Ultracompact, EEG-compatible NIRS System
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OBJECTIVE

The development of a miniaturized, portable NIRS system, to be

integrated with EEG for BCl applications. Here, we present our most
recent step toward this goal, a table-top multi-channel NIRS imager
utilizing direct LED illumination and digital signal processing.

INTRODUCTION

Figure 1. Left: Schematic depiction of NIRS imaging of brain hemodynamics. Right:

Principles of Near-Infrared Spectroscopy (NIRS):
Uses low-energy optical radiation (~700-900 nm)
Scatter-dominated light propagation in tissue
Transmission up to few cm

Sensitive to absorption changes caused by hemodynamics:
measures relative changes in oxygenated and de-oxygenated
Hemoglobin (AHbO, AHbR)

Requires contact based measurements through ‘optodes’ (usually
fiber optic bundles, sometimes integrated electronic sensors)

One optode pair (transmitter (source) + receiver (detector))
constitutes one data channel.
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Spectra of HbO and HbR; vertical lines indicate imaging wavelengths.

NIRS Promises:

Non-invasive, harmless

Good time resolution (~10 Hz)

Can be made small, inexpensive

Little subject restriction, long term monitoring
Integrates well with other methods (EEG, MRI,...)

NIRS Challenges:

Penetration depth ~cm
Spatial resolution “mm-cm

Sensitive to artifacts from motion, surface- near ‘global’
hemodynamics

Probe setup

INSTRUMENTATION

Figure 2. Picture of the instrument. Shown is version with 2 sources, 4 detectors, and

Size:33cm (L) x 27 cm (W) x 17 cm (H)
Mass < 10 kg

Channels: 1-8 sources, 1-16 detectors
Scan rate: > 8 Hz (8 sources)
lllumination: 760/850 nm LED

Digital signal demodulation

4 trigger connectors for experiment synchronization.

INIRx Medizintechnik GmbH, Berlin

Illumination

Time-multiplexed source position encoding

Simultaneous, frequency-encoded dual-wavelength illumination
(760, 850 nm):

Pii= Py + Prog sin(anm,/fsj + @)
Direct tissue contact light emitting diodes (LED)
90° Optode head design integrates into EEG electrode
LEDs vs. Lasers:
e ~10 mW total optical power per A @ ~50 mA
e Spectral width ~30 nm
e Emission angle (FWHM) £20°
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Figure 4. Top row: Hand gripping task result illustrating comparable crosstalk and
separability for LED (760/850 nm, left) vs. Laser (760/830 nm, right) illumination.
Bottom row: Low-profile LED optodes, from left to right: Connected to ring
electrode; optode only with retaining ring; mounted to electrode in EEG cap.

Detection and Signal Processing

Fiber-optic bundles (L1 = 2.4 mm) with bent tip

Photo diode in unbiased photovoltaic mode (large dynamic range)
Gain-switched amplification maximizes dynamic range

Direct analog-to-digital conversion of modulated signal

Demodulation in PC software (LabVIEW™) following an algorithm
described in [Lasker et al.]:

1. Component-wise multiplication of signal vector V and
synthesized orthogonal reference signals

I;;=cos(2r f,, /f,j) and Q;; = sin(2rt f,, i/f, J):
Xy=Vil; 5 Y=V, Q;
2. Time-average the resulting vectors to obtain the in-phase and
guadrature amplitudes
Xi=1/NZNX,; YVi=1/NZNY,;
3. Compute the magnitude to obtain the detector reading R:
Ry;=sart(X?+Y?)

4. Averaging exactly over an interval that is an integer multiple
of the modulation period

N=k/f, (wherek=1,2,.)

and using commensurable modulation frequencies results in
perfect wavelength discrimination.
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Noise considerations:

Detection limit is determined by electronic noise at highest gain

Dominant noise source is thermal (Johnson) noise of the feedback
resistor. Detection bandwidth BW is determined by low-pass RC
filter (f;45 = 480 Hz) and anti-aliasing filter (4™ order Chebyshev f_,
= 2.0 kHz):

BW =2.0 kHz—2/m 0.48 kHz = 1.25 kHz
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Figure 3. Functional diagram of NIRS imager (omitted: power supply, trigger ° Stability: better 0.01%

channels).

PD: photo diode; PTIA: programmable transimpedance amplifier; PGA:

programmable gain amplifier; HP: RC high-pass filter (f,,, = 482 Hz); LP: 4th order

Chebyshev low-pass filter (f,
to-parallel shift register; f

pass

m

= 2.0 kHz); FIFO: first-in-first-out buffer; SHREG: serial- °
., Mmodulation frequencies; MUX: multiplexer; ADC:

analog-to-digital converter; DAC: digital-to-analog converter; DO: digital out lines;
CTR: counter; CTRL: controller.

Abbreviations:
i: wavelength index; j: sample index; A: wavelength; V: measured discrete signal vector; 1,Q;: discrete in-phase and out-of phase reference vectors; X,Y;: in-phase
and out-of phase amplitudes; R, ;: detector reading; fs: sampling frequency; BW: bandwidth; k;: Boltzmann’s constant; R: resistance; V: voltage; /I current;

HbO: oxy-hemoglobin; HbR: deoxy-hemoglobin; LED: light emitting

diode; P:

power;

Drift: < 1%/hr after warm up

Dynamic range (theo):
[1V/10*V/A]/[5mV /10" V/A] =2x10°=93 dB_,,
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Simultaneous NIRS-EEG validation

Paradigm:

NI

Alternating self-paced, visually cued finger tapping

Left (20 s) = rest (20 s) = right (20 s) =2 rest (20 s)... [9 times]
RS measurement:

2 Sources, 4 Detectors (per hemisphere: 1S x 2 D), f,, e = 22.5 Hz

Customized EEG cap (EASYCAP GmbH) for electrode/optode
placement (Fig. 5)

Signal analysis in MATLAB™ based NILAB (Charite Berlin): Band pass
filter, modified Beer-Lambert law, block-averaging

EEG measurement:

13-channel recording with BrainAmp (Brain Products GmbH): f,
= 1.0 kHz, FCz as reference, BW = DC to 250 Hz

Band pass filter [0.5 Hz, 100Hz], epoched for each condition (-3 s to
+25 s relative to stimulus onset)

ample

Wavelet-based time-frequency (TF) analysis (Morlet, 12 cycles, 5-25
Hz) on single trial basis

Averaging of single trial TF results; baseline (-1 to 0 s) subtraction
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Figure 5. Electrode and optode placement on EEG cap.

Experimental Results
EEG

No spectral interferences from LED optode

Sustained u-desynch (a- & B-range) during contralateral tap
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Figure 6. EEG time-frequency results.

NIRS

Prototypical activation for motor task is observed: HbO & HbR | ;
sustained response to tapping

HbO: Susceptible to physiological noise, therefore less indicative for
tapping side

HbR: Stronger decrease contralateral to tapping side

Robust, condition related single-trial response
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Figure 7. NIRS results. Top: Block-averaged vs. single-trial response. Bottom:
Continuous time courses for nine consecutive trials.

DISCUSSION

No interferences in EEG signals
Excellent signal-to noise ratio in HbO and HbR

Fast and flexible probe placement for concurrent EEG/NIRS
measurement

Robustness of single trial response promising for real-time
applications (BCI, neuro-feedback)

Portability/compactness allows field studies
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