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Abstract—This paper seeks to combine linear time-invariant
(LTI) filtering and sparsity-based denoising in a principled way
in order to effectively filter (denoise) a wider class of signals.
LTI filtering is most suitable for signals restricted to a known
frequency band, while sparsity-based denoising is suitable for
signals admitting a sparse representation with respect to a known
transform. However, some signals cannot be accurately catego-
rized as either band-limited or sparse. This paper addresses the
problem of filtering noisy data for the particular case where the
underlying signal comprises a low-frequency component and a
sparse or sparse-derivative component. A convex optimization
approach is presented and two algorithms derived: one based
on majorization-minimization (MM), and the other based on the
alternating direction method of multipliers (ADMM). It is shown
that a particular choice of discrete-time filter, namely zero-phase
noncausal recursive filters for finite-length data formulated in
terms of banded matrices, makes the algorithms effective and
computationally efficient. The efficiency stems from the use of
fast algorithms for solving banded systems of linear equations.
The method is illustrated using data from a physiological-mea-
surement technique (i.e., near infrared spectroscopic time series
imaging) that in many cases yields data that is well-approximated
as the sum of low-frequency, sparse or sparse-derivative, and
noise components.

Index Terms—Total variation denoising, sparse signal, sparsity,
low-pass filter, Butterworth filter, zero-phase filter.

I. INTRODUCTION

L INEAR TIME-INVARIANT (LTI) filters are widely used
in science, engineering, and general time series analysis.

The properties of LTI filters are well understood, and many ef-
fective methods exist for their design and efficient implementa-
tion [62]. Roughly, LTI filters are most suitable when the signal
of interest is (approximately) restricted to a known frequency
band. At the same time, the effectiveness of an alternate ap-
proach to signal filtering, based on sparsity, has been increas-
ingly recognized [22], [34], [60], [74]. Over the past 10–15
years, the development of algorithms and theory for sparsity-
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based signal processing has been an active research area, and
many algorithms for sparsity-based denoising (and reconstruc-
tion, etc.) have been developed [67], [73]. These are most suit-
able when the signal of interest either is itself sparse or admits
a sparse representation.
However, the signals arising in some applications are more

complex: they are neither isolated to a specific frequency band
nor do they admit a highly sparse representation. For such sig-
nals, neither LTI filtering nor sparsity-based denoising is appro-
priate by itself. Can conventional LTI filtering and more recent
sparsity-based denoising methods be combined in a principled
way, to effectively filter (denoise) a wider class of signals than
either approach can alone?
This paper addresses the problem of filtering noisy data where

the underlying signal comprises a low-frequency component
and a sparse or sparse-derivative component. It is assumed here
that the noisy data can be modeled as

(1)

where is a low-pass signal, is a sparse and/or sparse-deriva-
tive signal, and is stationary white Gaussian noise. For noisy
data such as in (1), neither conventional low-pass filtering nor
sparsity-based denoising is suitable. Further, (1) is a goodmodel
for many types of signals that arise in practice, for example, in
nano-particle biosensing (e.g., Fig. 3(a) in [30]) and near in-
frared spectroscopic (NIRS) imaging (e.g., Fig. 9 in [3]).
Note that if the low-pass signal were observed in noise

alone , then low-pass filtering (LPF) would pro-
vide a good estimate of ; i.e., . On the other
hand, if were a sparse-derivative signal observed in noise
alone , then total variation denoising (TVD) would
provide a good estimate of ; i.e., [68]. Given
noisy data of the form , we seek a simple opti-
mization-based approach that enables the estimation of and
individually.
In this paper, an optimization approach is presented that en-

ables the simultaneous use of low-pass filtering and sparsity-
based denoising to estimate a low-pass signal and a sparse signal
from a single noisy additive mixture, cf. (1). The optimization
problem we formulate involves the minimization of a non-dif-
ferentiable, strictly convex cost function. We present two itera-
tive algorithms.1 The first algorithm models in (1) as having
a sparse derivative and is derived using the majorization-min-
imization (MM) principle. The second algorithm models in
(1) as having a sparse derivative, or being sparse itself, or both.
This algorithm is derived using the alternating direction method
of multipliers (ADMM). The second algorithm is more general

1Software is available at http://eeweb.poly.edu/iselesni/lpftvd/
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and can be used in place of the first. However, as will be illus-
trated below (Section VII-C), in cases where the first algorithm
is applicable, it is preferable to the second one, because it con-
verges faster and does not require a step-size parameter as the
second algorithm does.
In addition, this paper explains how a suitable choice of

discrete-time filter makes the proposed approach effective and
computationally efficient. Namely, we describe the design and
implementation of a zero-phase non-causal recursive filter for
finite-length data, formulated in terms of banded matrices.
We choose recursive filters for their computational efficiency
in comparison with non-recursive filters, and the zero-phase
property to eliminate phase distortion (phase/time offset is-
sues). As the algorithms are intended primarily for batch-mode
processing, the filters need not be causal. We cast the recursive
discrete-time filter in terms of a matrix formulation so as
to easily and accurately incorporate it into the optimization
framework and because it facilitates the implementation of
the filter on finite-length data. Furthermore, the formulation
is such that all matrix operations in the devised algorithms
involve only banded matrices, thereby exploiting the high
computational efficiency of solvers for banded linear systems
([65], Section 2.4) and of sparse matrix multiplication.
The computational efficiency of the proposed algorithms also

draws on recent developments in sparse-derivative signal de-
noising (i.e., total variation (TV) denoising [10], [19], [68]). In
particular, we note that the exact solution to the 1D TV de-
noising problem can be calculated by fast constructive algo-
rithms [27], [49]. The algorithms presented here draw on this
and the ‘fused lasso signal approximator’ [40].
After Section II on preliminaries, Section III presents the for-

mulation of the optimization problem for simultaneous low-pass
filtering and sparse-signal denoising. Section IV derives an iter-
ative algorithm for solving the optimization problem. Section V
addresses the case where both the signal itself and its derivative
are sparse. Section VI presents recursive discrete-time filters to
be used in the algorithms. Section VII illustrates the proposed
algorithms on data, including NIRS times series.

A. Related Work

The problem addressed in this paper is closely related to the
problem addressed in [70], [71]; however, the new approach de-
scribed here has several advantages over the method described
there. While [71] uses least squares polynomial approximation
on overlapping blocks for signal smoothing, the new approach
uses LTI filtering. As a consequence, the new approach results in
a time-invariant signal processing algorithm, in contrast to the
approach of [71]. In addition, compared with [71], the new ap-
proach employs a more general sparse-derivative model that in-
corporates the sparsity of both the signal and its derivative. This
is useful in practice for separating transient waveforms/pulses
from a low-frequency background signal. Also, unlike [71], one
of the new algorithms is devised so that sparse-derivative de-
noising is an explicit step, which means that new fast methods
for TV denoising (e.g. [27]) can be readily incorporated.
The approach taken in this paper is also related to that of [44],

in which Tikhonov (quadratic) and total variation regulariza-
tions are simultaneously used for the denoising and reconstruc-
tion of piecewise-smooth signals. Reference [44] also addresses
general linear inverse problems, and involves both 1D signals

and images. The work described in this paper can be differenti-
ated from that of [44] by noting that this work: (1) utilizes LTI
filtering, which provides a more convenient way to specify the
frequency response of the smoothing operator, in comparison
with Tikhonov regularization, (2) utilizes compound regulariza-
tion (see Section II-C), and (3) explicitly exploits fast algorithms
for banded systems.
Many papers have addressed the problem of filtering/de-

noising piecewise smooth signals, a class of signals that includes
the signals taken up in this paper, i.e., in (1). However, as noted
in [71], much of the work on this topic explicitly or implicitly
models the underlying signal of interest as being composed
of smooth segments separated by discontinuities (or blurred
discontinuities) [16], [33], [57]. This is particularly appropriate
in image processing wherein distinct smooth regions correspond
to distinct objects and discontinuities correspond to the edges
of objects (e.g. one object occluding another) [43]. Under this
model, smoothing across discontinuities should be avoided, to
prevent blurring of edges. The signal model (1) taken up in this
paper differs in an important way: it models the smooth behavior
on the two sides of a discontinuity as being due to a common
low-pass signal, i.e., in (1). In contrast to most methods de-
veloped for processing piecewise smooth signals, the proposed
method seeks to exploit the common smooth behavior on both
sides of a discontinuity, as in [44], [70], [71].
The problem addressed in this paper is a type of sparsity-

based denoising problem, and, as such, it is related to the general
problem of sparse signal estimation. Many papers, especially
over the last fifteen years, have addressed the problem of fil-
tering/denoising signals, both 1D and multidimensional, using
sparse representations via suitably chosen transforms (wavelet,
etc.) [29], [53], [64]. The method described here has some sim-
ilarities to sparse transform-domain filtering [60]. For example,
in wavelet-domain thresholding, the low-pass wavelet subband
is often left intact (no thresholding is applied to it). In this case, a
large threshold value leads to a denoised signal that is essentially
a low-pass filtered version of the noisy data. When the threshold
is small, the result of wavelet-domain thresholding is essentially
the noisy data itself. Likewise, the proposed algorithms involve
a regularization parameter . When is set to a large value,
the algorithms essentially perform low-pass filtering; when is
small, the algorithms leave the data essentially unchanged.
More generally, as wavelet and related multiscale transforms

[17], [55] include a low-pass subband, which can be regularized
separately from other subbands, wavelet-domain processing
provides the opportunity to combine low-pass filtering and
sparsity-based processing in a single framework. However,
the proposed approach differs from many wavelet-based ap-
proaches in several aspects. For one, it completely decouples
the low-pass filter from the sparse-signal description, while in
wavelet-domain denoising the low-pass subband/filter is de-
termined by the specific wavelet transform utilized. Hence, in
the proposed approach, the design of the low-pass filter can be
based on the properties of the low-pass component in the signal
model ( in (1)). Moreover, the proposed method, not being
based on transform-domain sparsity, avoids the complications
associated with selecting and implementing a suitable wavelet
(or other) transform (choice of transform, choice of wavelet
filters, boundary extensions, radix-2 length constraints, etc.). In
addition, as the proposed approach is based on TV denoising,
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it avoids the ‘pseudo-Gibbs’ phenomenon that is present to
varying degree in many wavelet-based methods [23].
The concept, employed in this work, of modeling a signal as

the sum of two distinct components, has a history in image pro-
cessing [5], [15], [75]. In particular, the problem of expressing
an image as a sum of texture and geometry components has been
effectively addressed by sparse representation techniques [6],
[72]. These techniques are also useful in 1D signal processing
[31], [69]. Following these works, the approach used in this
paper utilizes the technique of sparsity-based signal separation;
however, in this paper sparsity is used to model only one of the
two signal components.
A cornerstone of sparsity-based signal processing is the avail-

ability of optimization algorithms that are simultaneously: ro-
bust, computationally efficient, and suitable for a broad class
of non-smooth convex problems. An important class of such
algorithms is based on proximity operators [25]. Recent algo-
rithmic developments in non-smooth convex optimizationmake
feasible the solution of a wide class of non-smooth problems
[14], [20], [26], [28], [63], [66], [76]. These algorithms are es-
pecially suitable for minimizing the sum of several non-smooth
functions, which is particularly relevant to this work.

B. Near Infrared Spectroscopy (NIRS)

The proposed algorithms are illustrated on experimental
data obtained from a NIRS time-series measurement system
[9], which, as indicated above, frequently produces data that
are well approximated by the model in (1). The NIRS physio-
logical modality uses light at two or more wavelengths in the

nm range to monitor spatiotemporal fluctuations
in tissue blood volume and blood oxygen saturation (we refer
to these collectively as the ‘hemodynamic variables’) [8]. For
a number of reasons, it is prone to producing time-series data
that are well described by the model (1):
1) Not uncommonly, there are long-term drifts in hemody-
namic variables within the probed tissue volume (e.g., re-
sulting from blood-pressure fluctuations) during the course
of the measurement. These produce a low-frequency com-
ponent in the data.

2) Additionally, the hemodynamic signal arises primarily
from small blood vessels (arterioles, capillaries, venules)
that tend to exhibit low-frequency oscillations called
vasomotion [61].

3) Many NIRS measurement paradigms involve the intermit-
tent presentation of stimuli to, or performance of tasks by,
the human or animal subject [51]. These are intended to
produce shifts in the magnitude of the hemodynamic vari-
ables approximately concurrent with the challenges, fol-
lowed by a return to the previous level. That is, the signal
is both sparse (i.e., resides at the baseline level most of
the time) and has a sparse derivative (i.e., departs from the
baseline a small number of times during the course of the
measurement).

4) However, not all measurements are intervention-based.
Resting-state monitoring also can be biologically infor-
mative and is commonly performed [77].

5) Unplanned events (e.g., postural shift, or subject sneezes)
can introduce unwanted signal components that are sparse
or have a sparse derivative.

The preceding considerations indicate that, depending on the
experimental-design context, either the low-frequency or the
sparse component may be the biological signal of interest.

II. PRELIMINARIES

A. Notation

Vectors and matrices are represented by lower- and upper-
case bold respectively (e.g., and ). Finite-length discrete-
time signals will be represented as lower-case italicized or bold.
The -point signal is represented by the vector

where denotes the transpose. Matrix is defined as

. . .
. . .

(2)

The first-order difference of an -point signal is given by
where is of size .
The notation , defined as , denotes

the norm of the vector . The notation , defined as
, denotes the norm of the vector

.
The soft-threshold function [32] is defined as

for and . This is the usual soft-threshold function
on the real line, generalized here to the complex plane. For a
vector or signal , the notation refers to the
soft-threshold function applied element-wise to .

B. Total Variation Denoising

Sparse-derivative signal denoising refers to the problem of
estimating a signal , having a sparse or approximately sparse
derivative, from a noisy observation, e.g. . As is well
known, the norm is a convex proxy for sparsity, so it is prac-
tical to formulate sparse-derivative denoising as the problem of
minimizing the norm of the derivative of subject to a data
fidelity constraint. For discrete-time data, the simplest approxi-
mation of the derivative is the first-order difference; hence, con-
sider the minimization of . Assuming the -point signal
is observed in additive white Gaussian noise with variance
, a suitable data fidelity constraint is . This

leads to the constrained optimization problem

(3a)

(3b)

Problem (3) is equivalent, for suitable , to the unconstrained
optimization problem

(4)

i.e.,
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Problems (3) and (4) are two forms of the total variation de-
noising (TVD) problem [21]. The unconstrained form (4) is
more commonly used than the constrained form (3).
We will denote the solution to problem (4) as ,

(5)

There is no explicit solution to (4), but a fast algorithm to com-
pute the exact solution has been developed [27] (with a C im-
plementation).
Increasing the parameter has the effect of making the solu-

tion more nearly piecewise constant. Instead of the first-order
difference, other approximations of derivatives can be used for
sparse-derivative denoising. The notion of total variation has
been further generalized in several ways to make it effective for
a broader class of signals [13], [52], [56], [59].

C. Fused Lasso Signal Approximator

If both the signal and its derivative are sparse, then the
denoising problem is more appropriately formulated as

(6)

This is a special case of a compound penalty function [1], [11],
wherein two or more regularizers are used to promote distinct
properties of the signal to be recovered.
The specific problem (6) is referred to as the ‘fused lasso

signal approximator’ in [40]. Interestingly, Proposition 1 in [40]
shows that problem (6) is equivalent to (4) in the sense that the
solution to (6) can be obtained explicitly from the solution to
(4). Specifically, the solution to (6) is given by

(7)

Hence, it is not necessary to have a separate algorithm for (6);
it suffices to have an algorithm for the TVD problem (5).

D. Majorization-Minimization

TheMM procedure replaces a difficult minimization problem
with a sequence of simpler ones [38]. To minimize a function

, the MM procedure produces a sequence according to

(8)

where is the iteration index, . The function is any
convex majorizer of (i.e., ) that coin-
cides with at (i.e., ). With initial-
ization , the update (8) produces a sequence converging
to the minimizer of . For more details, see [38] and refer-
ences therein.
Below, a majorizer for the norm will be used. To that end,

note that

(9)

with equality when . Therefore, the left-hand-side of
(9) is a majorizer of and we will use it as in the
MM procedure. Equation (9) is a direct consequence of

for .

III. PROBLEM FORMULATION

Consider the problem of observing a noisy additive mixture
of a low-pass signal and a sparse-derivative signal ,

(10)

where it is assumed that is stationary white Gaussian noise
with variance . We seek estimates

(11)

Given an estimate of , we will estimate as

(12)

where is a specified low-pass filter. Therefore, the problem
is to find .
Using (12) in (11), we should choose so that

(13)

Using (10) in (13) gives

(14)

Using (11) in (14) gives

(15)

or

(16)

Note that the left-hand side of (16) constitutes a high-pass filter
of . (This assumes that the frequency response of the low-
pass filter is zero-phase or at least approximately zero-phase.)
Defining , we write (16) as

(17)

The expression (16) contains the data , the estimate that we
seek to determine, and the noise signal , but not the unknown
signal or ; hence, it can be used to derive an estimate .
Using bold-face to represent the high-pass filter matrix, we
have .
Hence, should be chosen so that resembles a

white Gaussian random vector with variance . At the same
time, should have a sparse derivative; i.e., the norm of
should be small. Therefore, the estimation of can be formu-
lated as the constrained optimization problem

(18a)

(18b)

For suitable , an equivalent formulation is the unconstrained
optimization problem:

(19)
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We refer to (18) and (19) as the LPF/TVD problem, the
unconstrained form being computationally easier to solve.
In Section IV, we derive an algorithm for solving (19), and
consider the selection of a suitable .
We will set the high-pass filter to be of the form

(20)

where and are banded matrices. The design of the filter
is presented in Section VI, where it will be seen that the

mathematical form of (20) flows naturally from the standard
difference-equation formulation of LTI filtering. Note that while
is banded, is not, and hence neither is .
The low-pass filter to estimate in (12) will be given by

with filter matrix .

IV. LPF/TVD ALGORITHM

Large-scale non-differentiable convex optimizations arise in
many signal/image processing tasks (sparsity-based denoising,
deconvolution, compressed sensing, etc.). Consequently, nu-
merous effective algorithms have been developed for such
problems, particularly for those of the form (19) [24], [35],
[46]. In this section we apply the ‘majorization-minimization’
(MM) approach [38] to develop an algorithm for solving (19).
Note that the solution to (19) is unique only up to an additive

constant. To make the solution unique, and to facilitate the sub-
sequent use of MM, the following change of variables can be
used. Let

(21)

where is a matrix of the form

...
. . .

(22)

of size . It represents a cumulative sum. Note that

(23)

i.e., is a discrete anti-derivative. Therefore,

(24)

We also note that for the filters to be introduced in Section VI,
the matrix can be expressed as

(25)

where is banded matrix. This factorization is used in the
algorithm derivation below. The fact that is banded is also
important for the computational efficiency of the algorithm.

With (21), problem (19) can be written as

(26)

With the optimal solution , the solution to (19) is obtained as
. To minimize (26) using MM, we need a majorizer

of the cost function in (26). Using (9), a majorizer
of is given by

where is the diagonal matrix,

Using (20), (23) and (25),

and the majorizer can be written as

where does not depend on . The MM update is given by

(27)

which has the explicit form

A numerical problem is that as the iterations progress, many
values of are expected to go to zero (due the sparsity
promoting properties of the norm), and therefore some
entries of will go to infinity. This issue is addressed, as
described in [39], by rewriting the equation using the matrix
inverse lemma:

(28)

The indicated matrix is banded because , and are all
banded. Using (28), the MM update (27) can be implemented
as:

The update can be implemented using fast solvers for banded
systems of linear equations [14], [47] ([65], Section 2.4). Fur-
thermore, as all matrices are banded, matrix-vector multiplica-
tions are also computationally efficient.
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The update equations constitute an algorithm, Algorithm 1,
solving the LPF/TVD problem (19). Once is computed, the
low-pass component, , is obtained by applying the low-pass
filter to , cf. (12).

Algorithm 1: For the LPF/TVD problem (19)

Input:

Output:

1:
2:
3: repeat
4:
5:
6:
7: until convergence
8:
9:
10: return

The change of variables is important above, because
otherwise the MM approach leads here to a dense system of
equations. The efficiency of the algorithm relies on the system
being banded. Each iteration has computational cost,
where is the order of the filter . Our implementation is pro-
grammed in MATLAB which in turn uses LAPACK for solving
banded systems [4], [45].
Optimality Conditions: The optimality conditions character-

izing the minimizer of (19) can be adapted from [41] and Prop
1.3 of [7]. Define

(29)

Then minimizes (19) if and only if

(30)

Using (30), one can readily verify the optimality of a result pro-
duced by a numerical algorithm.
Setting : The optimality condition (30) can be used as a

guideline to set the regularization parameter . We follow an
approach like that described in Section 4.1 of [42]. Note that if
consists of noise only (i.e., ), then (ideally) will be

identically zero. From (29), and are given in this case by
and . This is optimal, according to (30),

if . Choosing the minimal ,
in order to avoid unnecessary attenuation/distortion of , we get
the value

(31)

which assumes availability of the noise signal . Start- and
end-transients should be omitted when using (31). In practice,
the noise is not known, but its statistics may be known and an
approximate maximum value precomputed. For example, if the
noise is zero-mean white Gaussian with variance , then we
may compute the standard deviation of and use the
‘three-sigma’ rule (or similar) in place of the maximum value,
to obtain the guideline .

Note that this approach for setting uses no informa-
tion regarding the signal or its statistics. Therefore, as a
non-Bayesian procedure, it will not give a value for that is
optimal in the mean-square sense. However, it can be useful in
practice and can be used as a reasonable starting point for other
schemes for optimizing regularization parameters.

V. COMPOUND SPARSE DENOISING

In this section, the signal is modeled as being sparse itself
and having a sparse derivative. As in Section III, we will esti-
mate the low-pass component by applying a low-pass filter to

. In order to estimate , instead of solving (19), we solve

(32)

which promotes sparsity of both and its first-order difference.
The high-pass filter is the same as used above, as
it reflects the behavior of the low-pass component . We refer
to (32) as the LPF/CSD problem (‘CSD’ for compound sparse
denoising).
The use of two regularizers as in (32) is referred to as com-

pound regularization. Algorithms for compound regularization
are given in [1], [11], which consider as an example, the restora-
tion of images that are both sparse and have sparse gradients. Al-
gorithms for more general and challenging forms of compound
regularization, in which possibly all terms are non-smooth, have
also been developed [6], [26], [28], [63]. The particular com-
pound regularization in (32) was also addressed in [40], as noted
in Section II-C. In the following, we use Proposition 1 of [40],
i.e., (7).
If the MM process were used, as in Section IV, to develop an

algorithm for solving (32), then each iteration of the resulting
algorithm would require solving a dense (not-banded) system
of linear equations, where is the length of the signal .
This significantly increases the computational cost (by factor
). Therefore, in this section we apply the ‘alternating direction

method of multipliers’ (ADMM) [2], [12]. ADMM is closely
related to the split-Bregman algorithm and its variations [46],
[78]. It can also be viewed as the Douglas-Rachford algorithm
applied to the dual problem [25], [66].
As in [2], we apply ‘variable splitting’ to decouple the terms

of the cost function. In this case, problem (32) can be rewritten
as the constrained problem:

(33a)

(33b)

Applying ADMM to (33) yields the iterative algorithm:

(34a)

(34b)

(34c)

(34a) (34d)

The iterative algorithm (34) alternates between minimization
with respect to in (34a) and in (34b).



SELESNICK et al.: SIMULTANEOUS LOW-PASS FILTERING AND TOTAL VARIATION DENOISING 1115

The algorithm (34) requires that the parameter be spec-
ified; the value of does not affect the solution to which the
algorithm converges, but it does affect the overall convergence
behavior. The convergence may be slow for a poor value of
(see LPF/CSD Example 1, below). The variables and also
must be initialized prior to the loop; however, as the cost func-
tion is convex, the algorithm converges to the unique minimizer
regardless of the initialization [12]. We initialize both and
to all-zero vectors the same size as . The loop is repeated until
some stopping criterion is satisfied.
The solution to (34a) can be expressed as

(35)

From (20), we write

(36)

Using the matrix inverse lemma, we obtain

(37)

Using (36) and (37) in (35), line (34a) is implemented as

(38a)

(38b)

Note that the first term on the right-hand side of (38a) needs to
be computed only once, because is not updated in the loop
(34); so it can be precomputed prior to the iteration.
Using (7), the solution to problem (34b) can be written as

With these simplifications, the ADMM algorithm (34) for
LPF/CSD can be readily implemented. As in Section IV, all
matrix operations involve only banded matrices and can there-
fore be implemented with high computational efficiency. The
complete algorithm is listed as Algorithm 2.

Algorithm 2: For the LPF/CSD problem (32)

Input:

Output:

1:
2:
3:
4: repeat
5:
6:
7:
8:
9: until convergence
10:
11: return

We note that more powerful optimization algorithms (e.g.,
[14], [20], [26], [28], [63]) can be used to solve not just (32) but

also extensions thereof; for example, problems that involve ad-
ditional regularization terms and less friendly (i.e., non-banded)
linear operators. Such algorithms are useful in dealing with
more complex signal models, including constraints on signal
values, and non-Gaussian noise. In this work, however, we em-
phasize the use of banded operators and the fused lasso signal
approximator to devise an algorithm with high computational
efficiency. We also strive to minimize the number of algorithm
parameters beyond those appearing in the cost function (the
LPF/CSD algorithm derived here has one such parameter, ).
Algorithms aimed for more general problems often have more
such parameters.

VI. LTI FILTERS AND SPARSE MATRICES

This section addresses the design and implementation of dis-
crete-time filters for the method described in Sections III–V. In
particular, we describe the design and implementation of zero-
phase non-causal recursive high-pass filters in terms of banded
matrices.
A discrete-time filter is described by the difference equation

(39)

where and are the input and output signals re-
spectively. The frequency response of the discrete-time filter
is where and are the
Z-transforms of and , respectively.
We are interested in filtering finite-length signals specifically,

because sparsity-based signal processing problems are gener-
ally formulated in terms of finite-length signals, and the devel-
oped algorithms are targeted for the finite-length case. In partic-
ular, this is the case for TV denoising. To implement the differ-
ence (39) for finite-length signals, we write

where and are banded matrices. The output of the filter
can be written as

(40)

which calls for the solution to a banded system. Note that for
(40) to be meaningful, need not be invertible, but must be.
Hence, need not be square, but must be.
Typically, there are both start- and end-transients when a dis-

crete-time filter is applied to a finite-length signal. The start-
transients depend on the initial states of the filter which, if not
specified, are usually taken to be zero or optimized so as to
minimize transients [50]. In the approach given here, based on

with banded matrices, the explicit specification of
initial states is avoided.
Example: Consider a causal first-order Butterworth

high-pass filter. The difference equation has the form

(41)

which can be written and implemented as . The
matrix is given by , the first-order difference matrix
of size defined in (2), where is the length of the
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input signal . In this case . The matrix is given
by

. . .
. . . (42)

and is of size .
Using , the filter can be applied to a length-

signal . Note that the output is of length . Due to
being banded, the filter can be implemented using a fast solver
for banded linear systems.

A. Zero-Phase Filters

In order to avoid unnecessary distortion, the filter should be
zero-phase; besides, expression (16) in the derivation of the
problem formulation assumes the zero-phase property. The
zero-phase condition is met if the frequency response
is real-valued, or, equivalently, the temporal impulse response
is symmetric.
The zero-phase property also implies specific properties of

matrices and . Note that for a finite-length signal , the tem-
poral symmetry property suggests that the filter should behave
the same ‘backwards’ as it does ‘forwards.’ That is, applying
the filter to the reversed version of , then reversing the filter
output, should be the same as applying the filter directly to the
data . Letting denote the reversal matrix (square matrix with
1’s on the anti-diagonal), the filter should satisfy

(43)

where the dimension of is determined by the dimensions of
(recall that is rectangular). If and satisfy

(44)

then satisfies (43).
For the proposed LPF/TVD algorithm, the filter matrices

should satisfy (44). Note that (42) does not. The following
examples illustrate recursive zero-phase filters satisfying (44).
Example: A zero-phase non-causal second-order high-pass

Butterworth filter is described by the difference equation

(45)

which can be defined and implemented as , where
has the form

(46)

and is of size , where is the length of the input
signal . For this example, .

Fig. 1. Non-causal second-order high-pass filter described by (46) and (47)
with cut-off frequency .

Matrix has the form

(47)

and is of size . These and satisfy (44).
Note that the output signal is two samples shorter than the
input signal .
The transfer function of the filter (45) is given by

(48)

In order that the filter defined by be a low-pass
filter with a zero at the Nyquist frequency (i.e., ), the
gain of should be unity at the Nyquist frequency.
For the system (45), is found by setting and

and solving for to obtain .
Equivalently, can be obtained as . Hence, for the
high-pass filter (45) to have unity Nyquist gain, the coefficients
should satisfy . Then the frequency response is
given by

The coefficient may be set so that the frequency response has
a specified cut-off frequency . Defining as that frequency
where the frequency response is one half, , one
obtains

For example, setting the cut-off frequency to , gives
. This high-pass filter is illustrated in

Fig. 1. The poles are at and (a reciprocal
pair). This recursive filter is non-causal with a ‘symmetric’ time-
domain response (the time-domain response can not be exactly
symmetric due to boundary effects in finite-length filtering).
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We have referred to this recursive filter as a zero-phase filter.
That usually means that the filter has a symmetric impulse re-
sponse. In the context of finite-length signals, the response to
an impulse , i.e., an impulsed located at

, is not strictly symmetric because the response
is of finite length. However, this is always the case when per-
forming finite-length signal filtering, and it does not have a
practical impact except for signals that are short relative to the
decay-time of the filter.
The high-pass filter has a second-order zero at , so it

annihilates constant and ramp signals, or any linear combina-
tion of these; that is, the output of the filter is identically zero
whenever the input signal is of the form .
The preceding also is clear from inspection of the mathemat-
ical form of in (46). Therefore, the low-pass filter, defined by

, exactly preserves polynomial signals
of degree 1.

B. Higher-Order High-Pass Filter

Consider the transfer function

(49)

The filter has a -order zero at , so the frequency
response is zero at , as are its first deriva-
tives. Also, note that can also be written as

The numerator of the second term has a zero of order at
, so the frequency response has unity gain at
, and its first derivatives are zero there. That is,

the frequency response is maximally-flat at and at the
Nyquist frequency; hence, this is a zero-phase digital Butter-
worth filter.
The filter in (49) is defined by the positive integer

and by . The parameter can be set so that the frequency
response has a specified cut-off frequency . Setting the gain
at the cut-off frequency to one half, , gives the
equation

Solving for gives

The zero-phase high-pass Butterworth filter (49) can be imple-
mented as where
1) is a banded matrix of size .
2) is a square symmetric banded matrix of size

.
3) Both and have bandwidth ; that is, in addition to
the main diagonal, they have diagonals above and below
the main diagonal.

Note that this filter maps an input signal of length to an
output signal of length . When , we get the high-

Fig. 2. Non-causal fourth-order high-pass filter (49) with cut-off frequency
and .

Fig. 3. Non-causal fourth-order low-pass filter (50) with cut-off frequency
and .

pass filter (48) as a special case. In this case, and , given by
(46) and (47), are tridiagonal (a bandwidth of 3).
Example: Set and the cut-off frequency to .

The matrix is of size and has the form

. . .
. . .

with bandwidth 5. For this example, has non-zero elements
in each row. With , one obtains
. will be a banded symmetric square matrix

with bandwidth 5. The coefficients of are
, where lies on diagonal .

The resulting fourth-order zero-phase filter is shown in Fig. 2.
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C. Low-Pass Filter

The LPF/TVD algorithm provides an estimate, , of the
sparse-derivative component and calls for the high-pass filter

. The algorithm does not use a low-pass filter. But,
to obtain an estimate of the low-pass component, recall that
we need the low-pass filter denoted above as .
A low-pass filter of this form is trivially performed by sub-
tracting the high-pass filter output from its input. However,
note that for the high-pass filter described in Section VI-B,
the matrices and are rectangular. Consequently, the
output of the high-pass filter is shorter than its input by
samples ( at the beginning and at the end). Hence, to im-
plement the low-pass filter, the input signal should likewise
be truncated so that the subtraction involves vectors of equal
length. Consequently, the low-pass filter can be expressed as

where denotes
the symmetric truncation of by samples.
The low-pass filter matrix, , is therefore given by

where is the identity matrix with the first and last
rows removed. The matrix is of size . The

signal is obtained by deleting the first and last samples
from .
Based on the high-pass filter (49), the low-pass filter

has the transfer function

(50)

with a -order zero at . The filter matrix is given by
.

Example: From the high-pass filter shown in Fig. 2 with
, we obtain the low-pass filter illustrated in Fig. 3. The filter
can be implemented as . This filter passes
third-order signals (of the form )
with no change, except for truncation by two samples at start and
end.

VII. EXAMPLES

The following examples illustrate the use of the algorithms
derived in Sections IV and V for the LPF/TVD and LPF/CSD
problems, respectively.

A. LPF/TVD Example 1

To illustrate simultaneous low-pass filtering and total-vari-
ation denoising, we apply Algorithm 1 (Section IV) to the
noisy data shown in Fig. 4. This is the same data used in the
first example of [71], where smoothing was performed using a
(non-time-invariant) least-squares polynomial approximation.
The signal consists of a low-frequency sinusoid, two additive
step discontinuities, and additive white Gaussian noise. In order
to apply the new algorithm, we must specify a high-pass filter
and regularization parameter . We use the fourth-order

filter (49) with and cut-off frequency . The
parameter was set to 0.8 based on (31). The algorithm was
run for 30 iterations.
Fig. 4 shows the sparse-derivative component ob-

tained from the algorithm. The low-pass component
is obtained by low-pass filtering ; it is given by

. The total LPF/TVD
output, , shown in the fourth panel of Fig. 4, substantially

Fig. 4. LPF/TVD Example 1. Simultaneous low-pass filtering and total varia-
tion denoising. From the noisy data, the sparse-derivative and low-pass compo-
nents are obtained individually. Algorithm parameters:

.

Fig. 5. LPF/TVD Example 1. The scatter plot verifies that optimality condition
(30) is satisfied.

smooths the data while preserving the discontinuities, without
introducing Gibbs-like phenomena.
The optimality condition (30) is illustrated in Fig. 5 as a

scatter plot. Each point represents a pair , where
and denote the -th time samples of signals and .

Note that (30) means that if each pair lies on the graph of
the step function indicated as a dashed line in Fig. 5, then the
computed does minimize the objective function in (19). It is
seen that most of the points lie on the line , which reflects
the sparsity of .
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As noted in the Introduction, the earlier work in [71] (specif-
ically, the LoPATV algorithm) can also be used to perform the
type of processing achieved by the new algorithm. Accordingly,
the result shown in Fig. 4 is comparable to the result in [71],
which compared favorably to several other methods, as shown
therein. However, while the method of [71] calls for the poly-
nomial degree, block length, and overlapping-factor to be spec-
ified, the new method calls for the low-pass filter characteristics
to be specified (filter order and cut-off frequency). The latter
parameters have the benefit of being more in line with conven-
tional filtering practice and notions.
To further contrast the new algorithm with LoPATV, we note

that the LoPATV algorithms requires that two parameters (
and ) be specified, which raises the issue of how to set these
values in order to obtain fast convergence. In contrast, Algo-
rithm 1 formulated in this work does not involve any parame-
ters beyond those in the problem statement (19), and is compu-
tationally fast. Thirty iterations of Algorithm 1 takes about 13
milliseconds on a 2013 MacBook Pro (2.5 GHz Intel Core i5)
running Matlab R2011a. Run-times reported in subsequent ex-
amples are obtained using the same computer.

B. LPF/TVD Example 2

Fig. 6 illustrates the use of Algorithm 1 on 304 seconds of
NIRS time series data. The data has a sampling rate of 6.25 sam-
ples/second (length ). The data used for this example
is the record of the time-dependent NIRS light-intensity level,
for one channel in amulti-probe physiologicalmeasurement ses-
sion. All of the light-emitting and -receiving optodes, where an
optode is the optical analogue of an EEG electrode, were located
on the scalp of an adult male research-study subject. The terms
‘source’ and ‘detector’ are used to refer to a light-emittingoptode
and a light-receiving optode, respectively, and a measurement
channel is definedby specifying aparticular source-detector pair.
For example, for the channel considered here, the source and de-
tector were located on the subject’s scalp over the back of the
head. NIRS data from measurements of this type are susceptible
to subject-motion artifacts, as indicated in Section I-B. In some
cases, andas seenmost strikingly at approximately the80-second
mark, motion can cause a change in optode-skin contact suffi-
cient to produce an abrupt, permanent shift in the baseline value.
It can be observed that the TVD component produced by the al-
gorithm successfully captures the discontinuities and transient
artifacts present in the data. The LPF/TVD algorithm was run
for 30 iterations with a total run time of 30 milliseconds.
To concretely illustrate the benefits of LPF/TVD in com-

parison with LTI filtering alone, we consider the problem of
detrending (baseline removal). When a zero-phase LTI high-
pass filter is used to remove the baseline of the data shown in
Fig. 6, we obtain the detrended signal illustrated in Fig. 7. The
abrupt jumps in the data produce transients in the detrended
data—an unavoidable consequence of LTI filtering. However, if
the TV component obtained using LPF/TVD is subtracted from
the data prior to LTI high-pass filtering, then the transients are
greatly reduced, as illustrated in the figure. The near-elimination
of the transients is possible because the LPF/TVD algorithm is
nonlinear.
A further benefit of LPF/TVD processing is revealed in the

frequency domain. In particular, the Welch periodogram in
Fig. 7 shows that LPF/TVD preprocessing reduces the strong,

Fig. 6. LPF/TVD Example 2: NIRS time series data processed with LPF/TVD
algorithm. The algorithm removes abrupt changes of the baseline and transient
artifacts. Algorithm parameters: .

Fig. 7. LPF/TVD Example 2. Detrending by high-pass filtering and by
LPF/TVD prior to high-pass filtering. In the periodogram, LPF/TVD uncovers
a signal component at frequency 0.32 Hz which is otherwise obscured by the
broad low-frequency energy due to strong transients.

broad low-frequency energy due to the transients. Conse-
quently, a signal component at about 0.32 Hz, which in the HPF
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Fig. 8. LPF/CSD Example 1. Comparison of convergence of Algorithm 1
(LPF/TVD) and Algorithm 2 (LPF/CSD).

result is obscured by the broad power spectrum arising from the
transients, is unambiguously revealed. Notably, this lies within
the range of typical human respiration frequencies (12–20
cycles/min). The respiratory rhythm is frequently observed
in data from NIRS physiological measurements [3], [8], and
PSD analysis of relatively artifact-free channels from the same
recording session indicate that the participant’s respiratory
frequency was indeed about 0.32 Hz. This example shows how
the LPF/TVD method can be used to improve the effectiveness
of LTI filtering and spectral analysis.

C. LPF/CSD Example 1

Note that the LPF/CSD problem (32) generalizes the
LPF/TVD problem (19). Specifically, the LPF/TVD problem is
recovered with in (32). Hence, Algorithm 2 (Section V)
can be used to solve the LPF/TVD problem. For example, it
can be used to perform the processing illustrated in Fig. 6 for
which we used Algorithm 1. Consequently, it may appear that
Algorithm 1 is unnecessary. However, in the following, we
demonstrate two advantages of Algorithm 1, in comparison
with Algorithm 2, for solving the LPF/TVD problem.
In order to compare the convergence behavior of Algorithms

1 and 2, we apply both of them to the data shown in Fig. 6
(“Original data” in gray). The Algorithm 2 result is visually in-
distinguishable from that obtained with Algorithm 1, so we do
not illustrate it separately.
The cost function history of each algorithm is illustrated in

Fig. 8. Algorithm 1 converges well within 30 iterations. Note,
however, that Algorithm 2 requires the user to specify a param-
eter , which can be interpreted as a type of step-size pa-
rameter. As illustrated in Fig. 8, the convergence behavior of
Algorithm 2 depends on . For , the algorithm initially
converges quickly but has very slow long-term convergence.
For , the algorithm has better long-term convergence,
but poor initial convergence. Note that Algorithm 1 converges
much faster than Algorithm 2, regardless of .
In comparison with Algorithm 2, Algorithm 1 has two advan-

tages. First, it does not require the user to specify a parameter .
Second, it often converges faster regardless of what value of
is used for Algorithm 2. On the other hand, Algorithm 2 solves
the more general problem of LPF/CSD and can therefore per-
form processing that is not possible with Algorithm 1.

Fig. 9. LPF/CSD Example 2. Near infrared spectroscopic (NIRS) data and
LPF/CSD processing. The method simultaneously performs low-pass filtering
and sparse signal denoising.

We remark that the LoPATV algorithm [71] (which performs
LPF/TVD-type processing) requires the specification of two pa-
rameters. Hence, it is even more affected by the issues of (1)
parameter tuning for fast convergence and (2) fastest achiev-
able convergence.

D. LPF/CSD Example 2

To illustrate simultaneous low-pass filtering and compound
sparse denoising (LPF/CSD), we have obtained data from a dy-
namic tissue-simulating phantom [9], while varying the strength
of its absorption for NIR light in a manner that emulates the
hemodynamic response of a human brain to intermittently de-
livered stimuli. Fig. 9 illustrates data acquired by the system.
The signal is of length 4502 samples, with a sampling rate of
1.25 samples/second and an observation time of 3602 seconds.
The ‘hemodynamic’ pulses are observed in the presence of un-
avoidable low-frequency background processes and wideband
noise. The signal of interest and its derivative are sparse rel-
ative to the low-frequency background signal and noise. For
the illustrated measurement channel, the noise standard devia-
tion is greater than 10% of the largest-magnitude hemodynamic
pulse; this is not an uncommon noise level for physiological
NIRS data [3]. Algorithm 2 simultaneously estimates and sep-
arates the low-pass background signal and the hemodynamic
pulses, as illustrated in Fig. 9. For this computation, 50 itera-
tions of the algorithm were performed, in a time of 70 millisec-
onds. The pulses are illustrated in detail in Fig. 10. Note that
the shapes of the pulses are well preserved, in contrast to the
commonly observed amplitude-reducing, edge-spreading, and
plateau-rounding, of LTI filtering alone (see Fig. 10(b)).
For comparison, Fig. 10 illustrates the output of a band-pass

filter (BPF) applied to the same noisy data. Note that the BPF
signal exhibits both more baseline drift and more noise than
the CSD component produced by LPF/CSD processing. In par-
ticular, the BPF obscures the amplitude of the hemodynamic
pulses relative to the baseline. While the band-edges of the BPF
can be adjusted to obtain a different BPF signal from the one
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Fig. 10. LPF/CSD Example 2. For the data in Fig. 9, the output of a band-
pass filter (BPF), a de-spiking algorithm [54], and the TVD component obtained
using LPF/TVD are shown for comparison with LPF/CSD. (a) Full duration of
the data time series. (b) Expanded view of a brief portion of the time series.

shown here, these adjustments will either increase the residual
noise level, increase the baseline drift, or further distort the
shape of the hemodynamic pulses.
For further comparison, Fig. 10 also illustrates the output

of a recent de-spiking algorithm [54]; see also [48]. The algo-
rithm is based on clustering in phase-space, wherein the state
vector consists of both the value of the signal and its derivative.
This de-spiking algorithm simultaneously uses both the signal
value and its derivative, like the LPF/CSD approach derived
here. However, it does not explicitly account for the presence
of a low-pass component. It can be observed that some false
peaks occur and that residual noise remains on the crests of the

peaks. The result was obtained using software by the author at
http://www.mathworks.com/matlabcentral/fileexchange/.
Finally, the result of LPF/TVD processing is also shown in

Fig. 10. It can be seen that the TVD component produced by Al-
gorithm 1 is similar to the CSD component produced by Algo-
rithm 2; however, it exhibits baseline drift. Algorithm 1 cannot
achieve a baseline value of zero due to the absence in (19) of
the term that is present in (32).

E. LPF/CSD Example 3

The LPF/CSD approach can also be used for artifact re-
duction, as illustrated in Fig. 11. The data is a 300-second
NIRS time series from the same experimental measurement
as in LPF/TVD Example 2 above. However, for the channel
considered here, the source and detector were located on the
subject’s forehead in the vicinity of his left eye. This makes
the data susceptible to motion artifacts due to eye blinks (in
addition to all other sources of motion artifact that ordinarily
are present). The data is corrupted by transients of variable am-
plitude, width, and shape. The CSD component was obtained
using 50 iterations of Algorithm 2 with a total run-time of
30 milliseconds. Fig. 11 displays a 100-second interval of the
300-second signal, to more clearly show the details of the data.
The CSD component captures the transients with reasonable
accuracy while maintaining a baseline of zero. Subtraction of
the CSD component from the original data demonstrates that
the algorithm has largely removed the artifacts while leaving
the (physiological) oscillatory behavior intact.
The benefit can also be seen in the frequency domain.

When the CSD component is subtracted from the data, the
periodogram shows a broad peak in the 1.0–1.2 Hz band.
Notably, this lies within the range of typical human cardiac
(i.e., heartbeat) frequencies (60–100 cycles/min). The cardiac
rhythm is frequently observed in data from NIRS physiological
measurements [3], [8], and PSD analysis of relatively arti-
fact-free channels from the same recording session indicate that
the participant’s cardiac frequency was indeed approximately
1.1 Hz. In the periodogram of the original data, this peak is
obscured by the broad-band energy of the transient artifacts.
For comparison, Fig. 12 illustrates the output of two recent

algorithms, the de-spiking algorithm of [54] and the motion ar-
tifact reduction algorithms of [36]. This second method, which
was implemented using the NAP software application written
by the authors of [36], [37], identifies outliers in a high-pass
filtered version of the time series, based on a user-specified
z-score threshold. These values are then replaced: a simple
linear interpolation is used for ‘spikes’ (i.e., artifacts briefer
than a user-specified maximum duration); for ‘ripples’ (i.e., ar-
tifacts for which the number of consecutive data values having
supra-threshold z-scores exceeds a user-specified minimum),
the data are approximated with piecewise-continuous cubic
polynomials, and the corrected data are the differences between
the original data and the best-fitting cubics. Elsewhere in the
time series, the original data are not modified.
It can be observed in Fig. 12 that the algorithms of [36], [54]

successfully identify high-amplitude spikes, but yield restored
time-series that are less regular than the proposed method.
Both methods [36], [54] are based on a two-step procedure:

first identify spikes (or ripples); second, interpolate to fill in the
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Fig. 11. LPF/CSD Example 3. Removal of artifacts from a NIRS time series
by LPF/CSD processing.

Fig. 12. LPF/CSD Example 3. Result of NAP [36] and de-spiking [54].

gaps. In addition, neither method attempts to identify or cor-
rect additive steps in the data, and hence they are not effective
for examples where LPF/TVD can be used. In contrast, the pro-
posed method consists of a single problem formulation, which
does not rely on a segmentation of the time series into artifact

TABLE I

and non-artifact data points, and is flexible in terms of the types
of artifacts it can handle.

F. Run-Times

The run-times from the examples of Algorithm 1 and Algo-
rithm 2 for LPF/TVD and LPF/CSD respectively, are summa-
rized in Table I.

VIII. CONCLUSION

Sparsity-based signal processing methods are now highly
developed, but in practice LTI filtering still is predominant for
noise reduction for 1-D signals. This paper presents a convex
optimization approach for combining low-pass filtering and
sparsity-based denoising to more effectively filter (denoise) a
wider class of signals. The first algorithm, solving the LPF/TVD
problem (19), assumes that the signal of interest is composed
of a low-frequency component and a sparse-derivative com-
ponent. The second algorithm, solving the LPF/CSD problem
(32), assumes the second component is both sparse and has a
sparse derivative. Both algorithms draw on the computational
efficiency of fast solvers for banded linear systems, available
for example as part of LAPACK [4].
The problem formulation and algorithms described in this

paper can be extended in several ways. As in [71], enhanced
sparsity can be achieved by replacing the norm by regular-
izers that promote sparsity more strongly, such as the pseudo-
norm , or by reweighted [18], greedy [58],
etc. In addition, in place of total variation, higher-order or gen-
eralized total variation can be used [56]. The use of LTI filters
other than a low-pass filter may also be useful; for example, the
use of band-pass or notch filters may be appropriate for specific
signals. It is envisioned that more general forms of the approach
taken in this paper will demand more powerful optimization al-
gorithms than those employed here. In particular, recently de-
veloped optimization frameworks based on proximity operators
[14], [20], [26], [28], [63], [66] are specifically geared to prob-
lems involving sums of non-smooth convex functions (i.e., com-
pound regularization).
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