incl��a
bkgr � 2.
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errors typically found in images obtained by use of
linear perturbation methods. The Newton–Raphson
approach is based on the assumption that the effects
result primarily from an inability of equations with
the form of Eqs. (4) and (5) to represent the true
relationship between medium properties and detec-
tor data. The linear spatial deconvolution technique
assumes that the most important source of error is
the information-spread phenomenon described in
Subsection 2.A. The target medium used for the com-
parison study was an 86-mm-diameter circular disk
with an inclusion consisting of a 20-mm-diameter
circular region of elevated absorption (see Tables 2
and 3 for other defining properties). The goal was to
achieve as close a match as possible to the test-

medium properties used in Ref. 12. The images we
have reconstructed before and after deconvolution
and with and without the presence of multiplicative
noise in the forward-problem solutions are shown in
Fig. 12. Quantitative comparisons of the recovered
locations, diameters, and peak �a values of the inclu-
sion between the two methods are given in Table 5.
The gray-scale maps and 1D transects in Fig. 12 dem-
onstrate that, as in the preceding studies involving
smaller-diameter inclusions, the uncorrected image
exhibits location bias and shape distortion and that
the deconvolution method substantially corrects
these errors. A trade-off is that, at the same time,
noise artifacts are amplified. Techniques for reducing
the effect of noise are available and would be used in
practice. Naturally, use of these techniques (and like-
wise for the ringing-artifact reduction algorithms ref-
erenced earlier) would be likely to bring into play an
additional trade-off; namely, that they would to some
degree negate the improvement in spatial resolution
that the deconvolution achieves.

Many of the important prospective applications of
DOT, such as functional neuroimaging,8 do not per-
mit the use of fully tomographic arrangements of

Table 5. Accuracy of Recovered Inclusion Properties for Study 8 and
Ref. 12

Medium or Image
FWHM
(mm)

Depth
(mm)

�a Peak Value
�1�mm�

Target medium 20.0 25.0 0.0200
Ref. 12 image 24.0 24.0 0.0215
Study 8 image 24.2 24.1 0.0146

Table 4. Quantitative Accuracy Indices for Study 7
(Systematic Error Study)

Background
�s�

Background
�a �mm�1�

Increase of
rs (%)

Decrease of
ε (%)

1.0a 0.002a 60.4 4.6
1.0 0.001 50.4 4.3
1.0 0.004 73.9 6.4
0.7 0.002 34.9 2.2
1.5 0.002 71.2 6.1
3.0 0.0005 39.7 2.9
0.7b 0.01b 87.6 0.0
0.5c 0.01c 83.9 7.1

aThe case for which the filter-generating and target media have
identical background properties.

bThis target medium, out of all considered, yields the greatest
percentage increase of rs.

cThis target medium, out of all considered, yields the greatest
percentage decrease of ε.

Fig. 12. Study 8: images and 1D sections for a 20-mm-diameter inclusion with and without multiplicative noise in detector data. (a), (b)
Uncorrected and corrected images from noise-free data. (c), (d) Images from noisy data. (e), (f) 1D sections along y � 0 for noise-free and
noisy cases, respectively. Solid curves are ideal profiles; dotted and dashed curves are uncorrected and corrected results, respectively. The
inclusion is centered at �15, 0� mm, �a

incl��a
bkgr � 2. The reconstruction mesh had 1019 nodes. Gray-scale [(a)–(d)] and ordinate axis [(e), (f)]

values are 1000 � �a.
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sources and detectors. Although Refs. 1 and 2 in-
cluded demonstrations of the effectiveness of the
image-enhancing algorithm in limited-view contexts,
its sensitivity to imperfect matches between the prop-
erties of target and filter-generating media was not
extensively studied. To begin to address this, we con-
ducted study 9, which was analogous to study
6—fixed FEM mesh, S–D configuration and inclusion
positions, and variable inclusion-versus-background
absorption contrast—but employed the 216-channel
S–D configuration shown in Fig. 2(b). [See Table 3,
and Fig. 14(e) below, for the sizes and locations of
inclusions.] Four sets of detector readings were gen-
erated, for inclusion �a levels of 0.006, 0.01, 0.02, and
0.04 mm�1, while the background �a was fixed at
0.005 mm�1. Enhanced reconstructed images are
shown in Fig. 13 for each of the four contrast levels,
along with an uncorrected image for �a

incl �
0.006 mm�1; uncorrected images for the other three
cases are almost indistinguishable from the result in
Fig. 13(a) and are not shown. Here it is seen that,
unlike the full tomographic examples, the structure
of the inclusions is not even approximately revealed
in the uncorrected image. Instead, the medium’s �a is
apparently recovered in the region of lowest weight,
in the half of the medium opposite the sources and
detectors. However, the spatial image-correction op-
eration produces results whose accuracy is compara-
ble with that seen in the preceding examples. Also, as
in study 6, it is seen here that the resolving power
improves with increasing contrast. The 1D transects
through the recovered inclusions, plotted in Fig. 13(f),
show that the underlying phenomenology is the same
for images derived from limited-view data as it is in
the full tomographic case. Namely, the quantitative

discrepancy between the target and the image grows
(e.g., the absolute value of ε is �35 times larger for
�a

incl��a
bkgr � 8 than for �a

incl��a
bkgr � 1.2) as absorption

contrast increases, but the recovered �a in the regions
corresponding to the inclusions grows more rapidly
than does the recovered �a in the interinclusion re-
gion. Taken together, these results reinforce the sug-
gestion that the spatial deconvolution method will
likely be applicable in laboratory and clinical imaging
studies.

Examination of the large discrepancy between the
target medium and the uncorrected image in Fig.
13(a) suggested the question of whether an iterative
reconstruction algorithm could be successfully ap-
plied in such a case and, if so, how the final result
would compare with that obtained by using the spa-
tial filtering technique. In study 10 the two ap-
proaches were directly compared for the same
limited-view S–D geometry as used in study 9 [Fig.
2(b)], and the two target media shown in Figs. 14(a)
and 14(e). For this study the forward- and inverse-
problem algorithms described in Subsections 2.C and
2.D were applied, in alternating fashion, to itera-
tively update the reconstructed image. We used an
error-based convergence criterion, terminating when
the detector data errors were lower by a factor of 10�3

than after the first iteration. In practice, approxi-
mately 50 iterations were required. Shown in Fig. 14
are the uncorrected images of the target media [Figs.
14(b) and 14(f)], the enhanced images produced by
applying the appropriate spatial deconvolution oper-
ator [Figs. 14(c) and 14(g)], and the images after the
50th iterative update [Figs. 14(d) and 14(h)]. Inter-
secting gridlines that indicate the locations of the
inclusions in the target media are included in Figs.

Fig. 13. Study 9: images and corresponding 1D sections with a two-inclusion target medium for different inclusion-background contrasts
and the limited-view S–D configurations shown in Fig. 2(b). (a) Uncorrected image, �a

incl��a
bkgr � 1.2. (b)–(e) Deconvolved images,

�a
incl��a

bkgr � 1.2, 2, 4, and 8, respectively. (f) 1D sections along x � 0 through images in (b)–(e), for �a
incl��a

bkgr � 1.2 (dotted curve), 2
(dashed–dotted curve), 4 (dashed curve), and 8 (solid curve). The 6-mm-diameter inclusions are located at �0, 15� and �0, 15�. The
reconstruction mesh had 717 nodes. Gray-scale [(a)–(e)] and ordinate axis [(f)] values are 1000 � �a.
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14(b)–14(d) and 14(f)–14(h). It is clear from these
results that the linear (deconvolution) method pro-
duces qualitatively superior results, in which the
maxima of the recovered inclusions are at their cor-
rect locations. The nonlinear (iterative) algorithm
used here, on the other hand, biases their locations
toward the sources and detectors.

In this and the preceding simulation experiment,
the uncorrected images have such low values for rs

and ε that computation of the percentage change be-
tween them and the corrected images cannot mean-
ingfully be carried out. Here, however, the difference
between the accuracy of the images produced by the
linear and nonlinear approaches can be quantified in
several ways. In the one-inclusion case, the spatial
correlation rs between image and target media is
47.8% larger for Fig. 14(c) than for Fig. 14(d), and the
RMSE ε is 6.3% lower in Fig. 14(c) than in Fig. 14(d).
Also, the absolute location errors for the recov-
ered inclusion are EX � 0.35 mm, EY �
0.15 mm in Fig. 14(c) and EX � 2.6 mm, EY �
0.25 mm in Fig. 14(d). In the two-inclusion case, rs for
Fig. 14(g) is 89.5% larger than that for Fig. 14(h), and
ε is 3.7% lower in Fig. 14(g) than in Fig. 14(h). The
recovered inclusions’ absolute location errors are
EX1 � 1.2 mm, EY1 � 0.25 mm and EX2 � 1.0 mm,
EY2 � 0.20 mm in Fig. 14(g); and EX1 � 6.2 mm,
EY1 � 4.3 mm and EX2 � 6.0 mm, EY2 � 4.5 mm in
Fig. 14(h).

The disk-shaped media used in all the preceding
experiments is an adequate model for many DOT
applications. Many others, however, cannot be mod-
eled well this way but call for a slab-shaped medium,
either because the tissue structure itself approxi-
mates a slab or because compression of the tissue
causes it to assume that geometry. Consequently, in
the final two simulation experiments (studies 11 and
12) the filter-generating and target media were rect-
angular. The backreflection S–D configuration
sketched in Fig. 2(c) was modeled in study 11, while

the control parameter was the location of the inclu-
sion along the Y axis. For the inclusions located clos-
est to and farthest from the sources and detectors, the
target media and the reconstructed images, before
and after application of the image-enhancement al-
gorithm, are shown in Fig. 15. The corresponding 1D
sections through the target media and images are
plotted for all four inclusion locations in Fig. 16.

Consistent with preceding spatial resolution ver-
sus location results, the sizes and shapes of the re-
covered inclusions become increasingly accurate as
the inclusion depth decreases. It is also seen that the
uncorrected images exhibit a tendency, analogous to
that in the limited-view circular medium cases, for
spatial skewing of the recovered �a into the direction
of the lowest-weight region of the slab. In every case
the spatial deconvolution technique improves the im-
age accuracy with respect to inclusion location, size,
and shape, but unsurprisingly the final image be-
comes less accurate with increasing inclusion depth.
Likewise, the quantitative error in the peak recov-
ered �a value increases with depth, with a nearly
ideal reconstruction achieved for the most superficial
inclusion. As inspection of Fig. 16 would lead one to
expect, the percentage decrease in ε resulting from
use of the image-enhancement method falls monoton-
ically with increasing depth, from 51.3% for the most
superficial inclusion to 6.7% for the deepest. How-
ever, Fig. 16 also suggests that the percentage in-
crease in rs will not be a monotonic function of depth.
This expectation is borne out quantitatively, as rs

increases by 45.1% for the inclusion located at
Y � 20 mm, by 161% when Y � 10 mm, and by
205% when Y � 0, but it then falls to 116% when
Y � �10 mm. Future studies involving media more
than 60 mm thick may be undertaken to determine
whether this trend is principally a depth effect or
principally a boundary layer effect.

Study 12 was another limited-view simulation ex-
periment that made use of the rectangular medium

Fig. 14. Study 10: images produced by spatial deconvolution and by a LM method, for the limited-view S–D configurations shown in Fig.
2(b). (a)–(d) One-inclusion target, uncorrected image, deconvolved image, and image produced by 50 LM iterations, respectively. (e)–(h) The
same as in (a)–(d), but for a two-inclusion target. The inclusion diameter and FEM mesh are the same as in study 9 (Fig. 13), and
�a

incl��a
bkgr � 2. Gray-scale values are 1000 � �a.
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geometry. This was complementary to the preceding
study in that the sources and detectors were on op-
posite edges, modeling a single-view transmission
measurement (such as a DOT mammography appli-
cation in which the tissue is compressed between flat
plates29). With this S–D configuration the quality of
the reconstructed images would not be as strongly
depth dependent as in study 11; accordingly, the in-
clusion used here was a single FEM mesh node lo-
cated at the medium’s geometric center. The control
parameter was the number of sources and detectors,
which was varied from 9 (Nc � 81 total S–D channels)
to 33 (Nc � 1089 channels) of each. Because the width
of the medium �100 mm� and the inverse-problem
mesh �Np � 1025 nodes) are fixed, increasing the
number of sources and detectors necessarily also

increases their spatial density and changes the char-
acter of the inverse problem from strongly underde-
termined to slightly overdetermined.

The structure of the target medium, the uncor-
rected reconstructed image for the 81-channel case
(the other two uncorrected images are nearly indis-
tinguishable and are not shown), and the corrected
images for all three cases are shown in Fig. 17. The
corresponding 1D sections through the images are
plotted in Fig. 18. Here the spatial deconvolution
method achieves a degree of reduction in the size of
the recovered inclusion that is greater than that seen
in the preceding experiments—the smallest percent-
age increase in rs, going from the uncorrected to the
corrected images in Fig. 17, is 139%. Evidently this is
because the spatial resolution of the uncorrected im-

Fig. 15. Study 11: images of rectangular target media, using the limited view (backreflection) S–D configurations shown in Fig. 2(c).
(a)–(c) Target with inclusion located at �0, 20� mm, the uncorrected image, and the deconvolved image, respectively. (d)–(f) Target with
inclusion at �0, �10� mm, the uncorrected image, and the deconvolved image, respectively. The inclusion area is 10 � 10 mm2,
�a

incl��a
bkgr � 2. The reconstruction mesh had 1025 nodes. Gray-scale values are 1000 � �a.

Fig. 16. Study 11: 1D sections through images in Fig. 15, for four inclusion locations. (a) Section along the line y � 20 mm, inclusion
centered at �0, 20� mm; (b) x � 0, �0, 20� mm; (c) y � 10, �0, 10� mm; (d) x � 0, �0, 10� mm; (e) y � 0, �0, 0� mm; (f) x � 0, �0, 0�; (g) y
� �10, �0, �10� mm; (h) x � 0, �0, �10� mm. The solid curve is ideal values; dotted and dashed curves are sections through the uncorrected
and corrected images, respectively. Ordinate axis values are 1000 � �a.
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ages is, not surprisingly, worse for a single-view
transmission measurement than for the other S–D
configurations that were considered here. A close ex-
amination of the plots in Fig. 18 reveals that the
spatial resolution of the corrected image does im-
prove slightly as Nc increases. The effect is small,
however, which is likely attributable partly to the
existence of a fundamental resolution limit15 and
partly to the fixed finite internode separation of the
mesh used for the inverse-problem computations.
(Future studies involving variable mesh coarseness
may be undertaken to determine the relative impor-
tance of each effect.) More striking and possibly of

more practical importance, however, is the reduction
in the amplitude of the numerical error artifacts with
increasing Nc. This suggests that increasing the num-
ber of channels could be beneficial even in cases in
which theoretical considerations imply that doing so
does not increase the information content of the mea-
surement.

4. Discussion

In previous reports we have described a numerical
approach for improving the quality of DOT recon-
structed images via a linear spatial deconvolution
process and have presented preliminary results dem-

Fig. 17. Study 12: images of rectangular target media, using the limited-view (transmission) S–D configuration shown in Fig. 2(d). (a)
Target with one point-like inclusion located at �0, 0�. (b) Uncorrected image, Nc � 81. (c)–(e) Deconvolved images, Nc � 81, 289, and 1089,
respectively. The FEM mesh is the same as that in study 11 (Fig. 15). Gray-scale values are 1000 � �a.

Fig. 18. Study 12: 1D sections through images shown in Fig. 17. (a), (b) Distributions along y � 0 and x � 0, Nc � 81. (c), (d) Nc

� 289. (e), (f) Nc � 1089. Dashed and solid curves are sections through the uncorrected and corrected images, respectively. Ordinate axis
values are 1000 � �a.

10 April 2005 � Vol. 44, No. 11 � APPLIED OPTICS 2133



onstrating the method’s efficacy.1,2 The test cases re-
ported earlier, and in the present paper, involve the
use of linear perturbation methods for computing so-
lutions to the DOT inverse problem; it is widely be-
lieved that these algorithms produce images that
exhibit low spatial resolution and only modest accu-
racy in object location. An important implication of
the current line of research is that these properties
are not intrinsic to the linear image reconstruction
strategy. Rather, in many cases the image does con-
tain accurate information regarding the optical coef-
ficients of the target medium, but in a spatially
distorted form.

The purpose of this paper has been to report sim-
ulation studies meant to characterize in detail the
improvement in image quality that is achieved by use
of the deconvolution procedure. The primary goal was
to ascertain the limits of spatial resolution and of
qualitative (i.e., positions, shapes, and sizes of inclu-
sions) and quantitative (i.e., magnitude of recovered
absorption and scattering coefficients) accuracy that
can be achieved by this method. The second goal was
to explore the method’s sensitivity to differences be-
tween the properties of the media used to generate a
deconvolution operator and of the medium to which
that operator is subsequently applied.

A. Significance and Implications of the Results

1. Location Error
In several simulation studies, the location error for a
point inclusion was explicitly computed. As described
above, when location error for uncorrected images
was plotted against distance from the medium’s cen-
ter, a biphasic trend was observed for the error in the
dimension parallel to the inclusion’s displacement
from the center (EX in Figs. 4 and 5, or Er, for radial
error, more generally), but the location error in the
perpendicular dimension (EY in Figs. 4 and 5, or E�,
for angular error, more generally) exhibited no clear
dependence on displacement. Moreover, for most in-
clusion locations the former location error was larger
than the latter by an order of magnitude. Deconvo-
lution leaves the qualitative shapes of the error-
versus-displacement curves largely unchanged, but it
reduces the magnitudes of EX and EY by a factor of
5–7. The possibility has been raised to us that the
tendency toward large radial errors in the uncor-
rected images is caused by some aspect of the recon-
struction algorithm itself, such as the scaling of
weight matrix (W) columns to uniform sums.30 How-
ever, any suggestion that use of column scaling
should therefore simply be abandoned could not be
adopted, because of the vital function that scaling
performs by reducing the condition number of W.
That is, even if it were conclusively shown that the
algorithm outlined in Subsection 2.D causes the lo-
cation errors seen in study 1, the algorithm has a
practical benefit that outweighs any potential liabil-
ity resulting from the errors. The two-step strategy
used here and in the previous reports, of first recon-
structing an image and then performing an a poste-

riori correction, leads to a final result that is superior
to that which would be obtained by, say, abandoning
the step of scaling the columns of W.

A point that cannot be definitively resolved on the
basis of only the studies reported here concerns the
observation that, for the particular combination of
diameter and scattering coefficient used in these com-
putations, the peak in the EX-versus-X curve occurs
when the displacement is halfway from the center to
the boundary. The interpretation we have tentatively
adopted is that EX initially increases with X as a
consequence of a (possibly algorithm-dependent) pre-
dictable tendency of DOT image reconstruction meth-
ods to displace all recovered optical coefficients in the
direction of the lowest-weight region of the medium,
and that the presence of a boundary layer is respon-
sible for EX reaching a maximum and subsequently
decreasing. If this is correct, then one would predict
that a medium having significantly larger optical
thickness than that used here would have an asym-
metric EX-versus-X curve, with the maximum lying
closer to the boundary than to the center.

The physical mechanism most responsible for the
boundary layer has been previously elucidated.31

Namely, for superficial locations there are large dif-
ferences between weight-matrix elements associated
with adjacent S–D channels, and the relative magni-
tudes of these differences fall rapidly with increasing
depth. Consequently, there is a depth beyond which
movement of the recovered optical coefficient toward
the center of the medium has the effect of reducing its
effect on all S–D channels, but above that depth the
effect of such motion is less uniform. In the latter
case, an inward displacement of an inclusion will
reduce its effect on some channels but increase its
effect on others. This offsetting of effects produces a
reduction in magnitude of EX for values of X suffi-
ciently close to the boundary. That is, proximity to
the sources and detectors, and not to an actual phys-
ical boundary, is the most important determinant of
the boundary layer effect that is seen in the studies in
which inclusion depth was varied.

2. Spatial Resolution
Reasoning analogous to that above also pertains to
the spatial resolution (FWHM) and resolving power
results. A difference between the spatial resolution
and the location error results is that, in contrast
to the latter, for the former we find no systematic
difference, in terms of either functional form
or magnitude, between the FWHMX-versus-X and
FWHMY-versus-X curves. Our consistent observation
has been that the weight gradient in the radial or
depth direction does not have the same effect on the
resolution of the recovered location information as it
seemingly has on its accuracy, for either corrected or
uncorrected images. The absence of a radial weight-
gradient effect also is demonstrated by the fact that
the resolution is essentially independent of the inclu-
sion’s X coordinate for all positions deeper than the
boundary layer.

The preceding considerations imply that some
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other mechanism is responsible for the spatial reso-
lution being poorer than the limiting value imposed
by the internode separation (i.e., pixel size) of the
inverse-problem mesh. Notably, the image recon-
struction algorithm used here did not explicitly in-
corporate features to which loss of resolution
typically is attributed, for example, first-order Tik-
honov regularization,17 spatial low-pass filtering, or
truncating the singular-value decomposition of W.
Rather, the greater area of the recovered inclusion
relative to the one present in the target medium ap-
parently is a reflection of the reduced sensitivity of
the measured data to small location differences of
deep-lying objects. This interpretation is supported
by the results of study 11, in which the spatial reso-
lution worsens with increasing inclusion depth. At its
most superficial location, well inside the boundary
layer, the lateral weight differences between adjacent
S–D channels are large, and the uncertainty in the
inclusion’s position is correspondingly small. At
greater depth, the area wherein the inclusion could
lie and still produce a forward-problem solution that
is essentially the same as (i.e., differing by less than
the reconstruction algorithm’s error tolerance) that
obtained from the true target medium is much larger,
and the image spatial resolution is correspondingly
poorer.

In study 1 use of the image-enhancement proce-
dure was found to improve spatial resolution by a
factor of 1.6 to 2. Although not as large as the im-
provement factor for spatial location accuracy, it
should be borne in mind that the finite pixel size of
the inverse-problem mesh places more restrictive
limits on the former parameter than on the latter.
The fact that considerable improvement was ob-
tained in all simulation experiments lends additional
support to the argument put forward above, regard-
ing the desirability and practicability of employing a
two-stage (reconstruct, then enhance) strategy to pro-
duce the final image.

3. Global Accuracy Measures
When the effect of spatial deconvolution is assessed
by calculating the percentage increase in spatial cor-
relation �rs� between image and target media, it is
found that the corrected images have rs values that
are at least 20%, and in some cases well over 100%,
larger than the uncorrected ones. On the other hand,
comparisons of the RMSE (ε, which is a measure of
the quantitative accuracy of the recovered optical co-
efficients, averaged over the entire area of the me-
dium) show that this parameter invariably decreases,
but by a smaller percentage—1% to 51%, and in most
cases by less than 20%—than the corresponding in-
crease in rs. Caution must be exercised in interpret-
ing the latter observation, for the data analyses
reported here did not explore a hypothesis suggested
by the preceding discussion of spatial resolution;
namely, that the underestimation of maximum inclu-
sion magnitudes, as in Figs. 10(e)–10(g), 12(e) and
12(f), 13(f), and 16, is a corollary of the overestimation
of their area. Future research may make use of a

more sophisticated calculation comparing, between
the target medium and the image, the optical coeffi-
cient values integrated over the areas identified as
inclusion and as background.

Qualitatively, the global effects of using the image-
enhancement procedure do not depend on medium
geometry or on the arrangement of sources and de-
tectors on its surface. There was not a single case
studied in which rs did not increase or in which ε did
not decrease. In quantitative terms, the magnitude of
the improvement in spatial resolution that is
achieved via spatial deconvolution is considerably
higher for some S–D configurations than for others.
Inspection of the results shown in the figures indi-
cates that the principal reason for this dependence is
not that the corrected images are notably more accu-
rate in some cases than in others, but rather that the
uncorrected ones are notably less so.

The spatial resolution of the uncorrected images for
the case of single-view transmission geometry (study
12), for example, is notably poor. (Better-quality im-
ages have of course been obtained in the same geom-
etry by other groups.29 A shared characteristic of the
algorithms used by these groups is higher computa-
tional overhead than the one we have adopted so that
they would not be practical in time-series imaging
applications of the sort that we conduct.32) That re-
sult could have practical consequences for clinical
DOT, because this type of measurement has been
suggested for use in optical mammography applica-
tions.4 There are several factors that apparently
favor the use of a single-view transmission measure-
ment geometry: it permits certain data analysis sim-
plifications29,33; it bears a close physical resemblance
to an x-ray mammography measurement, even per-
mitting consideration of a simultaneous dual-mode
measurement34; and it is straightforward to perform
the measurement while compressing the tissue,
which lessens the optical thickness through which
the near-infrared radiation must penetrate. How-
ever, the resulting images could be, as suggested by
Figs. 17(b) and 18, too highly spatially convolved to
permit the extraction of useful information if a cor-
rection such as that discussed in Subsection 2.A is not
used. Also worth considering is whether the use of the
technique we present in combination with feature-
enhancing algorithms that have been reported by
others33 could improve the sensitivity and specificity
of the latter.

4. Image Artifacts
An issue that affects the practical utility of the
image-correction scheme described here is that, at
the same time that the corrected images are better
than their uncorrected counterparts in terms of lo-
cation accuracy and spatial resolution, most of them
are also significantly less smooth. That is, ringing
artifacts, noise artifacts, and numerical error arti-
facts [e.g., the appearance of noise-like structures
in cases in which the forward-problem solutions
were noise-free, such as in Fig. 12(b)] are all am-
plified in the deconvolved images. These phenom-
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ena are analogous to the artifacts seen in x-ray
computed tomography images reconstructed by us-
ing a backprojection-filtering algorithm35; in both
cases the issue is that an operation designed to
correct for one particular source of error has a mag-
nifying effect on other sources. As alluded to above,
techniques for suppressing the various artifact
types can be introduced, but doing so probably
would partially offset the improvement in spatial
resolution that deconvolution accomplishes. A goal
of future research may be to seek an optimal bal-
ance between minimizing artifact amplitudes on
the one hand and achieving improved spatial reso-
lution and location accuracy on the other. Seem-
ingly (see Fig. 18), one way of reducing artifact
amplitudes could be to increase Nc, even if in theory
doing so does not contribute additional independent
information to the measurement. However, it must
be seen if the effect observed in study 12 holds also
in cases in which the measurement data contain
noise and other sources of error.

5. Computational Strategies
Two of the studies have made direct comparisons
between the action of the linear image-enhancement
technique and that of a recursive iterative (i.e., non-
linear) reconstruction algorithm. In these it was
found that, depending on the details of the latter
method, deconvolution produced images either ap-
preciably more accurate or only slightly less accurate
than the nonlinear strategy. A similar observation
was reported in Ref. 2 for a 3D simulation experi-
ment; the significance of the results were discussed at
length in Ref. 2 and are summarized above in Section
3. A point that does bear repetition here is that an
effort aimed at developing a hybrid reconstruction
strategy is clearly called for. The idea is that conver-
gence of the iterative algorithm may be greatly accel-
erated by spatially deconvolving the reconstructed
image after each iteration, and that reduction of ar-
tifact amplitudes may be one of the practical benefits
of using a nonlinear algorithm.

As alluded to above, a concern that attended the
initial demonstrations of the capabilities of this pa-
per’s image-enhancement technique was that the cor-
rective effects might occur only if there were a nearly
perfect match between the optical coefficients of the
target medium’s background and the corresponding
temporally averaged coefficient values of the filter-
generating medium. The systematic error study per-
formed for this paper shows that in fact a
considerable range of disagreement between the pa-
rameter values of the two media can be tolerated.
That result encourages us to pursue the method and
to test it for experimental and clinical utility.

B. Theoretical and Numerical Considerations

1. Factors Affecting the Performance of the
Image-Correction Method
The mathematical development of the deconvolution
algorithm, as outlined in Subsection 2.A, simply calls

for the insertion of some training set Y and the cor-
responding detector data X into Eq. (1). As a practical
matter, the precise choice of what Y to use has a large
effect on the quality of the corrected images that are
produced by applying the method of this paper. The
issues considered when seeking an appropriate Y
constitute the computational parameter space re-
ferred to in Section 1. Space limitations prevent us
from presenting results on all the factors we have
explored. However, some of these are worthy of men-
tion here, as they strongly affect the quality of re-
sults.

A previously reported result is that, in practice so
far, high-quality corrected images are obtained by
applying the method explored here only if the Np

� Nt training set Y used for generating the deconvo-
lution operator has the property Nt 

 Np. Probable
reasons for this phenomenon were discussed at
length in the earlier report, so the explication is not
repeated here. We reiterate only the observation that
the key factor apparently is the dependence of the
singular value spectrum—from which both the con-
dition number and the effective rank are derived—of
Ŷ on Nt. Not shown here are the results of 2D studies
on this phenomenon, which gave the expected result
that the performance of the filtering operation has
the same dependence on Nt as was seen for the 3D
case (for the corrected images presented in this re-
port, Nt�Np � 10–23, while significantly poorer re-
sults are obtained when the ratio is smaller than
this).

Another issue studied is the dependence on the
functional form of the temporal variation assigned to
the FEM nodes during filter generation. A seeming
limitation on the use of sinusoids with irrational fre-
quency ratios is that, as the number of nodes in-
creases, an inconveniently large number of very
small time steps may become necessary for unambig-
uous discrimination of all the modulation frequen-
cies. An alternative approach that was tried was to
assign an independent uniformly distributed random
fluctuation to each node. In principle, the Y’s and X’s
resulting from this type of optical parameter fluctu-
ation should produce F’s that perform as well as those
derived from sinusoidally varying properties. In prac-
tice, however, we have found that for any given Nt,
the results obtained by using the random fluctuations
F�i.e., Fran� are not as good as those produced by the
sinusoidal fluctuations F�i.e., Fsin�. Preliminary anal-
ysis suggests that this result is attributable to differ-
ences between the singular value spectra of Ŷran and
Ŷsin.

The relative (i.e., spatially invariant or increasing
with depth) and absolute amplitudes of the sinusoi-
dal modulations assigned to the mesh nodes are ad-
ditional computation-space parameters we have
examined. As a practical matter, it has so far been
found that the best results are obtained from decon-
volution operators generated when the amplitude is
spatially invariant and not more than a few percent
of the mean value. Both effects can be understood in
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terms of considerations that were discussed in Ref. 2:
Reducing the amplitude near the boundary results in
a Y that does not constitute a representative sam-
pling of the optical-parameter space in which the
target media (i.e., those to which the correction algo-
rithm are applied) may reside; and if the amplitude is
increased too much, either uniformly or increasingly
with depth, then the mathematical relation between
the training set media and their uncorrected recon-
structed images cannot be approximated with suffi-
cient accuracy by a linear transformation.

2. Computational Effort
The filter-generation method outlined in Subsection
2.A is theoretically independent of not only the func-
tional form of the mesh nodes’ optical parameter fluc-
tuations, as described in the Subsection 4.B.1, but
also on the algorithm used for reconstruction of the
uncorrected images. That is, the factors of W and W�

that appear in Eqs. (1) and (2) simply refer to an
unspecified imaging operator. An important caveat,
however, is that the algorithm used for inverse-
problem computations in the filter-generation step
must be the same as the one used to reconstruct the
images that will subsequently be corrected by appli-
cation of the filter. Given that computation of decon-
volution operators that perform well presently
requires generation of training sets containing �104

images, it is clear that the correction method pre-
sented here is practicable only if the reconstruction
algorithm used is intrinsically capable of producing
many images in a short time. This capability is def-
initely present in linear reconstruction methods such
as the algorithm discussed in Subsection 2.D. On the
other hand, it is not certain whether more labor-
intensive nonlinear approaches that have been taken
for DOT image reconstruction can be accelerated to
the degree that would be required.

C. Future Directions

1. The training set Y will be expanded to include
simultaneous fluctuations of �a and ��s at each FEM
mesh node. The premise is that interparameter cross
talk can be regarded as a particular form of informa-
tion spread. That being so, it is our expectation that
a deconvolution operator incorporating information
on both coefficients will appreciably reduce the de-
gree of cross talk.

2. In another development effort, we plan to ex-
plore procedures that will combine spatial deconvo-
lution with techniques for suppressing ringing, noise,
and numerical error artifacts.

3. Incorporation of other types of regularization
into imaging operators, particularly the use of depth-
dependent regularization, is worthy of exploration.
As indicated earlier, it is expected that results such
as those plotted in Figs. 4(a), and 5(a) and 5(b) can be
used to guide the determination of the optimal regu-
larization parameter depth dependence for a given
medium geometry and S–D configuration.

4. With minor modifications, the reasoning out-

lined in Subsection 2.A can be used to derive a trans-
formation that should produce a corrected image
directly from a set of detector data, eliminating the
intermediate step of reconstructing an image via the
algorithm discussed in Subsection 2.D, or any other.
The idea here is to replace the equation relating the
matrix of medium properties (Y) to one of correspond-
ing reconstructed images (Ŷ) with one that relates Y
to the matrix of corresponding detector readings (X).
As mentioned in Subsection 2.A, the definition of the
spatial deconvolution operator (F) is expressed by Y
� FŶ, and the reconstructed images corresponding to
Y are given in theory by Ŷ � W�X. Combining these
two matrix equations, we obtain Y � FW�X � F�X,
where F is the spatial deconvolution operator used to
produce the results presented above and in Refs. 1
and 2. Formally, the reconstruction-free transforma-
tion is F� � YX�, or

F� � YXT(XXT)�1, (9)

whereas for a target medium z with corresponding
detector data v, the deconvolved image is ẑ � F�v
� z, or

ẑ� � �YXT(XXT)�1�v. (10)

Comparison of Eqs. (1) and (2) with Eqs. (9) and (10)
reveals that the only difference between the pairs is
that the latter contains no reference to a W operator.
The explicit formal dependences on the training set
Y, and the corresponding forward-problem solutions
X are precisely the same in both groups of equations.

The decision to refer to the matrix Y as a training
set was taken to suggest an analogy with the field of
artificial neural networks. In the artificial-neural-
network community, it is known that any problem
that can be solved by training a network is also solv-
able via conventional nonlinear error minimization
algorithms.36 In the preceding paragraph, the trans-
formation matrix F' is the solution to a linear error
minimization problem, and an additional subject
worthy of exploring is the derivation of higher-order
relations between Y and X.

In the preliminary tests carried out so far, the use
of Eq. (10) did not produce satisfactory images. This
was neither unexpected nor discouraging, however,
in light of the amount of empirical fine-tuning (Sub-
section 4.B) that went into obtaining results of the
quality presented here by using the algorithm out-
lined in Subsection 2.A. Nevertheless, we believe that
this approach is worthy of additional study.
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