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Abstract—This paper addresses the suppression of transient
artifacts in signals, e.g., biomedical time series. To that end, we dis-
tinguish two types of artifact signals. We define “Type 1” artifacts
as spikes and sharp, brief waves that adhere to a baseline value of
zero. We define “Type 2” artifacts as comprising approximate step
discontinuities. We model a Type 1 artifact as being sparse and
having a sparse time-derivative, and a Type 2 artifact as having a
sparse time-derivative. We model the observed time series as the
sum of a low-pass signal (e.g., a background trend), an artifact
signal of each type, and a white Gaussian stochastic process. To
jointly estimate the components of the signal model, we formulate
a sparse optimization problem and develop a rapidly converging,
computationally efficient iterative algorithm denoted TARA
(“transient artifact reduction algorithm”). The effectiveness of
the approach is illustrated using near infrared spectroscopic
time-series data.

Index Terms—Measurement artifact, artifact rejection, sparse
optimization, wavelet, low-pass filter, total variation, lasso, fused
lasso.

I. INTRODUCTION

T HIS paper addresses the suppression of artifacts in mea-
sured signals, where the artifacts are of unknown shape

but are known to be transient in form. We are motivated in par-
ticular by the problem of attenuating artifacts arising in biomed-
ical time series, such as those acquired using near infrared spec-
troscopic (NIRS) imaging devices [3]. Our approach is based on
a signal model intended to capture the primary characteristics
of the artifacts, and on the subsequent formulation of an opti-
mization problem. We model the measured discrete-time series,

, as

(1)
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where is a low-pass signal, are two distinct types of arti-
fact signals, and is white Gaussian noise. Specifically, is
low-pass in the sense that when is used as the input to an ap-
propriately chosen high-pass filter, denoted by , the output is
approximately the all-zero signal; i.e., .
The ‘Type 1’ artifact signal, , is intended to model spikes

and sharp, brief waves; while the ‘Type 2’ artifact signal, , is
intended to model additive step discontinuities. For the purpose
of flexibility and generality, we avoid defining the artifact sig-
nals in terms of precise rules or templates. Instead, we use the
notion of sparsity to define them in a less regimented way that
facilitates the formulation of an optimization-based approach:
1) We define the ‘Type 1’ artifact signal, , as being sparse
and having a sparse derivative (actually, a discrete-time
approximation of the derivative, here and subsequently).

2) We define the ‘Type 2’ artifact signal, , as having a
sparse derivative. This type of artifact signal is composed
of step discontinuities (or approximate step discontinu-
ities).

After the artifacts, , are estimated, they are subtracted from
the raw data to obtain a corrected time series.
To handle both types of artifacts simultaneously, in this work

we develop an algorithm, denoted ‘Transient Artifact Reduction
Algorithm’ (TARA). Complex artifacts often comprise both
types; hence TARA performs joint optimization to maximize
the effectiveness of the model to better reduce such artifacts.
We devise TARA to have high computational efficiency and
low memory requirements by constraining all matrices to be
banded,1 which allows us to leverage fast solvers for banded
systems [29, Sect 2.4]. TARA does not require the user to
specify auxiliary algorithmic parameters.
In addition to suppressing artifacts according to the model

(1), we also consider the simplified model

(2)

which contains artifacts of Type 1 only. We considered model
(2) in previous work [34], where we used it to formulate what
we called the ‘LPF/CSD’ problem. In this paper we present an
improved algorithm for the LPF/CSD problem and provide an
approach for setting the parameters. The new algorithm serves
as the basis for the development of TARA, which suppresses
artifacts according to model (1).
Although the suppression of Type 1 and Type 2 artifacts was

addressed in our previous work [34], it was assumed that the
measured time series is affected by the presence of either Type
1 or Type 2 artifacts, but not both. Two algorithms, one for each

1A matrix is banded if its non-zero elements lie only on its main diagonal and
a few adjacent upper and lower diagonals.
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artifact type, are described in [34]. The respective algorithms
were illustrated on time series acquired using a NIRS system
[23], which frequently have artifacts of both types [15]. The
algorithms were compared with the algorithm used by the NAP
software application for NIRS artifact suppression [15].

A. Related Work

Several approaches have been developed for the suppression
of artifacts in biomedical time series [2], [9], [15], [20], [21],
[25], [31], [37], [38]. Some methods, such as those based on
independent component analysis (ICA) or adaptive filtering, re-
quire the availability of multiple channels or reference signals.
However, if artifacts differ substantially among channels or if
multiple channels are unavailable, then single-channel methods
are needed [9], [21], [24]. Several methods for detecting and/or
correcting motion artifacts in NIRS time series have been com-
pared [9], [21], [24], [31], [32], leading to the conclusion that
wavelet-based methods are more effective than other methods,
especially for single-channel processing. Wavelets have also
been shown effective for reducing ocular artifacts in EEG [2],
[22]. Hence, we compare the sparse optimization and wavelet
approaches below.
We remark that models (1) and (2) are prompted by the ap-

proach of morphological component analysis (MCA), in which
all signal components are modeled as sparse with respect to
distinct transforms [35]. However, the presence of the low-pass
non-sparse component, , which differs from MCA, makes
models (1) and (2) more realistic for biomedical time-series
analysis. Moreover, modeling the low-pass component en-
hances the prospective sparsity of the remaining components,
on which sparse optimization and MCA rely.
Rather than developing optimization schemes for general

linear inverse problems, this work emphasizes algorithms that
exploit the banded structure of one-dimensional LTI operators
to achieve high computational efficiency and fast convergence
while avoiding additional algorithm parameters (e.g., step-size
parameters), for the specific problems considered here. Yet, we
note that general optimization algorithms, such as those based
on proximity operators [8], [10], [12], [13], [28], [30], allow
for consideration of non-smooth compound regularization
problems more general than those considered here. Relevant
surveys are also given in [4], [36].

B. Notation

Vectors and matrices are represented by lower- and upper-
case bold (e.g., and ), respectively. The -th component of
a vector is denoted . Finite-length discrete-time signals
are represented as vectors in . The notation means

.

II. TYPE 1 ARTIFACTS (THE LPF/CSD PROBLEM)

In this section, we consider model (2), which contains arti-
facts of Type 1 only. The derivation of TARA in Section III
for model (1) builds on the algorithm developed here. In pre-
vious work [34], an iterative algorithm based on the ‘alternating
direction method of multipliers’ (ADMM) was derived for the
‘LPF/CSD’ problem. Here, we revisit the problem and present
several improvements in comparison with [34].

1) A faster algorithm. In this work, we derive an algorithm
based on majorization-minimization (MM). The new al-
gorithm converges in fewer iterations in practice than the
previous algorithm based on ADMM.

2) Fewer algorithm parameters. The algorithm of [34] re-
quired the user to specify a positive scalar, , analogous
to a step-size parameter. A poor choice of leads to slow
convergence. The newMM algorithm does not require any
parameters beyond those in the objective function.

3) A method to set regularization parameters, and ,
based on the noise variance (which we assume is known).

4) A more general problem formulation. In this work, we
allow the penalty functions to be non-convex, whereas [34]
considered convex penalty functions only. With convex
penalty functions, the amplitudes of artifacts tend to be un-
derestimated (the estimates are biased toward zero).

5) A method to set non-convexity parameters. In the case
where non-convex penalty functions are utilized, we
present a method to set the non-convexity parameters. The
previous work considered only convex penalty functions.

A. Problem Formulation

We address the problem in the discrete-time setting. Signals
are represented as vectors in . We write model (2) as

(3)

where the signal is modeled as sparse and having a sparse
derivative. The derivative is approximated using the discrete-
time first-order difference operator, , defined by

. The matrix has the form

. . .
. . .

(4)

In order to estimate from , we propose to solve the opti-
mization problem

(5)

where are the regularization parameters. The low-pass
signal is then estimated as

(6)

where denotes the low-pass filter defined as . The
penalty functions, , are chosen to promote sparsity.
We refer to (5) as the LPF/CSD (low-pass-filtering/compound-
sparse-denoising) problem [34].
When is the absolute-value function, , for
, then problem (5) is the same as that considered in [34].

When, in addition, is the identity operator, (5) is the same as
the ‘fused lasso signal approximator’ in [17].
The high-pass filter, , is taken to be a zero-phase recursive

discrete-time filter that we write as

(7)
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where and are banded Toeplitz matrices, as described
in Sec. VI of [34]. We further suppose that admits the
factorization

(8)

where is banded and is the above-noted first-order dif-
ference matrix. (See [34] for derivations of the factorizations
in (7) and (8).) The fact that and are banded is important
for the computational efficiency of the algorithm to be devel-
oped. We also assume that , , and commute. As linear
time-invariant (LTI) filters, the commutativity of these operators
is exactly true for infinite-length discrete-time signals defined
on . For finite-length signals, with which we deal in practice,
the commutativity is approximately true, with the error being
confined to the start and end of the signal, with a temporal ex-
tent that depends on the time-constant of the filter. We note that
was expressed as in our earlier work [34]. Here we ex-

press as , which the commutativity property permits,
because the derivation of the computationally efficient MM al-
gorithm in Section II-B relies on this ordering. We assume in
this work that the signals of interest are sufficiently long that
start and end transients are not problematic, in which case the
commutativity assumption is justified.
The regularization parameters, and , control the relative

weight between the penalty terms. Their values should also be
set according to the noise variance: higher noise calls for higher
. As noted in [34], the regularization in problem (5) is an ex-

ample of compound regularization [1], [6], wherein two or more
regularizers are used to promote distinct properties of the signal
to be recovered.
In (5), the functions are chosen to be spar-

sity-promoting penalty functions more general than the norm.
Non-smooth penalties are given in lines 1a-3a of Table I; these
are non-differentiable at zero. For the logarithmic (log) and arc-
tangent (atan) penalties, the parameter controls the extent
to which the functions are non-convex. The log and atan penal-
ties are strictly concave on for . As , the log and
atan penalties approach the absolute value function. The atan
penalty was derived to promote sparsity more strongly than the
log penalty [33]. It will be useful below to define as

.
The algorithms derived in Sections II-B and III-A inevitably

encounter ‘divide-by-zero’ errors when any of the penalties are
non-differentiable at zero. To prevent this error condition, we
introduce a small degree of smoothing so that the penalty func-
tions become differentiable at ; see lines 1b-3b of Table I.
When the constant is sufficiently small, the minimizer of the
smoothed objective function is negligibly different from the
minimizer of the non-smoothed one. In practice, we use

.

B. Algorithm

We use the majorization-minimization (MM) procedure [16]
to minimize the objective (cost) function, , de-
fined in (5). We use the MM procedure with a quadratic ma-
jorizer of the penalty function; each iteration of the MM pro-
cedure then requires the minimization of a quadratic function,

TABLE I
SPARSITY-PROMOTING PENALTY FUNCTIONS

which is performed by solving a system of linear equations. In
this work, with suitable manipulations, the system matrix of the
linear equations is banded. Hence, fast solvers for banded sys-
tems can be used to implement the algorithm with very high
computational efficiency.
Under suitable restrictions on (symmetric, continuously

differentiable, etc.), which are satisfied by the penalty functions
in lines 1b-3b of Table I, a majorizer of is given by

(9)

That is,

(10)

(11)

Note that is quadratic in . The majorizer can be
used, in turn, to obtain a majorizer of in (5).
If and are vectors, then

(12)

with equality if . Using (9), we write the left-hand-side
of (12) compactly as

(13)

where is defined as the diagonal matrix

(14)

and does not depend on . Similarly,

(15)

with equality if . The left-hand-side can be written as

where is defined as in (14) and does not depend on .
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Therefore, using (12) and (15), a majorizer of in (5) is given
by , defined by

(16)

where does not depend on . The MM update equation,
wherein the majorizer is minimized, is

(17)

where is the iteration index. The update (17) leads to

(18)

where and are the diagonal matrices

(19)

Specifically,

(20)

(21)

Note that the system matrix in (18) (i.e., inside the paren-
theses), is not banded, because is not banded. Hence, fast
solvers for banded systems cannot be used directly with (18).
To utilize fast solvers, we write

(22)

where the matrix within the inverse is banded. Then, using (22)
in (18), we obtain the update equation

The algorithm, summarized in Table II, can be implemented ef-
ficiently using fast solvers for banded systems because the ma-
trix in line 5 is banded. The penalty functions arise only
in lines 3 and 4 of the algorithm (Table II) and their role is en-
capsulated by .
We note that, as the algorithm progresses, many elements of
and generally go to zero when and are chosen

to be any of the non-smooth penalties in lines 1a-3a of Table I, or
other non-smooth sparsity-promoting penalties. Note also that,
for such penalties, as . Therefore, as the algo-
rithm converges to a sparse vector , elements of the matrices
go to infinity, and consequently the system of linear equations
(line 6 in Table II) becomes ill-conditioned. For this reason,
we use the smoothed versions of the penalty functions with a
small value of to avoid ‘divide-by-zero’ errors. In practice,
we set . We have found that such slight smoothing of
the penalty term has a negligible effect on the minimizer , as

TABLE II
MM ALGORITHM SOLVING THE LPF/CSD PROBLEM (5)

validated by the comparison of ADMM and MM algorithms in
Fig. 4 below.

C. Regularization Parameters

To use the LPF/CSD formulation to estimate transient arti-
facts, the and regularization parameters must be speci-
fied. The process of specifying appropriate values is governed
by two considerations that have a substantial effect on the es-
timated artifact signal . First, the values of both parameters
nominally should be proportional to , where is the noise
variance, which we assume is known. In addition, we aim to set
so that contains, with high probability, signal behavior that

is due solely to the artifacts present in the data. This is because
we seek to correct the observed data by subtracting from
it. If exhibits behavior that is not due to artifacts, then sub-
tracting it from generally leads to distortion of the signal of
interest (e.g., oscillations of biomedical origin). Accordingly,
the artifact characteristics of the data is the second factor that
governs the selection of parameter values.
We begin by considering how to set according to the noise

variance. First, note that if the are sufficiently large, then ,
the minimizer of , will be the all-zero vector, . Second,
note that if the are near zero, then will approximate the
noisy data, . We seek to set the large enough so that
comprises solely artifact-related signal behavior, but not so

large that is overly attenuated toward zero. Suppose that some
realization of the data consists purely of noise, i.e.,

. In this case, should be the all-zero vector,
, at least with high probability. Hence should be chosen
sufficiently large so that when consists purely of noise, we
obtain with high probability. That is, a suitable pair,

, is one for which we can write

(23)

where is obtained by solving (5). The suitable
thus depends on the noise standard deviation, . To find
such analytically is difficult due to the compound
regularization. To tackle this problem, we consider two spe-
cial cases where selection of that satisfy (23) is relatively
straightforward.
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In the first special case, we set to zero and seek a value for
that satisfies (23). We denote this value ; i.e., is a

pair satisfying (23). Likewise, in the second special case, we set
to zero and seek a value for that satisfies (23). We denote

this value ; i.e, is a pair satisfying (23). Then for the
general case we interpolate between these two pairs to obtain

approximately satisfying (23).
In order to find and , we work with two special cases of

(5). We define the objective function, , as

(24)

and the objective function, , as

(25)

The functions and correspond to and
in (5), respectively. Unlike , the do not involve compound
regularization, which simplifies the analysis necessary to set .
We denote the minimizers of and as:

(26)

To find such that satisfies (23), we equivalently
find such that

(27)

That is, we seek to set in (24) so that is relatively noise-
free with high probability. The value for accomplishing this
is derived using optimality conditions from convex analysis.
This general approach has been described by Fuchs [18] for the
purpose of setting the false alarm rate in a target detection appli-
cation. To find such that satisfies (23), we will pro-
ceed in a similar manner; however, the presence of in the
penalty of needs to be taken into account.
1) Obtaining : We assume here that is one of the non-

smooth penalty functions in Table I (lines 1a–3a). We will use
a result from the theory of convex functions [5]: if a function

is convex, then is a minimizer of if and only
if , where is the subgradient of .
As shown in [33], if is chosen such that in (24) is

convex, then minimizes if and only if, for all ,

.
(28)

When is the all-zero vector, we have

(29)

and the right-hand-side of (27) can be written as
with high probability. Hence, should be

chosen so that

(30)

where . Note that represents an LTI
system. Then is a stationary stochastic process and

, where is given by

and is the impulse response of the LTI filter . That is,
, where represents the impulse response of the

LTI filter , and is the time-reversed version of
(i.e., ).
So, (30) can be expressed as

A nominal value of is given by the ‘three-sigma’ rule,

(31)

Using the value given by (31), (30) is satisfied with a prob-
ability above 99%.
2) Obtaining : From (7) and (8), note that .

Using commutativity, we have . Hence con-
stant-valued signals are in the null space of both and ; i.e.,
the signal is annihilated by both operators. Therefore,
if is defined as , then ; i.e.,
the value of the objective function is unaffected by a shift
in the baseline of . Then the signal minimizing in (25) is
unique only up to an additive constant. This issue is addressed
by defining a change of variables, namely , which fa-
cilitates the derivation of .
We define Then, , and we can

write

(32)

Hence, minimizing (25) is equivalent to the problem

Accordingly, to find such that satisfies (23), we equiv-
alently find such that

(33)

As above, if is chosen such that is convex, then min-
imizes if and only if, for all ,

.
(34)

Proceeding as above, we obtain a nominal value for of

(35)

where

and is the impulse response of the LTI filter . That is,
, where represents the impulse response of the



SELESNICK et al.: TRANSIENT ARTIFACT REDUCTION ALGORITHM (TARA) BASED ON SPARSE OPTIMIZATION 6601

LTI filter , and is the time-reversed version
of .
3) Setting : The parameter pair is appropriate

for an artifact signal that is known to be sparse, i.e., departing
only briefly from a baseline value of zero. In this case, the arti-
fact signal can be modeled as consisting of pure impulses, i.e.,
isolated spikes of large deviation from baseline, such as ‘salt
and pepper’ noise. This is because, when , the objective
function imposes no continuity among the non-zero values of
the artifact signal. On the other hand, the parameter pair
is suitable when it is known that the derivative of the artifact
signal is sparse, i.e., the artifact signal consists of step disconti-
nuities.
Real artifacts are generally not so easily classified as spikes

or as additive step discontinuities. Therefore, and should
be tuned according to the behavior of the artifacts in the data.
Although the values and in (31) and (35) are ideally suited
for two special cases only, they provide anchors for the selection
of . We set

(36)

which restricts to a line segment in the plane, reducing
the two degrees of freedom to one. As one of is re-
duced, the other increases. Reducing one parameter without in-
creasing the other would lead to a total reduction in the regular-
ization, leading to potential noise contamination of . Thereby,
the interpolation (36) approximately satisfies (23); i.e., it takes
into account the noise variance so that the estimated artifact
signal is largely noise-free with high probability. In this ap-
proach, one of the two degrees of freedom in the LPF/CSD
problem (5) is set according to the noise variance, and the other
is used to tune the algorithm to the data.

D. Noise Model Deviation

Real time series are likely to deviate from the idealized model
(2) on which LPF/CSD is based. The mid- and high-frequency
spectral content of the data may comprise a mixture of biolog-
ically relevant signals, rather than white noise. In such cases,
there is no well-defined noise standard deviation to use in for-
mulas (31) and (35). However, the approach can still be utilized
by using a ‘pseudo-noise sigma’ that serves as a substitute. The
pseudo-sigma parameter then leads to values for and . The
pseudo- parameter can be tuned using a representative data set.
Then should be tuned such that captures the tran-
sient artifacts most effectively. In this way, the problem formu-
lation (2) is parameterized in terms of instead of .
We have found this a more convenient parameterization for set-
ting parameter values.

E. Setting the Non-Convexity Parameters

The use of non-convex penalties in (5) can be advantageous
because, in comparison with convex penalties, they generally
produce estimates that are less biased toward zero; i.e., the
amplitudes of the estimated transients are less attenuated than
those produced by convex penalties [14]. However, when using
non-convex penalties, optimization algorithms may get trapped
in sub-optimal local minima. Hence, non-convex penalties
should be specified with care. One approach to avoid the
issue of entrapment in local minima is to specify non-convex
penalties such that the total objective function, , is convex

[7], [26], [27], [33]. Then the total objective function, owing
to its convexity, does not posses sub-optimal local minima and
a global optimal solution can be reliably found. The design of
non-convex penalties according to this principle is formulated
as a semidefinite program (SDP) in [33]. Here, we make sim-
plifying assumptions to avoid the high computational cost of
SDP.
When we use the logarithmic or arctangent penalty functions,

which are non-convex, we need to set the non-convexity param-
eter, , for each of and . We denote the respective values
by and , and write the penalties as and
to emphasize the dependence of the penalties on .
To derive a heuristic for setting the non-convexity parame-

ters, we assume that the sparse vectors and contain
only a single non-zero entry. While this assumption is not satis-
fied in practice, with it we obtain values of for which is def-
initely non-convex. Using corollary 1 of [33], this assumption
leads to upper bounds on and of and ,
respectively, where and represent the impulse responses of
the systems and , respectively. Be-
cause the assumption is idealized, the upper bounds are too high
in general (i.e., they do not guarantee convexity of ). There-
fore, in the examples below, we halve these values, i.e., we set

(37)

In the non-convex case, we initialize the algorithm with the
-norm solution to reduce the likelihood the algorithm be-

comes trapped in a poor local minimizer. For the -norm
penalty, the initialization does not matter, due to its convexity.
We also note that it was assumed in the derivation of (31)

and (35) that the total objective function, , is convex. Hence,
suitably constraining the penalties so that is at least approxi-
mately convex is further advantageous, as it approximately jus-
tifies the use of (31) and (35) in setting .

F. LPF/CSD Example 1

This example shows LPF/CSD processing as applied to a sim-
ulated signal illustrated in Fig. 1(a). This signal consists of two
low-frequency sinusoids, several additive step-transients, and
additive white Gaussian noise .
In this example, we compute the solution to the LPF/CSD

problem using both the -norm and arctangent penalties. For
the filter, we use the second-order zero-phase Butterworth filter
described in [34]. We use (31) and (35) to obtain and , and
(37) to specify the non-convexity parameters for the arctangent
penalty functions. We run the algorithm in Table II for 50 itera-
tions.
With and the arctangent penalty, we ob-

tain the estimated transient signal (i.e., ) shown in
Fig. 2(a), which can be seen to deviate infrequently from the
baseline value of zero. With we obtain the
estimated signal (i.e., ) shown in Fig. 2(b), which
does not follow a baseline of zero, but is approximately piece-
wise constant (i.e., has a sparse derivative). To obtain an esti-
mated transient signal, , which both largely adheres to a base-
line of zero and is piecewise constant, we set according
to (36), with manually tuned to a value of 0.3. The result,
shown in Fig. 2(c), is reasonably sparse, has a sparse derivative,
and is not contaminated by the additive white Gaussian noise of
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Fig. 1. LPF/CSD Example 1. (a) Simulated data. Denoising using LPF/CSD
with the -norm penalty (b) and the arctangent penalty (c).

the data. Reducing both and leads to a noisy under-reg-
ularized artifact signal. Increasing both and leads to an
over-regularized artifact signal where the transient pulses are at-
tenuated in amplitude. The interpolation given by (36) provides
a trade-off between these two cases while keeping the total reg-
ularization at an appropriate level. Note that the interpolation
(36) is in the domain of the regularization parameters, not the
estimated signal itself.
With as obtained in Fig. 2(c), the lowpass signal is

obtained using (6). The total signal, , is shown in Figs. 1(b)
and 1(c) for the -norm and arctangent penalties, respectively.
It can be seen that the non-convex arctangent penalty estimates
the amplitude of the transients more accurately than the -norm
penalty.

G. LPF/CSD Example 2

This example shows artifact reduction using LPF/CSD as ap-
plied to the near infrared spectroscopic (NIRS) time series. The
NIRS neuroimaging data in this and later examples was ac-
quired at a rate of 6.25 samples/second. Subjects were seated
in a fixed chair (no wheels or reclining seat back, etc.), but were
otherwise unrestrained. Participants were asked to remain as
still and quiet as possible (no talking, etc.).
The data shown in Fig. 3(a) were acquired using a pair of

optodes (one source and one detector) on the subject’s fore-
head near the left eye. As such, it is susceptible to artifacts due
to eye blinks (in addition to other artifacts ordinarily present).
Fig. 3(a) shows transient artifacts of variable amplitude, width,
and shape. The time series has a length of 1900 samples, of

Fig. 2. LPF/CSD Example 1. Estimated transient signals, , obtained by
LPF/CSD processing with various . (a) . (b) . (c) .

which 900 samples are shown to better reveal the signal details.
The same time series was used in [34].
To apply LPF/CSD processing, we used a second-order zero-

phase Butterworth filter with a cut-off frequency of 0.05 cy-
cles/sample, and the arctangent penalty with and set as
described in Section II-C, with a pseudo-noise standard devi-
ation of . The signals corresponding to and

are shown in Figs. 3(b) and 3(c), respectively. We then
set and using (36) with manually tuned to 0.05, which
produces the signal, , shown in Fig. 3(d). Only a small value of
is needed to obtain a signal that adheres to a baseline value of
zero. The result provides an apparently accurate estimate of the
transient artifacts. The corrected time series, obtained by sub-
tracting the estimated artifact signal from the original data, is
shown in Fig. 3(e). Compared with the result of [34], which used
the -norm penalty exclusively, the artifacts appear more accu-
rately estimated here, due to the use of the arctangent penalty in
place of the norm. The MM algorithm was run for 50 itera-
tions, with a run time of about 80 milliseconds.
As noted above, if the LPF/CSD problem (5) is used with

the -norm penalty, then ‘Algorithm 2’ in [34] (derived using
ADMM) can be used instead of the algorithm in Table II (de-
rived using MM). However, the ADMM algorithm has the dis-
advantage that it exhibits slower initial convergence than the
MM algorithm, and it requires the user to specify a parameter,
, which, if improperly specified, can further reduce the initial
convergence rate. To illustrate the comparative convergence be-
havior of the ADMM and MM algorithms, Fig. 4 shows the
cost-function history for both. For the ADMM algorithm, the
value of was optimized to give the smallest cost function value
at iteration 50. We denote this optimal value by . Increasing
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Fig. 3. Reduction of transient artifacts in a NIRS time series using LPF/CSD
with the arctangent penalty. (a) Raw data. (b), (c), (d) Output of the LPF/CSD
problem with given by , , and (36). (e) Corrected data
(CSD signal (d) subtracted from raw data).

or decreasing adversely affects the behavior of the algorithm
(with respect to a 50-iteration run). To illustrate this, we run the
ADMM algorithm with set to and , in addition to
. Fig. 4 shows that has better initial convergence, but the

long-term convergence is slower. For , the initial conver-
gence is slower, with no benefit for the first 50 iterations (the
value of benefits the long term convergence). As shown
in Fig. 4, when both algorithms are run for 50 iterations, the
MM algorithm converges faster than the ADMM algorithm for
any value of . Moreover, the MM algorithm does not require
user-specification of any parameter beyond those that define the
cost function in (5).

Fig. 4. Comparison of convergence behavior of ADMM and MM algorithms
for the LPF/CSD problem.

Note that the MM algorithm minimizes the smooth cost func-
tion. To make a fair, direct comparison with the ADMM algo-
rithm, which minimizes the non-smooth cost function, we eval-
uate the non-smooth cost function for both algorithms in Fig. 4.
As the figure shows, even though the MM algorithm minimizes
the smooth cost function, it reduces the non-smooth cost func-
tion faster than the ADMM algorithm over the first 50 itera-
tions. (Eventually, the ADMM cost will cross below that of the
MM cost, but at that point the solutions are negligibly different.)
Hence, the slight smoothing of the penalty has an insignificant
adverse impact in practice.

III. TRANSIENT ARTIFACT REDUCTION ALGORITHM

We address problem (1) in the discrete-time setting, and write
the model as

(38)

where is a low-pass discrete-time signal, and comprise
Type 1 and Type 2 artifacts, respectively, and is additive white
Gaussian noise. That is, , , and are modeled as
sparse. Similar to Section II, the discrete-time formulation leads
to the optimization problem

(39)

where denotes the high-pass filter annihilating (approxi-
mately) the low-pass signal . The low-pass signal is then
estimated as

where denotes the low-pass filter given by .
As in Section II, we define the filter as , where
and are banded (see Sec. VI of [34]). We assume can

be factored as . Because and are matrix
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representations of LTI systems, they approximately commute.
Hence, we formulate the problem as

(40)

The advantage of this form compared to (39) is that it leads to
an optimization algorithm that involves banded matrices exclu-
sively, and hence admits a fast implementation.
Note that is not uniquely determined because adding a

constant (dc offset) to does not change the value of the objec-
tive function. Hence, it is sufficient to solve for the derivative
(first-order difference), which we then integrate to obtain .
We denote the discrete-time integrator by (defined such that

, as in [34]), and make the change of variables

(41)

Then the data fidelity term in (40) can be written as

(42)

and the regularization term in (40) can be written as

(43)

Then , and in terms of and we have the
optimization problem

(44)

A. Algorithm

To solve (44), we use the majorization-minimization prin-
ciple. We majorize with , and by . Then is ma-
jorized with . Following the MM principle, we
then iteratively minimize . With suitably chosen majorizers
, the minimization of can be implemented with high com-

putational efficiency. After the minimizers and are ob-
tained, we compute and as and ,
in accordance with (41).
To facilitate the following derivation, we define

(45)

We then write the data fidelity term, , as

(46)

The matrix of the quadratic term of (i.e., in after
expansion of ) is not banded. Hence, the use of direct

minimization by fast banded solvers is precluded. However, a
quadratic majorizer of is given by

(47)

where is a positive semidefinite matrix. Note that
. Since is positive semidefinite, for

all , . Hence, is a majorizer of . The matrix should,
furthermore, be chosen so that is easily minimized. For that
purpose, we set so that has a banded second-order term.
Such a majorizer is obtained by taking to be

(48)

where is chosen so that is positive semidefinite. With
chosen as in (48), the second-order term of is canceled and
the second-order term of is banded. The matrix can be
written as

(49)

(50)

where denotes the Kronecker product. Hence, is positive
semidefinite if the 2 2 matrix in (50) is positive semidefinite.
Its eigenvalues are and ; hence, it is positive semidefinite
for . Therefore, we set in the following. With this
value, the matrix is given by

(51)

and is given by

A majorizer of the regularization term is given by

(52)

where is the diagonal matrix defined in (14) and does
not depend on . We can write as

(53)

where are the banded matrices

Consequently, a quadratic majorizer of is given by

(54)
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To find minimizing , we set to zero the gradient of with
respect to , to obtain a system of linear equations. Due to the
way we have defined the objective function and the majorizer,
the system of linear equations will be banded. We have

(55)
with

We also have

(56)

Hence, leads to the linear system

(57)

Note that the system matrix is banded. The solution to (57) is
given by

(58)

(59)

(60)

Hence, minimizing themajorizer according to theMMupdate
(17) leads to

(61)

(62)

(63)

Equations (61)–(63) constitute the iterative algorithm,
TARA, summarized in Table III. Note that the system matrices
are banded; hence, the algorithm can be implemented using fast
solvers for banded systems. The vectors and
need to be computed one time only. The algorithm does not
require any parameters other than the ones in (40). After
and are obtained upon convergence of the algorithm, and
are obtained using (41).
Run times of the new LPF/CSD algorithm and of TARA are

shown in Fig. 5, as measured using a 2013 MacBook Pro (2.5
GHz Intel Core i5) running Matlab R2011a. The algorithms
were run with a second order filter and for 50 iterations. The
run times are linear in the signal length, .

B. Parameters

To use TARA (i.e., to solve (40)), three regularization pa-
rameters must be specified; if non-convex penalties are uti-
lized, then three non-convexity parameters must be specified
as well. If is appropriately set (i.e., so that ), then

can be modeled as having Type 1 artifacts only, and
and can be nominally set as in Section II-C. In the examples

TABLE III
TRANSIENT ARTIFACT REDUCTION ALGORITHM (TARA)

Fig. 5. Run times of LPF/CSD and TARA with linear fits.

below, we set and using (36) with manually
tuned so that adheres to a baseline value of zero.
The parameter should be set, in part, according to the noise

variance. A constraint on is obtained via the noise analysis
described in Section II-C. Namely, we obtain the same nominal
value (35) as for . Hence, to prevent noise contamination of
, we require .
The Type 1 and Type 2 artifacts are implicitly and opera-

tionally defined through the parameters. Their relative values
affects the apportionment of signal features between and .
However, the total artifact signal , and , are quite robust
to small changes in , as will be illustrated in the Example in
Section III-C.
We note that it is reasonable to set . Because, if we set

and in (40), then is strictly more regularized
than and, consequently, the solution in (40) will always be
identically zero. It can be said that setting in this way leads to
all the transient artifacts being classified as Type 2. In this case,
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the component may as well be omitted from the problem
formulation.
The parameter may be set so as to distinguish between

Type 1 and Type 2 artifacts. To consider how influences the
implicit distinction between Type 1 and Type 2 artifacts, con-
sider problem (40) with norm penalties,

(64)

Suppose is all zero except for some transient pulse that we
consider a Type 1 artifact. It can be expected that the minimizer
of is likewise some transient pulse, which we denote by ;
i.e., . If is considered a Type 1 artifact, then
should be set so that and . To find a rule for
setting the parameter values, we evaluate the objective function
for two candidate solutions:

(65)

If minimizes , then TARA correctly classifies as a Type 1
artifact; while if minimizes , then TARA incorrectly clas-
sifies as a Type 2 artifact. Solution can be the optimal so-
lution only if . Because is the same
for solutions and , the data fidelity term of is equal for
and . Hence, the relative cost depends only on the penalty

terms. Therefore, we have

(66)

or

(67)

The notation means is the optimal solution if the left-hand
side is the smaller value, and vice-versa. Hence, for to be
classified as a Type 1 artifact by TARA, must be at least
as great as the quantity on the left-hand side of (67). Note that
condition (67) is invariant to amplitude scaling of ; i.e., only
the shape of matters.
As an example, suppose that is taken to be a rectangular

pulse of length samples and amplitude . Then
and , so condition (67) can be written as

(68)

Hence, for the -point pulse to be exhibited in ,
the parameter must exceed by . When

, as suggested in (36), then
(68) gives a condition in terms of ,

(69)

We noted above that should satisfy . Hence,
should be set according to

(70)

It experiments, we have found that is usually
positive, so the second term dominates. Moreover, is often
relatively small in practice (sufficient so that adheres to a
baseline of zero). Hence, it will often be sufficient that be
only slightly larger than . The use of condition (68) to control
the behavior of TARA is illustrated in Section III-C.
Based on the forgoing considerations, we suggest writing

and taking as a tuning parameter with a nom-
inal range of . In conjunction with the discussion
in Section II-D, we obtain a parameterization of the TARA
problem (40) in terms of instead of . We
find this parameterization more useful in practice because the
influence of each parameter can be more readily understood.
In particular, we consider to be shape parameters; they
influence the shape of the estimated transients.
When non-convex penalties are utilized, and can be set

as in (37). Following the same considerations as in Section II-E,
we set like for .

C. TARA Example 1

This example shows TARA as applied to the simulated time
series shown in Fig. 6. The signal consists of two low-fre-
quency sinusoids, several additive rectangular pulses of short
duration, several additive step discontinuities, and additive
white Gaussian noise . Each of the rectangular
pulses has a length of four samples, except for the last pulse (at

) which has a length of three samples.
In this example, we use a fourth-order zero-phase Butter-

worth filter with cycles/sample. We also use the
non-convex arctangent penalty, set and according to (31)
and (35) in Section II-C, and set by manual tuning as
in Section II-F.
To demonstrate the influence of as discussed in

Section III-B, we consider the question of how to set
to ensure that the brief rectangular pulses appear in rather
than in (i.e., to ensure TARA classifies these pulses as Type
1 artifacts). Since all the brief pulses are of length 4 or less, we
set in (68) to find that is the critical value for
. Hence, we must set to ensure that the pulses

appear in . Therefore, we set ; i.e.,
. The output of TARA for this is shown in Fig. 6(a).

In conformity with our expectation, all the brief pulses are
exhibited in , i.e., they are classified by TARA as Type 1
artifacts. The signal is piecewise constant and contains no
brief pulses. (The small step at the end of is a boundary
artifact due to applying the recursive filter to a finite-length
signal.)
To further illustrate the role of , we set
. This value is less than the critical value needed to classify

a length-4 pulse as a Type 1 artifact. Accordingly, it is expected
that TARA will classify pulses of length 4 and longer as Type
2 artifacts and that they will be exhibited in . The output of
TARA for this value of is shown in Fig. 6(b). As predicted,
the length-4 pulses are exhibited in . The only pulse exhibited
in is the final one (at ), which is of length 3. This
example validates the use of for the disambiguation of pulses
based on their duration.
This example uses rectangular pulses because of the avail-

ability of the simple formula (68). TARA does not explicitly
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Fig. 6. Signal decomposition and filtering with TARA. (a) Pulses 4 samples
and shorter appear in . (b) Pulses 4 samples and longer appear in .

model a signal in terms of rectangular pulses, and its effective-
ness is not limited to rectangular artifacts. For real data with
transient artifacts of complex shape, it is not expected that a
simple formula for a critical value will be available; however,
the general influence of on the relative properties of and
holds. Namely, decreasing results in more waveforms

being classified as Type 2 artifacts.
Note that the low-pass signal, , is essentially the same in

Figs. 6(a) and 6(b). Likewise, the total signal, ,
is approximately the same in both figures. The small change
in produced only a small change in the total signal, even

Fig. 7. Wavelet-based decomposition of a signal into transient and low-pass
components.

though it produced a large change in . Hence, for the purpose
of denoising, the total signal is not overly sensitive to the exact
value of . Note that TARA provides a reasonable denoising
result: the total signal is relatively noise-free, preserves the dis-
continuities in the data, and does not exhibit ringing around the
discontinuities.
Since wavelet methods have been successfully used for the

correction of transient artifacts [9], [21], [24], we illustrate a
wavelet-based decomposition in Fig. 7 of the same example
signal as was considered in Fig. 6. We use the stationary
(un-decimated) wavelet transform [11] with the Haar wavelet
filter and the non-negative garrote threshold function [19] (same
as in [21]). As shown, the reconstruction of the signal from
the thresholded wavelet coefficients (excluding the low-pass
component) adheres to a baseline of zero, captures the transient
pulses, and is approximately noise-free. The reconstruction
of the signal from the low-pass (non-thresholded) wavelet
coefficients is a smooth noise-free signal. However, using
wavelet transforms, the step-changes (Type 2 transients) cannot
be easily isolated from the rest of the signal, because the step
discontinuities are represented by both high-frequency and
low-frequency wavelet coefficients. For example, the step-dis-
continuity at time index 40 appears as a bi-phasic pulse in the
wavelet-reconstructed signal, and the change in baseline value
induced by the step-discontinuity is absorbed into the low-pass
component. As a consequence, the wavelet-estimate of the
signal exhibits spurious ripples and cusps where the signal
has discontinuities. In addition, the low-pass component of the
wavelet decomposition less accurately recovers the low-pass
component of the data. In this example, the low-pass signal as
estimated by the wavelet method and TARA have RMSEs of
0.85 and 0.29, respectively; i.e., TARA recovers the low-pass
component more accurately.

D. TARA Example 2

This example illustrates TARA as applied to the NIRS time
series shown in Fig. 8, which comes from the same measure-
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Fig. 8. Artifact reduction with TARA using the arctangent penalty, as applied
to a NIRS time series.

ment that produced the data used shown in Fig. 3. The time
series was acquired using a pair of optodes on the back of a
subject’s head; as such, the data is susceptible to motion arti-
facts which can cause abrupt shifts of the baseline. A prominent
baseline shift can be seen at time index 470 in Fig. 8(a). Other
motion artifacts also are visible. This data was also used in [34].
To apply TARA for artifact suppression, we must specify the

filter , the three regularization parameters, and the penalty
functions. We used a second-order zero-phase Butterworth filter
with cycles/sample. The tuning procedure described
in Section II-D was used to set and with a pseudo-noise
standard deviation of . We manually tuned the shape
parameters to and . The arctangent penalty
was used, with non-convexity parameters set according to (37).
We ran TARA for 100 iterations with a run time of about 0.28
seconds.
The Type 1 and Type 2 artifact signals estimated by TARA,
and , shown in Fig. 8, are sparse and approximately piece-

wise constant, as intended. The estimated total artifact signal,
, which comprises additive step discontinuities and tran-

sient spikes, appears to accurately model the artifacts present in
the data. Note that the corrected time series, obtained by sub-
tracting the total estimated artifact signal from the original time
series, has both low-frequency and high-frequency spectral con-
tent. Compared with [34], in which LPF/TVD processing is ap-
plied to the same data, the artifacts appear to be more accurately
estimated here.

E. Wavelet-based Artifact Reduction

It has been found that wavelet methods compare favorably
to other methods for the correction of motion artifacts in

Fig. 9. Artifact estimation and correction using wavelets and TARA.

single-channel NIRS time series [9], [21], [24]. Fig. 9 com-
pares wavelet transient artifact reduction (WATAR) and TARA
as applied to the NIRS data from Fig. 8. As in [21], we use
the stationary (un-decimated) wavelet transform [11] with the
Haar wavelet filter and the non-negative garrote threshold
function [19]. We apply thresholding to all subbands except the
low-pass one. The wavelet-corrected time series does not have
the long-term drift that the TARA-corrected time series has;
however, that is easily removed by LTI filtering and its removal
is not an objective of TARA. Moreover, some biological infor-
mation may be present at low frequencies (see Section III-G).
It can be seen that both methods otherwise give generally

similar results, but the TARA-estimated artifact signal captures
abrupt changes in the data, unlike the wavelet-estimated arti-
fact signal. The artifact in the interval 1370–1420 is estimated
by TARA with distinct pre- and post-artifact baseline values;
whereas the wavelet-estimated artifact signal exhibits a small
change due to the slowly-varying low-pass component (coming
from the low-pass subband of the wavelet transform). In addi-
tion, TARA finds an abrupt change at time index 1530; while
the wavelet method exhibits only a small bi-phasic (zero-mean)
pulse at that instant. TARA is better able to estimate abrupt
step-changes than the wavelet method because it is explicitly
based on a two-component model. In NIRS time series analysis,
motion artifacts often cause step-changes, and this motivates the
accurate estimation thereof.
That TARA and wavelet methods give similar results can be

explained by their being based on similar underlying models.
The wavelet method implicitly models transient artifacts as
piecewise smooth. TARA is based on a similar model, but uses
an optimization approach instead of a fixed transform.

F. Multichannel Data

Physiological time-series data (e.g., NIRS, EEG) are often ac-
quired in multichannel form. If different regularization parame-
ters are to be required for each channel, then setting the parame-
ters will be a problematic issue. In this example, we apply TARA
to multichannel data (Fig. 10, black) and use the same shape pa-
rameters and filter for all channels. The psuedo-noise
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Fig. 10. TARA applied to multichannel data.

parameter should, however, be set channel-by-channel, be-
cause the channels are not equally normalized. For this illustra-
tion, we set for each channel based on the artifact-free seg-
ment of the data extending from 550 to 950 time frames (see
Fig. 10). The values were set by applying a high-pass filter to
each channel, and then computing the standard deviation of its
output in the artifact-free segment.
The artifacts and corrected data obtained using TARA are

shown in Fig. 10. For the purpose of display, to avoid cumu-
lative baseline drift, each corrected time series has been filtered
with a zero-phase second-order recursive dc-notch filter. TARA
effectively reduces transient artifacts in most channels, without
introducing substantial distortion. Some channels of the cor-
rected data exhibit slow waves around the removed transients;
these are consistent with the assumed signal model, wherein the
signal is modeled as comprising a low-pass signal. This example

suggests that with a fixed pair of shape parameter values
and filter , TARAmay be quite effective for multiple channels
and that, given an artifact-free segment (obtained here by visual
inspection), it may be possible to use TARA in a data-driven
automated manner.

G. Preservation of Hemodynamic Response

In the course of suppressing artifacts, biological information
of interest should not be distorted or attenuated. For NIRS
specifically, any hemodynamic response (HR) waveforms
present should be preserved. Equivalently, the artifact signals
should not be affected by HRs, because the HRs should not be
mistaken for artifacts. To test TARA in this regard, we add a
simulated HR to each channel of the considered multichannel
data. The data with the simulated HR is shown in gray in
Fig. 10. The artifact signals and corrected data, are likewise
shown in gray. The gray-colored artifact signals, obtained from
the HR-added data, are nearly indistinguishable from the orig-
inal artifact signals. Accordingly, TARA accurately preserves
the HR in the corrected data.
To compare TARA and WATAR (i.e., wavelets), we like-

wise apply WATAR to the same multichannel data, with and
without the added HR. The WATAR-estimated artifact signals
(Fig. 11) exhibit a noticeable portion of the HR in about half
the channels. Consequently, the HR is more attenuated and dis-
torted in theWATAR-corrected data than in the TARA-corrected
data. In quantitative terms, we measure the root-mean-square
deviation over the HR interval (700–880) between the HR and
non-HR artifact signals. The value is 0.18 for TARA and 0.53
for WATAR. By this measure, WATAR is affected by the HR
2.9 times more than TARA, and so TARA better preserves the
HR than WATAR. This is intended as an illustrative example; a
more thorough investigation such as in [15], [21], [31] is needed
before definitive statements can be made.

IV. CONCLUSION

For the purpose of identifying and isolating transient arti-
facts in time series, this work distinguishes two types of arti-
fact signals: one type that consists of infrequent transient pulses
and otherwise adheres to a baseline value of zero, and a second
type which consists of abrupt shifts of the baseline (i.e., addi-
tive step discontinuities). In this work, the observed time se-
ries is modeled as the sum of an artifact signal of each type, a
low-pass signal (e.g., a background trend), and a white Gaussian
stochastic process. To jointly estimate the components of the
signal model, we formulate an optimization problem and de-
velop a rapidly converging, computationally efficient iterative
algorithm, denoted TARA (for ‘transient artifact reduction algo-
rithm’). We also address the selection of the regularization and
non-convexity parameters. The effectiveness of the approach
is illustrated using both simulated and NIRS time-series data.
The presented approach is also useful for denoising piecewise
smooth signals (Figs. 1 and 6).
Some artifacts arising in biomedical time series, such as os-

cillatory transients, are not of the form considered here. In this
case, the approach of TARA should be modified to account for
the artifact characteristics, or othermethods should be used, e.g.,
[15], [21]. Additionally, if the available data is corrupted by high
amplitude oscillatory noise or interference, then the Gaussian



6610 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 24, DECEMBER 15, 2014

Fig. 11. Wavelet transient artifact reduction (WATAR) of multichannel data.

noise assumption is not satisfied, and the approach should be
modified accordingly.
To exploit TARA for two-dimensional (2-D) data, one issue

is that the sparse filter matrices ( and ) may not be exactly
banded, depending on how the 2-D case is formulated. In that
case, fast solvers for banded systems may not be so readily uti-
lized. Hence, the high-computational efficiency of TARAmight
not completely carry over to the 2-D case. As a result, an exten-
sion of TARA to the 2-D case remains of interest as future work.

ACKNOWLEDGMENT

The authors gratefully acknowledge Justin R. Estepp (Air
Force Research Laboratory, Wright-Patterson AFB, OH, USA)
and Sean M. Weston (Oak Ridge Institute for Science and Edu-
cation, TN, USA) for experimental NIRS data. The authors also
thank the reviewers for their constructive comments.

REFERENCES
[1] M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “An

augmented Lagrangian approach to linear inverse problems with
compound regularization,” in Proc. IEEE Int. Conf. Image Process.,
Sep. 2010, pp. 4169–4172.

[2] M. T. Akhtar, W. Mitsuhashi, and C. J. James, “Employing spatially
constrained ICA and wavelet denoising, for automatic removal of arti-
facts from multichannel EEG data,” Signal Process., vol. 92, no. 2, pp.
401–416, 2012.

[3] R. Al abdi, H. L. Graber, Y. Xu, and R. L. Barbour, “Optomechanical
imaging system for breast cancer detection,” J. Opt. Soc. Amer. A, vol.
28, no. 12, pp. 2473–2493, Dec. 2011.

[4] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski, “Optimization with
sparsity-inducing penalties,” Found. Trends Mach. Learn., vol. 4, no.
1, pp. 1–106, 2012.

[5] D. P. Bertsekas, Convex Optimization Theory. Belmont, MA, USA:
Athena Scientific, 2009.

[6] J.M. Bioucas-Dias andM.A. T. Figueiredo, “An iterative algorithm for
linear inverse problems with compound regularizers,” in Proc. IEEE
Int. Conf. Image Process., Oct. 2008, pp. 685–688.

[7] A. Blake and A. Zisserman, Visual Reconstruction. Cambridge, MA,
USA: MIT Press, 1987.

[8] L. M. Briceño-Arias and P. L. Combettes, “A split-
ting model for composite monotone inclusions in duality,” SIAM J.
Optim., vol. 21, no. 4, pp. 1230–1250, Oct. 2011.

[9] S. Brigadoi, L. Ceccherini, S. Cutini, F. Scarpa, P. Scatturin, J. Selb,
L. Gagnon, D. A. Boas, and R. J. Cooper, “Motion artifacts in func-
tional near-infrared spectroscopy: A comparison of motion correction
techniques applied to real cognitive data,” NeuroImage, vol. 85, pp.
181–191, 2014.

[10] A. Chambolle and T. Pock, “A first-order primal-dual algorithm for
convex problems with applications to imaging. J. math,” J. Math. Vis.,
vol. 40, no. 1, pp. 120–145, 2011.

[11] R. R. Coifman and D. L. Donoho, “Translation-invariant de-noising,”
in Wavelet and Statistics, A. Antoniadis and G. Oppenheim, Eds.
New York, NY, USA: Springer-Verlag, 1995, pp. 125–150.

[12] P. L. Combettes and J.-C. Pesquet, “Primal-dual splitting algorithm
for solving inclusions with mixtures of composite, Lipschitzian, and
parallel-sum type monotone operators,” Set-Valued Variation. Anal.,
vol. 20, no. 2, pp. 307–330, Jun. 2012.

[13] L. Condat, “A primal-dual splitting method for convex optimization
involving Lipschitzian, proximable and linear composite terms,” J.
Optim. Theory Appl., vol. 158, no. 2, pp. 460–479, 2013.

[14] J. Fan and R. Li, “Variable selection via nonconcave penalized like-
lihood and its oracle properties,” J. Amer. Statist. Assoc., vol. 96, no.
456, pp. 1348–1360, 2001.

[15] T. Fekete, D. Rubin, J. M. Carlson, and L. R. Mujica-Parodi, “The
NIRS analysis package: Noise reduction and statistical inference,”
PLoS ONE, vol. 6, no. 9, p. E24322, 2011.

[16] M. Figueiredo, J. Bioucas-Dias, and R. Nowak, “Majorization-mini-
mization algorithms for wavelet-based image restoration,” IEEE Trans.
Image Process., vol. 16, no. 12, pp. 2980–2991, Dec. 2007.

[17] J. Friedman, T. Hastie, H. Höfling, and R. Tibshirani, “Pathwise co-
ordinate optimization,” Ann. Appl. Statist., vol. 1, no. 2, pp. 302–332,
2007.

[18] J.-J. Fuchs, “Convergence of a sparse representations algorithm appli-
cable to real or complex data,” IEEE. J. Sel. Top. Signal Process., vol.
1, no. 4, pp. 598–605, Dec. 2007.

[19] H. Gao, “Wavelet shrinkage denoising using the nonnegative garrote,”
J. Comput. Graph. Statist., vol. 7, pp. 469–488, 1998.

[20] T. J. Huppert, S. G. Diamond, M. A. Franceschini, and D. A. Boas,
“HomER: a review of time-series analysis methods for near-infrared
spectroscopy of the brain,” Appl. Opt., vol. 48, no. 10, pp. D280–D298,
Apr. 2009.

[21] M. K. Islam, A. Rastegarnia, A. T. Nguyen, and Z. Yang, “Artifact
characterization and removal for in vivo neural recording,” J. Neurosci.
Methods, vol. 226, pp. 110–123, 2014.

[22] N. Mammone, F. L. Foresta, and F. C. Morabito, “Automatic artifact
rejection from multichannel scalp EEG by wavelet ICA,” IEEE J. Sen-
sors, vol. 12, no. 3, pp. 533–542, Mar. 2012.

[23] J. Mehnert, M. Brunetti, J. Steinbrink, M. Niedeggen, and C. Dohle,
“Effect of a mirror-like illusion on activation in the precuneus assessed
with functional near-infrared spectroscopy,” J. Biomed. Opt., vol. 18,
no. 066001, 2013.

[24] B. Molavi and G. A. Dumont, “Wavelet-based motion artifact removal
for functional near-infrared spectroscopy,” Physio. Meas., vol. 33, no.
2, p. 259, 2012.

[25] M. K. I. Molla, T. Tanaka, and T. M. Rutkowski, “Multivariate EMD
based approach to EOG artifacts separation from EEG,” in In Proc.
IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), Mar. 2012,
pp. 653–656.

[26] M. Nikolova, “Estimation of binary images by minimizing convex
criteria,” in Proc. IEEE Int. Conf. Image Process., 1998, vol. 2, pp.
108–112.

[27] M. Nikolova, M. K. Ng, and C.-P. Tam, “Fast nonconvex nonsmooth
minimization methods for image restoration and reconstruction,” IEEE
trans. Image Process., vol. 19, no. 12, pp. 3073–3088, Dec. 2010.

[28] J.-C. Pesquet and N. Pustelnik, “A parallel inertial proximal optimiza-
tion method,” Pacific J. Optim., vol. 8, no. 2, pp. 273–305, Apr. 2012.

[29] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes in C: The Art of Scientific Computing, 2nd ed.
Cambridge, U.K.: Cambridge Univ. Press, 1992.



SELESNICK et al.: TRANSIENT ARTIFACT REDUCTION ALGORITHM (TARA) BASED ON SPARSE OPTIMIZATION 6611

[30] H. Raguet, J. Fadili, and G. Peyré, “A generalized forward-backward
splitting,” SIAM J. Imag. Sci., vol. 6, no. 3, pp. 1199–1226, 2013.

[31] F. C. Robertson, T. S. Douglas, and E. M. Meintjes, “Motion artifact
removal for functional near infrared spectroscopy: A comparison of
methods,” IEEE Trans. Biomed. Eng., vol. 57, no. 6, pp. 1377–1387,
Jun. 2010.

[32] H. Sato, N. Tanaka, M. Uchida, Y. Hirabayashi, M. Kanai, T. Ashida, I.
Konishi, and A. Maki, “Wavelet analysis for detecting body-movement
artifacts in optical topography signals,” NeuroImage, vol. 33, no. 2, pp.
580–587, 2006.

[33] I. W. Selesnick and I. Bayram, “Sparse signal estimation by maximally
sparse convex optimization,” IEEE Trans. Signal Process., vol. 62, no.
5, pp. 1078–1092, Mar. 2014.

[34] I. W. Selesnick, H. L. Graber, D. S. Pfeil, and R. L. Barbour, “Simul-
taneous low-pass filtering and total variation denoising,” IEEE Trans.
Signal Process., vol. 62, no. 5, pp. 1109–1124, Mar. 2014.

[35] J.-L. Starck, M. Elad, and D. Donoho, “Redundant multiscale trans-
forms and their application for morphological component analysis,”
Adv. Imag. Electron Phys., vol. 132, pp. 287–348, 2004.

[36] J.-L. Starck, F. Murtagh, and J. M. Fadili, Sparse Image and Signal
Processing: Wavelets, Curvelets, Morphological Diversity. Cam-
bridge, U.K.: Cambridge Univ. Press, 2010.

[37] K. T. Sweeney, S. F. McLoone, and T. E. Ward, “The use of ensemble
empirical mode decomposition with canonical correlation analysis as a
novel artifact removal technique,” IEEE Trans. Biomed. Eng., vol. 60,
no. 1, pp. 97–105, Jan. 2013.

[38] H. Zeng, A. Song, R. Yan, and H. Qin, “EOG artifact correction from
EEG recording using stationary subspace analysis and empirical mode
decomposition,” Sensors, vol. 13, no. 11, pp. 14839–14859, 2013.

Ivan W. Selesnick (S’91–M’98–SM’08) received
the B.S., M.E.E., and Ph.D. degrees in Electrical
Engineering in 1990, 1991, and 1996 from Rice
University, Houston, TX. In 1997, he was a visiting
professor at the University of Erlangen-Nurnberg,
Germany. He then joined the Department of Elec-
trical and Computer Engineering, NYU Polytechnic
School of Engineering, New York (then Polytechnic
University), where he is associate Professor.
His current research interests are in the area of

digital signal and image processing, wavelet-based
signal processing, sparsity techniques, and biomedical signal processing. He
has been an associate editor for the IEEE Transactions. ON IMAGE PROCESSING,
the IEEE SIGNAL PROCESSING LETTERS, and the IEEE TRANSACTIONS ON
SIGNAL PROCESSING.

Harry L. Graber (M’95) received the A.B. degree
in chemistry from Washington University, St. Louis,
MO, in 1983, and the Ph.D. degree in physiology
and biophysics from SUNY Downstate Medical
Center, Brooklyn, NY, in 1998. He subsequently
became a Research Associate (1998–2001) and
then a Research Assistant Professor (2001–2014) at
SUNY Downstate Medical Center. Since 2001 he
also has been the Senior Applications Specialist for
NIRx Medical Technologies.
His research interests include diffuse optical

imaging algorithms, and application of feature-extraction and time-series
analysis methods for interpretation of biological signals.

YinDing received the B.S. degree fromNanjing Uni-
versity of Posts and Telecommunications, China in
2008, and the M.S. degree in Electrical Engineering
fromNewYork University Polytechnic School of En-
gineering, NY, in 2011. From 2011 to 2012 he was
a research engineer at Li Creative Technologies Inc.,
NJ. He is currently pursuing the Ph.D. degree in Elec-
trical Engineering at the NYU Polytechnic School of
Engineering.
His research interests include digital signal and

image processing, biomedical signal processing,
audio signal processing, and biometrics. His recent research is on the develop-
ment of sparse signal processing algorithms for biomedical signal analysis.

Tong Zhang received the B.E. degree from Beihang
University, Beijing, China in 2011, and the M.S.
degree in Electrical Engineering from the New York
University Polytechnic School of Engineering in
2014. His research interests include digital signal and
image processing, machine learning, and computer
vision. He is a member of Eta Kappa Nu.

Randall L. Barbour received the Ph.D. degree in
biochemistry from Syracuse University, Syracuse,
NY, in 1981. This was followed by a postdoctoral
fellowship in Laboratory Medicine at SUNY at
Buffalo.
He is currently Professor of Pathology at SUNY

Downstate Medical Center, and Research Professor
of Electrical Engineering at Polytechnic University,
Brooklyn, NY. He is an originator of the field of dif-
fuse optical tomography and is co-founder of NIRx
Medical Technologies, LLC. He has an extensive

background in a broad range of medical and scientific and technical fields.


