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Abstract

This paper describes an iterative perturbation approach for imaging the absorption properties of a dense
scattering medium. This method iteratively adjusts a current estimate until the calculated photon fluxes for
the estimated medium match the detected readings. The inverse update in each iteration is accomplished
by solving a linear perturbation equation. It is similar to the compensation theory method used in electrical
impedance tomography. A comparison was made between the methods of conjugate gradient descent and
projection onto convex sets for the solution of the perturbation equation. The former converges more rapidly,
but can yield an inaccurate solution when the problem is underdetermined. The latter can incorporate many
types of a priori information to reach a correct solution, but progresses very slowly. A multi-grid, progressive
reconstruction technique is proposed, which computes the fine details with the help of the coarse structure, It is
quite effective in forcing the correct solution and reducing computation time. These methods have been used to
reconstruct several inhomogeneous media containing simple structures, from steady-state reflectance data. Two
sets of data are tested: one calculated according to the perturbation model, and the other using Monte-Carlo
methods. When the difference between the absorption distributions of the test medium and the initial estimate
is localized, a single step of the perturbation approach can resolve the absorption distribution reasonably well
to within 5 transport mean free pathlengths from the surface. At greater depths, the reconstruction is less
reliable.

1 Introduction

This paper considers the problem of imaging the absorption properties of the interior of a dense scattering
medium by analyzing the diffusely scattered field at the surface. It is an extremely difficult problem due to
the randomness of the paths traveled by injected particles. Our approach consists of iterative executions of
forward and inverse solutions. It iteratively perturbs a current estimate until the calculated photon fluxes for
the estimated medium match with the detected. At each iteration, using the previous result as the reference,
it produces a new estimate by solving a linear perturbation equation. The coefficients in the equations, to be
referred to as weights, are the gradients of the detector readings with respect to the absorption properties of
the points inside the medium [1, 2]. The idea of weights, or importance functions, is commonly used in the
control of nuclear reactors [3]. For isotropically scattering media with steady-state measurements, the weight
of a given point for a chosen source-detector pair is the product of the forward and adjoint fluxes at that point.
The forward flux is proportional to the collision density at the point for photons injected from the source; the
adjoint represents the time-reversed photon path entering the detector, and is proportional to the collision
density when photons are launched from the detector. This result is a counterpart of the sensitivity theorem
used in electrical impedance tomography (EIT) [4]. The derivation of the detector readings and weights for
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the current estimated image constitutes the forward problem. The solution of the linear perturbation equation
is the inverse problem. The latter is equivalent to the update in the Newton-Raphson minimization method
(also known as Gauss-Newton Method) [5]. The general approach is, therefore, similar to the compensation
theorem method used in EIT, which combines the sensitivity theorem with the Newton-Raphson update [4].

Until now, we have attempted only one iteration of the perturbation approach using homogeneous media
as references. We have calculated forward solutions, i.e, the detector readings and weights for the initial
reference medium, using Monte-Carlo methods. For more details on the forward calculation, see Ref. [2] for
the steady-state measurement, and Ref. [6] for the time-resolved case. This paper focuses on the solution of
the perturbation equation. The problem is difficult, due to the extremely large numbers of the unknowns,
the noise characteristics of the measured data, as well as the underdetermined, or ill-posed, nature of the
problem. Several iterative reconstruction techniques, have previously been developed, based on the concept
of backprojection used in conventional X-ray CT [2]. Here, the Projection onto Conver Sets (POCS) and
(Conjugate Gradient Decent) (CGD) methods have been closely examined and compared. A new multi-grid
reconstruction scheme has also been developed. Our focus has been on how to force an algorithm to move
towards the correct solution when the problem is underdetermined. Results obtained indicate that even when
only steady-state backscattered field is considered, the absorption properties of a scattering medium can be
recovered to within 5 transport mean free pathlengths (mfp) from the surface.

2 Reconstruction by Iterative Perturbation

Consider a measuring system where photons are injected with intensities S;,7 = 1,2...,J, at J source
locations on the surface of the test medium, and the photon fluxes I;, k = 1,2,..., K; are measured at K;
detector positions for the j-th incident signal. It is assumed that collimated source and detectors are used,
but other configurations can also be considered. The measurement can be either steady-state or time-gated.
In addition, the sources and detectors can either be placed around the entire or only portion of the surface of
the medium. One special case is when the sources and detectors are placed on one side of the medium and the
backscattered field alone is measured. This measuring strategy affords more feasible implementation, but the
reconstruction from such measurements is more difficult,

Let the unknown medium be divided into N contiguous non-overlapping small volume elements, or voxels.
Let z; represent the vector containing the unknown parameters at voxel ¢ ( a scalar if only one property, say
the absorption coefficient, is to be estimated). The goal is to reconstruct the optical properties of all the
voxels, z;,1 = 1,2,---, N, from the M = 'Z‘,f:, K measurements, [jx, k= 1,2,..., K;;5 = 1,2,...,J. In this
paper, we assume that the scattering property is known, and consider the recovery of the absorption properties.
The scalar z; represents the absorption coefficient in voxel ¢, which is defined as the ratio of the macroscopic
absorption cross-section at this voxel, ¥,;, to the macroscopic total cross-section X;;.

For an arbitrary object, the relation between the photon fluxes [;; on the surface and the absorption
properties 2; in the interior can be very complicated. A simple approximation to this relation is given by the
diffusion equation [7]. However, even with this simplification, closed-form solutions of the forward problem,
i.e, determining I from the given z; and 5}, are available only for media having simple and regular geometric
structures. The inverse solution, i.e, reconstructing z; from S; and I;z, has been considered by many as
intractable. In order to overcome difficulties in solving the inverse problem, we have adopted a perturbation
approach. It assumes that the absorption coefficients of an unknown object, z;, are very close to those of
a reference medium, z7. Suppose the detector readings for the test and reference media are respectively
[jx and I7,. The perturbation model relates the differences between the absorption properties of the two

media (Az; = ; — «]) with the changes in detector readings ( Aljx = I, — Ijx) by the following first order
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approximation:

Zw{_,-kAa:,-:Afjk, k=1,2,...,K;,7=1,2,...,J. (1)

arr, . . . . .
Here, w;j = —3‘%’7" is called the weight, which specifies the reduction of the photon flux at detector k due to
the increase in absorption at voxel 1 when photons are injected from source j. Let X", x, Ax and w; represent
the vectors composed of, respectively, the elments z7, z;, Az; and w;jx for i = 1,2,..., N. Eq. (1) can then be
recast as

whAx = ALy, k=1,2,.. . K;, j=12,...,J (2)

Let AT be the vector consisting of Alj;, and W the matrix containing w; as row vectors. The above equations
can then be written as:

WAx = AL (3)

The vector w;i will be called the weight vector for the jk-th source-detector pair, and the matrix W the
weight matrix. They are functions of the properties of the reference medium, x".

Given AI and W, Ax can be determined by solving the linear equation (3). Once Ax is found, x can be
readily identified. When the reference medium is very different from the test medium, the approximation in
3gs. (1)~(3) is inaccurate. Hence the above process should be repeated a number of times, with the reference
image and the weight matrix being updated after each iteration. The process can be stopped when the
difference between two successive estimates becomes smaller than a prescribed threshold. The flow chart of
the above perturbation method is shown in Fig. 1.

For a given reference medium, the calculation of w;jx and I;x can be considered as a forward problem. A
method for the forward calculation for steady-state measurements has previously been reported [1, 2]. Recently,
this method has been extended to consider time-resolved signals [6]. In the following, we discuss the solution
of Ax given W and AL

3 Iterative Algorithms for Solving the Perturbation Equations

The difficulties in solving the perturbation equation are three-fold. First, the dimension of the unknown
Ax, and hence the weight matrix W, can be extremely large. Second, the weights for voxels far below
the surface are very small, so that the matrix W is ill-conditioned. This makes the solution sensitive to
measurement noise and numerical errors. The last, and also the most difficult to deal with, is that the problem
may be underdetermined, or ill-posed. This is the case when there are fewer detector readings than voxels,
i.e, M < N, as often will be the case when only the backscattered field is measured. The problem may still
be underdetermined even when M > N, because the voxels far below the surface cannot be “seen” by any
detector. Mathematically, the column vectors in W corresponding to the weights for deep voxels all are nearly
zero and hence are correlated, which makes W rank-deficient. In these cases, there exist an infinite number of
solutions and additional a priori information, e.g, of the type described in Refs. [8-10], must be incorporated
to yield a correct solution.

Until now, we have concentrated on the application of iterative schemes for solving the perturbation
equation. Compared to their counterparts using direct matrix inversion or pseudo-inversion, they permit
progressive Teconstruction and selective use of detector readings, which is very important for preliminary
investigations [11]. Moreover, it is much easier to incorporate a priori information in iterative schemes. An
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effective iterative scheme must meet at least two requirements: 1) it must converge to a correct solution, and
2) the speed of convergence cannot be too slow. In the following, we compare two iterative schemes in these
regards: the CGD and POCS methods. We also present a multi-grid reconstruction algorithm which is faster
and in most cases can yield better results.

3.1 Projection onto Convex Sets (POCS)

A set is convez if for any two elements 1 and x5 in the set, the linear combination azy +(1—a)z; also belongs
to the set, where 0 < a < 1. Geometrically, convex sets are the sets without holes or concave boundaries. The
method of POCS is applicable in our reconstruction problem if each piece of information about the unknown
medium, e.g, detector readings or other a priori information, confines the unknowns to a convex set, Cy, and
the desired solution is in the intersection of these convex sets, i.e, Ax € N~ C;. The POCS method reaches
a point in the intersection by projecting a current estimate onto each set sequentially and iteratively. Letting
Ax™ represent the estimate at the n-th iteration, each step in POCS can be represented by

AxUH) = Ppopp o P Ax™ | (4)

Here, P; represents the projection operator onto C} such that P;Ax is the element in () that is closest to Ax.
The symbol o denotes the sequential concatenation of two projections. The process in Eq. (4) can be relaxed
by replacing P; with 7; = T + A(P; — I), where A; are user-chosen relaxation constants, and 7 stands for the
identity operation. Youla [12] has proved that, as long as the intersection of the constraint sets is not empty,
iterative projections onto these sets using 0 < A; < 2 will converge to their intersection. For a more detailed
description of POCS and its applications in medical imaging, see Refs. [12, 13].

To solve the perturbation equation, each equation in (2) can be regarded as a convex set constraint described
by Cjr = {Ax € RV : w}le = A} . Here, R" denotes the N-dimensional real Fuclidean space. The
projection onto this set can be accomplished [13] by

Al —wl, Ax

PiAx = Ax+
7 Bk

ij . (5)
Here |lw;il|* = &N, w?jk. Note that the update in (5) is equivalent to the backprojection of the error in an
individual reading in the algebraic reconstruction technique (ART) [14].

In addition to the measurement constraints, other a priori information can also be incorporated, as long
as it forms convex sets. One constraint that we have used is the range constraint: C, = {Ax € R : Azpin <
Az; < AZmax}. The projection operator is a simple truncation operation [13]. In our simulation, we have
assumed that the real medium always has stronger absorption than the reference medium such that Az; >0
of AZmin = 0. An appropriate AZmay is also chosen, based on our a priori knowledge of the absorption
properties of the test medium. The POCS method using only the measurement and range constraints is
equivalent to the additive form of the weighted ART [14]. But POCS is much more general, since almost any

a priori information that may arise in practice forms a convex set constraint and can be handled by the POCS
method.

A problem with POCS is that its convergence rate can be quite slow. This is because each projection makes
use of one constraint without considering others. To alleviate this problem, appropriate pre-processing should
be conducted to reduce the number of unknowns as much as possible. One approach is to make further use of
the positivity of Az;. Since Al in Eq. (1) is a summation of positive numbers, if AL} is very small, then
each term in the sum should be close to zero. This constraint is enforced by setting Az; = 0if Al /wijr < T,
where T' is a preset threshold. When T is selected properly, this process is very effective in reducing the
mumber of unknowns and speeding up the reconstruction process.
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Another drawback of POCS is that it may fall into a “dead loop” if the constraint sets formed by the
measurements fail to intersect. This is often the case in practice due to measurement noise. This problem can
be circumvented by enlarging each measurement constraint set to Cj = {Ax € RV : | wﬁAx—AIik [< €k}
The corresponding projection operator can be accordingly modified from Eq. (5). In addition, if it is known
that the reconstructed image is close to the reference image, we can add another constraint set: C, = {Ax:
lAx|| < €}, where [|Ax||? = S, Ae?. The projection operator onto this set can be found in Ref. [13]. This
projection will regularize the iterative process so that the solution is never too far from the reference image.

3.2 Least Square Solution Using Gradient Descent Methods

An alternative method for solving the perturbation equation is to minimize the following squared error:

E(Ax) = %Z(w}; Ax - ALy = %(WAX —AnT(WAx - AI). (6)
ik

Since E is a quadratic function of Ax, the minimal point can be reached by a gradient descent method. The
basic update operation in the direct descent method is described by

g = > (whax™ - Liwj, = WI(wax™ — AT); (7)
ik
Ax) = Ax(™ _qag . (8)

Here, g is the gradient at n-th iteration, and « is called step-size, which must be chosen appropriately to
guarantee convergence. We see that the gradient vector in Eq. (7) is equivalent to the summation of the back-
projections from all the readings. Hence, each update described by Eq. (8) is based on the total backprojection,
similar to the simultaneous iterative reconstruction technique (SIRT) [14].

There are a variety of gradient descent methods. We have concentrated on the conjugate gradient descent
(CGD) algorithm which is particularly suitable for large-scale least squares problems [5]. It modifies a current
estimate in the conjugate gradient direction, which is a linear combination of the previous gradient directions.
Theoretically, the CGD method can reach the optimal solution in no more than N iterations. In practice, many
more iterations are required due to rounding errors. It is, nevertheless, much faster than the POCS method.
In addition, it is more robust in the presence of noise, since each update is based on the total backprojection.
The error in one measurement will not have as significant an effect on the final solution as that with POCS
type sequential algorithms. Budinger et al. [15] have found that, of the many iterative techniques for image

reconstruction in emission computed tomography, the best results and fastest convergence can be achieved
with CGD.

Omne major problem with CGD is that it is reliable only for overdetermined problems. In an underdetermined
setting, it simply reaches a solution that is closest to the initial point. It is very difficult to impose non-linear
a priori constraints to force the CGD process towards the true solution. One method has been to periodically
modify a2n intermediate solution by projecting it onto convex constraints not included in the error measure
[16]. But this will slow down the convergence of the method substantially.

3.3 A Multi-Grid Reconstruction Algorithm

Facing the difficulties with POCS and CGD, a multi-grid progressive reconstruction scheme has been developed.
It first obtains a coarse grid image in which each cell corresponds to, say, 3 x 3 x 3 voxels in the original
medium, and then further reconstructs the regions of interest ! on a finer grid. The weight for a coarse cell

'voxels with non-zero values, in our case.
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is approximated by the summation of the weights for all the voxels contained in this cell. The reconstruction
at each step can be accomplished by either CGD or POCS. In most cases, the reconstruction problem at
intermediate levels can be made overdetermined, and the CGD algorithm is preferable since it converges
faster. Only the reconstruction at the last level needs to be accomplished by POCS if the number of remaining
unknowns exceeds the number of available measurements.

Because the number of unknowns to be resolved at each level is much smaller than the total number of
voxels at the final desired resolution, the multi-grid method requires much less computation than CGD or
POCS. In addition, such an approach can force the iterative process to proceed in the correct direction if good
solutions can be obtained at coarse resolutions. Mathematically, this is a way to prevent the iterative process
from being trapped in an undesired local minimum and enforce a solution that is correct at various scales.
The success of such a scheme, however, depends on the composition of the test medium and the way the
coarse grids are formed. Multi-grid implementation of several iterative algorithms for image reconstruction
from straight line projections has been studied [17]. A “local smoothness” property has been described as
the necessary condition for the method to converge faster than the direct single grid method. This result is
applicable to our problem as well.

4 Results
4.1 Media Containing Point Absorbers

To evaluate the capability of the perturbation approach to resolve absorption distributions at different depths
from backscattered measurements alone, we have attempted the reconstruction of one or two closely juxtaposed
point absorbers of size 1 mfp® buried at various depths in an isotropically scattering half-space. The absorption
coefficient of the background medium is 1 %, and that of the absorber is 5 %. Only a volume of size 41 x 41 x 10
mfp? is reconstructed, with a total of 16,810 unit-size voxels. The source and detector configurations for this
experiment are illustrated in Fig. 2. The total number of detector readings is 884 within the surface of 41 x 41
mfp?. Hence, the problem is severely underdetermined. The same medium without absorbers is chosen as
the reference, and the weights for the reference medium were calculated using methods previously described
[2]. The differences in detector readings for several absorber configurations are generated directly according to
Eq. (1). This is to evaluate, in the ideal case when the perturbation model is valid, the achievable resolution
of the proposed method.

Reconstruction results using various methods for a medium containing a single point absorber at depth 2-3
mfp are presented in Figs. 3(a)—(d). Fig. 3(a) illustrates one cross-section of the original medium. Fig. 3(b) and
3(c) are the reconstructed images using the CGD and POCS methods, respectively, each after 100 iterations.
Only the measurement and range constraints are used with POCS. In all the figures, the gray level represents
the relative increase in absorption from the reference media. The degree of darkening is in proportion to
the relative increase. For display purpose, the images have been scaled to the same minimum and maximum
darkness. Hence, the same gray level in separate figures may represent different absorption levels. The
reconstructed images by both methods correctly reveal the existence of the absorber. But the CGD algorithm
does not yield as sharp an image as the POCS method. In fact, some voxels are given values outside the
correct range with the CGD method. The POCS method yields a nearly perfect reconstruction, except that
the voxel below the absorber is slightly darkened.

With the multi-grid method, two levels of grids are used, the original and a coarse representation formed
by grouping every 3 x 3 x 3 original voxels. The CGD and POCS methods are used for the coarse and fine
level reconstructions, respectively. The coarse grid solution is shown in Fig. 3(k). It is seen that it gives a
good estimate of the true image. The total number of unknowns left for reconstruction in the full resolution is
only 13 % of the original one. The final image obtained with POCS after 100 iterations is shown in Fig. 3(d),
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which is quite similar to that by the direct POCS method. However, because of the reduction of the unknowns
in the fine grid, each iteration with this method requires significantly less time. In terms of computation time,
the previous POCS and CGD methods used 50 and 33 hours of computing time of a SUN Sparc workstation,
while the multi-grid method required only 5 hours.

To compare the convergence behavior of the above algorithms, Fig. 4 presents their error reduction curves,
where the error is as defined in Eq. (6). It is seen that the CGD algorithm has the fastest convergence rate
among these methods. It also has a smaller final error, although the reconstructed image is not as close to the
true image as those by the POCS and multi-grid methods. This implies that it converges to a legitimate, but
wrong, solution. The convergence rates of the POCS and multi-grid methods are comparable to each other,
with the latter being more uniform.

Figs. 3(e)~(j) present the results of the multi-grid method for three other point absorber configurations:
a single absorber at depth of 4-5 mfp, two absorbers separated by 1 mfp at depths 2-3 and 4-5 mfp. These
images are obtained with 200 iterations of POCS in the fine level. We see that the results for the media
containing absorbers at 4-5 mfp are less accurate, with the darkest regions occurring at depth 3-5 mfp. Many
more iterations are required to reach a better results. For example, starting with the image in Fig. 3(j), the
use of additional 500 CGD iterations has produced the image in Fig. 3(1). The reason for the requirement of
more iterations is that the weights for deeper voxels are much smaller than those for shallower voxels, so the
iterative algorithm does not change the deeper voxels until the shallower voxels have been solved in earlier
iterations.

4.2 A Medium Containing the “T” Absorber

The above results are based on calculated data. In this section, we present reconstruction results from data
obtained by Monte Carlo simulations for an isotropically scattering medium containing a “T” shaped black
absorber. Two orthogonal cross-sections of the actual T absorber medium are shown in Fig. 5(a). The left
and right columns are the X-Z and Y-Z cross-sections of the medium, respectively. The source configuration
is shown in Fig. 6; the detector position for each source is the same as shown in Fig. 2(b).

Figs. 5(b)-(d) show the reconstruction results by the CGD and multi-grid methods. They were obtained
using a corresponding homogeneous medium as the reference. Note that the changes in detector readings in
the presence of such a large black absorber will not follow the perturbation model accurately. Nevertheless,
the reconstructed image based on this model contains a sharp darkening in the region where the “T” absorber
is located. This is a very encouraging result as it suggests that even with a reference medium that is quite
different from the real medium, one iteration of the perturbation method may yield useful results.

4.3 A Three-Layer Medium

To evaluate the effect of the accuracy of the reference medium on the reconstruction results, we have attempted
to reconstruct a three-layer medium using a homogeneous medium as the reference. The original medium is
shown in Fig. 7(a). It is 10 mfp thick, and the three layers are located from 0-3, 37, and 7-10 mfp, respectively.
The absorption coefficient of the first and third layers is 1%, and that of the middle layer is 5%. The source-
detector configuration is the same as that for the point absorber case shown in Fig. 2.

The weight functions have been calculated for both the true and reference media. These two sets of weights
will be referred to as the three-layer weights and half-space weights, respectively. Two sets of readings are tested:
one is calculated according to Eq. (1) using the three-layer weights; the other is obtained from Monte-Carlo
simulations. In each case, the reconstruction is performed using both the three-layer and half-space weights.
For simplicity, the stratified structure of the medium is assumed known. With this assumption, a perturbation
equation with only 10 unknowns can be set up, each representing the absorption property of a single plane.
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The weight for each plane is obtained by summing the weights for all the voxels in this plane. The POCS
method is used for the solution.

The reconstructed images in various cases are shown in Figs. 7(b)—(e). Fig. 7(b) is obtained from the
calculated data, using three-layer weights. The transition from the first to the second layer is accurately
reconstructed, but the transition from the second to the third is blurred. When the half-space weights are
used, an incorrect image resulted (Fig. 7(c)), with a darker and narrower layer appearing before the true second
layer. This is reasonable since the half-space weights used in the planes within and below the second layer are
larger than the true weights.

With the simulated data, when using the three-layer weights (Fig. 7(d)), the algorithm reveals correctly,
with slight blurring, the three-layer structure. But the absorption level of the second layer is overestimated
and its thickness is underestimated. With the half-space weights (Fig. 7(e)), the transition from the first
to the second layer is further blurred, and as with the calculated data, the thickness of the second layer
is underestimated. This is as expected since the perturbation model is not valid in the presence of a non-
localized variation between the true and reference media. In order to obtain a more accurate reconstruction,
the perturbation method should be iterated several times, as described in Sec. 2, with the reference medium
and weights being updated after each step.

5 Discussion

Presently, there are mainly two classes of efforts under study for imaging dense scattering media. One
class attempts to separate the unscattered or ballistic components of the injected photons from the scattered
components. This may be accomplished by using ultra-fast, time-gated methods which can reject photons that
take more than a preset maximum time to reach the detector [18-21], or by using holographic techniques which
exclude the light not possessing the correct phase relation to a reference signal [22, 23]. These techniques have
shown promise in situations where the sample thickness is not too much greater than the transport mean free
pathlength.

The second class makes use of the scattered light to reconstruct an image, based on a mathematical model
that relates the scattered field to the optical properties of the test medium, which is what has been considered
here. A general approach has been to iteratively solve forward and inverse problems. The forward step
calculates the detector readings based on the current estimates of the test medium. The inverse step modifies
the previous reconstruction such that a certain error measure between the detected and calculated detector
readings is minimized. This step often requires the knowledge of the gradients of the detector readings with
respect to the unknown parameters, which also must be calculated in the forward step. The approach by Singer
et al [24] and Griinbaum et al [25] is based on a general mathematic model derived from the discretization of
the Boltzman transport equation in both the spatial and angular domains. The forward step consists of the
solution of a linear equation; the inverse step is accomplished by the Levenberg-Marquardt method [5], which is
equivalent to the Newton-Raphson method, when the regularization parameter is set to zero. Their approach
is applicable to arbitrarily shaped objects. It also permits iterative estimation of both the absorption and
scattering properties, at least in principle. However, the overwhelming amount of computation required has
limited their evaluation to very small size objects. The method of Arridge et al [26] is derived from considering
the diffusion approximation of the transport equation. The closed-form solutions of the scattered field and its
gradient have been derived and used for reconstruction of cylindrical objects. Two regularized Moore-Penrose
inversion methods [27] have been attempted for the inverse update, which are in principle equivalent to the
Levenberg-Marquardt method.

The iterative perturbation approach described here is similar in spirit to the compensation theorem method
used in EIT, which is a combination of the sensitivity theorem and the Newton Raphson method. Here, the
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Newton-Raphson update is accomplished by the solution of the perturbation equation. Compared to the
method by Singer et al [24] and Griinbaum et al [25], the calculation of the gradient information, that is
required in the inverse step, is simplified. For isotropically scattering media with steady-state measurements,
the gradient, referred to here as the weight, of the photon flux at a chosen detector for a given source with
respect to the absorption property at an interior point is equal to the product of the forward and adjoint
fluxes at that point due to photons injected from the source and detector, respectively [1, 2]. This result is
derived using the radiation transport theory. Arridge ef al [26] also derived this result based the diffusion
approximation. They were able to evaluate analytically the weights for cylindrical objects. But for arbitrarily
shaped media, numerical methods would have to be considered. Although this paper has been restricted to
considering weight functions calculated for steady-state measurements in isotropic media, our methods are
easily extended to anisotropic media and time-gated measurements.

The solution of the perturbation equation in the proposed method is equivalent to the Moore—Penrose
pseudo-inverse [27] used by Arridge et al. They used regularized singular value decomposition methods to
obtain the solution [26]. We resorted to iterative schemes that can incorporate a priori information, which
is necessary to overcome the underdetermined nature of the equation. The key problems for solving the
perturbation equation are how to determine and enforce appropriate a priori constraints. The first problem
has been partially treated elsewhere [8-10]. The focus here is on the second problem. It is shown that
although the CGD method converges much faster than POCS, it can yield an inaccurate answer when the
problem is underdetermined. On the other hand, the POCS method, which can deal with many types of a
priori information, progresses very slowly. The proposed multi-grid scheme computes the fine details with the
help of the coarse structure and is quite effective in forcing the correct solution and reducing computation
time.

Our results show that, when the difference between the initial estimate and the true medium is localized, and
when using only backscattered, steady-state measurements, one step of the perturbation approach can resolve
the absorption distribution at depths within 5 mfp reasonably well, at least for the examples examined here. At
greater depths where the voxels have very small weights associated with all the detectors, the reconstruction is
less reliable. Future work will consider the solution of the perturbation equations for time-gated measurements,
and the updating of the weight functions. Preliminary results with time-gated measurements are presented in
[6].

Recently, Schlereth et al [28, 29] have formulated the recovery problem as a learning problem in a neural
net structure, taken suggestions from Singer et al [24]. The method iteratively updates a current estimate
(the node properties) until the values of the photon fluxes (the output of the net) match those detected (the
training vector). This method appears to offer greater flexibility in modeling the forward problem, and yields
accurate and numerically stable results when provided with an initial estimate of the structure of the test
medium.
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Initial estimate x(0);
Measurement data I;

Forward solution:
I(k) = FIx(X)] ; W(K) = Fx(k)] k=k+1

!

AT(k)=1(k)-1 x(k+1) = x(k) + A x(k)
A
N

Inverse solution: Y
2
A = W* A 100 [ <X <T3 —--

Figure 1: Iterative perturbation approach. F represents the function
relating x and I. F' represents the gradient. W represents the generalized
inverse solution of the perturbation equation.
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for an acceptance solid angle of ~,095 sr.
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ered axis,

"o" and
from the normal, respectively. " a " indicate positions in which measurements were

In every measurement, the azimuthal angle of the detector was chosen such

(a) Source locations for the point absorber and the three-layer simulations; (b) Position and

that the source and detector axes intersected at a point below the surface (z>0). Each detector received

photons within a cone extending 10 © from the cent; |
See Graber et al [10] for more extensive description of Monte--Carlo simulations.

orientation of detectors about each source:
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made in both orientations.
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Figure 4: Convergence behaviors of CGD, POCS,
and multi-grid ‘methods for the medium shown

in Fig. 3(a).
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Figure 3: Results for point absorber media from calculated data: (a) original: a single absorber
at 2-3mfp; (b), (c) reconstructions of (a) by CGD and POCS, respectively, both after 100
iterations; (k) coarse-grid solution of (a) by the multi-grid (MG) method using CGD; (d)
fine-grid solution of (a) by MG using POCS, 100 iterations; (e) original: a single absorber
at 4-5 mfp; (f) fine-grid solution of (e) by MG using POCS, 200 iterations; (g) original: two
absorbers 1 mfp apart at depth 2-3 mfp; (h) fine-grid solution of (g) by MG using POCS, 200
iterations; (i) original: two absorbers 1 mfp apart at depth 4-5 mfp; (j) fine-grid solution of
(i) by MG using POCS, 200 iterations; (1) fine-grid solution of (i) by MG with additional 500
CGD iterations starting from (j).
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Figure 5: Results for the “T” absorber medium using Monte-Carlo data. Left column: X-Z
cross-section, right column: Y-Z cross-section. Within each column: (a) original medium, (b)
reconstruction by CGD, 200 iterations; (c) coarse-grid solution by MG using CGD; and (d)
fine-grid solution by MG using POCS, 200 iterations.

(a)
(b) (c)
(d) ()

Figure 7: Results for the three layer medium assuming planar structure is known: (a) original
medium; (b—c) reconstructions from calculated data using the three-layer (b) and half-space
(c) weights; (d—e) reconstructions from Monte-Carlo data using three-layer (d) and half-space
(e) weights.
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