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Abstract

Weaddress suppression of artifacts in NIRS time-series
imaging. We report a fast algorithm, combining sparse
optimization and filtering, that jointly estimates two
explicitly modeled artifact types: transient disruptions
and step discontinuities.

Introduction

This work addresses the a�enuation of artifacts aris-
ing in biomedical time series, such as those acquired
using near infrared spectroscopic (NIRS) imaging
devices [1]. We model the measured time series,
y(t), as

y(t) = f (t) + x1(t) + x2(t) + w(t) t ∈ R, (1)

• f (t) is a low-pass signal, i.e., HPF{f} ≈ 0.
• x1(t) is a ‘Type 1’ artifact signal, intended to

model spikes. We model a Type 1 artifact signal
as being sparse and having a sparse derivative. It
adheres to a baseline value of zero.

• x2(t) is a ‘Type 2’ artifact signal, intended to
model additive step discontinuities. We model a
Type 2 artifact signal as having a sparse deriva-
tive. It is composed of (approximate) step discon-
tinuities.

•w(t) is white Gaussian noise.
•We devise the ‘Transient Artifact Reduction Algo-
rithm’ (TARA) to estimate both artifacts types simul-
taneously, so they can be subtracted from the raw
data. TARA has high computational e�iciency and
low memory requirements.

Problem Formulation

We address the problem in the discrete-time se�ing.
We propose the optimization problem

{x̂1, x̂2} = arg min
x1,x2
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, λi > 0. (2)

H denotes the high-pass filter suppressing the low-
pass signal f . D is discrete-time first-order di�er-
ence operator, given by [Dx]n = [x]n+1 − [x]n. The
low-pass signal is estimated as

f̂ = L(y − x̂1 − x̂2) (3)

where L denotes the low-pass filter L = I−H.
The functions φi are chosen to promote sparsity, e.g.,
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The high-pass filter, H, is implemented as

H = BA−1, (4)

where A and B are banded matrices.

Example 1

A special case of TARA is for Type 1 artifacts only
(x2 is absent from (2)). We use a simulated signal
(Fig. 1(a)) consisting of additive step-transients.
With (λ0, λ1) = (λ∗0, 0), x̂ deviates infrequently from
the baseline value of zero (Fig. 2(a)). With (λ0, λ1) =
(0, λ∗1), it is approximately piecewise constant but
does not adhere to a baseline of zero (Fig. 2(b)). With

(λ0, λ1) = (θλ∗0, (1− θ)λ
∗
1), 0 6 θ 6 1, (5)

with θ tuned to 0.3, it is reasonably sparse and has a
sparse derivative (Fig. 2(c)). The interpolation given
by (5) provides a trade-o�.
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Figure 1: (a) Simulated data. Processing with the
`1-norm penalty (b) and the arctangent penalty (c).
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Figure 2: Estimated transient signals, x̂, obtained
with various (λ0, λ1). (a) θ = 1. (b) θ = 0. (c) θ = 0.3.

•The result x1(t) shown in Fig. 2(c) is used to gen-
erate the signal f (t) + x1(t) shown in Fig. 1(c). It
can be seen that the arctangent penalty φ be�er pre-
serves the full height of transients compared to the
L1 norm penalty shown in Fig. 1(b).

Example 2

This example shows TARA, for Type 1 artifacts, as
applied to a near infrared spectroscopic (NIRS) time
series. The data exhibits artifacts due to eye blinks.
Signals corresponding to (λ∗0, 0) and (0, λ∗1) are
shown in Figs. 3(b, c). With (λ0, λ1) set using (5) with
θ = 0.05, we obtain an apparently accurate estimate
of the transient artifacts (Fig. 3(d)). The corrected
time series is obtained by subtracting the estimated
artifact signal x̂ from the original data (Fig. 3(e)).
The algorithm run time was about 80 milliseconds.
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Figure 3: Reduction of transient artifacts in NIRS
time-series data. (a) Raw data. (b, c, d) Artifact es-
timation with (λ∗0, 0), (0, λ

∗
1), and (5). (e) Corrected

data.

Example 3

•TARA is applied to a NIRS time series acquired us-
ing a pair of optodes on the back of a subject’s head.
The data exhibits a motion-induced abrupt shi� of
the baseline, at time index 470. Other motion arti-
facts also are visible.
•The Type 1 and Type 2 artifact signals as estimated
by TARA, are sparse and approximately piecewise
constant, as intended. Note that the corrected time
series has both low-frequency and high-frequency
spectral content.
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Figure 4: Artifact reduction with TARA as applied to
a NIRS time series.

Wavelet artifact estimation. Wavelet methods
compare favorably to other methods for the cor-
rection of motion artifacts in single-channel NIRS
time series [2, 3, 4]. In comparison with TARA, the
wavelet method does not correct additive step dis-
continuities as well. The wavelet-estimated artifact
signal smooths the additive step discontinuity.
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Figure 5: Artifact estimation and correction using
wavelets and TARA.

The artifact in the interval 1370-1420 is estimated
by TARA with distinct pre- and post-artifact base-
line values; whereas the wavelet-estimated artifact
signal exhibits a small change. In addition, TARA
finds an abrupt change at time index 1530; while
the wavelet method exhibits only a small bi-phasic
(zero-mean) pulse at that instant. TARA is bet-
ter able to estimate abrupt step-changes than the
wavelet method because it is explicitly based on a
two-component model.
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TARA is fast. Run times measured using a 2013 Mac-
Book Pro (2.5 GHz Intel Core i5) running Matlab
R2011a.

Preservation of hemodynamic response

•Physiological time-series data (e.g., NIRS, EEG) are
o�en acquired in multichannel form. We apply
TARA to multichannel data (Fig. 6, black) using the
same (shape) parameters for all channels. To avoid
cumulative baseline dri�, each corrected time series
has been filtered with a zero-phase second-order re-
cursive dc-notch filter.
•TARA e�ectively reduces transient artifacts in most
channels, without introducing substantial distor-
tion.
•In the course of suppressing artifacts, biological in-
formation of interest should not be distorted or at-
tenuated. For NIRS, any hemodynamic response
(HR) waveforms present should be preserved. To
test TARA in this regard, we add a simulated HR to
each channel of the considered multichannel data.
Signals with the simulated HR is shown in gray in
Fig. 6. The gray-colored artifact signals, obtained
from the HR-added data, are nearly indistinguish-
able from the original artifact signals.
=⇒ TARA accurately preserves the HR in the cor-
rected data.
•To compare TARA with wavelets, we apply wavelets
to the same data, with and without the added HR.

The wavelet-estimated artifact signals (Fig. 7) ex-
hibit a noticeable portion of the HR in about half the
channels. Consequently, the HR is more a�enuated
and distorted in the wavelet-corrected data than in
the TARA-corrected data.
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Figure 6: TARA applied to multichannel data.
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Figure 7:Wavelet transient artifact reduction of mul-
tichannel data.

•In quantitative terms, we measure the root-mean-
square deviation over the HR interval (700-880) be-
tween the HR and non-HR artifact signals. The value
is 0.18 for TARA and 0.53 for wavelets. By this mea-
sure, the wavelet method is a�ected by the HR 2.9
times more than TARA, and so TARA be�er pre-
serves the HR.
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