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Abstract

A neural network scheme is described, based on a modified backpropagation algorithm for the recovery of images of the
interior of objects which diffuse radiation. The method is capable of considering isotropic and any degree of forward directed
scatter. The computational requirements of the method are significantly greater than for coherent (i.e. straight-line) based im-
aging schemes and for this reason we have developed a machine architecture and machine, Kilonode. Results are shown for 2-
D simulations of media having simple structure and can readily be extended to 3-D. Training vectors for the neural network are
derived from time-independent and time-resolved signals.

1.0 Introduction

Evaluation of the problem of imaging in diffusing media is particularly challenging both in regard to defining a suitable
reconstruction algorithm and in terms of identifying an appropriate computing environment for efficient processing. In this pa-
per we have examined both issues and, in particular, describe results of an algebraic technique for imaging the interior of ob-
jects which diffuse penetrating radiation using a new multicomputer environment. The problem of imaging in diffusing media
differs significantly from other imaging schemes which rely on the detection of coherent signals in that we assume only prob-
abilistic knowledge of the path of the radiation and minimal knowledge of the absorption profile of the medium. Because of
this added uncertainty the size of the computation is unavoidably much greater than for coherent-based schemes and is an cx-
ample of an ultra-large scale computing problem.

Two important issues which arise when evaluating problems of this size are numerical precision and the overall comput-
ing efficiency. Both must be considered simultaneously and involve trade-offs. Our approach has been that numerical precision
is paramount. In addition we have developed an operating system which evaluates algorithms in a manner which minimize the
communication overhead. Because of the efficiency, the system we have developed can allow for the configuration of a large
multinode unit. A four-node system is currently available and operates at 320 Mflops. A 100 node system runs at 6400 Mflops,
which is an efficiency of 80%. These efficiencies make it feasible and, in fact, desirable to employ numerically stable algo-
rithms which, though computationally more intensive than others, can be evaluated in a time frame which readily permits the
development of strategies for the solution of large scale computing problems.

The algorithms we propose are more closely related to algebraic reconstruction algorithms such as ART, SIRT and
SART ! than to algorithms based on the Born and Rytov approximations such as used for tomographic imaging with diffract-
ing sources. In our model we assume that an NIR laser is used to provide the input radiation and suitable detectors arc posi-
tioned to measure both transmitted and backscatter signals. The present work considers a simple Markov process for the way
in which the energy propagates in the medium. It should be noted though, that the reconstruction technique we proposc can usc
any model. Current simulations are in 2-D but are easily extended to 3-D. These studies were motivated by recent reports from
our group 2** and others, > which showed promising results for imaging in dense scattering media given only diffusely scal-
tered signals. A preliminary description of the findings has recently been reported. 8
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2.0 Modeling of the Forward Problem

In more traditional algebraic methods involving linear tomographic schemes, a matrix, w, is assumed, where w; jrepre-
sents the fractional area of the jth image cell intercepted by the ith ray. The equation which is solved is w]*f] = p], where ]
represents the absorption of each of the cells and p] the detector readings. It is assumed that [w] is known. Typically the dimen-
sion of p] is M and the dimension of f] is N, where M<N in most cases of practical interest. Standard methods are available for
the solution of such equations such as least squares, linear programming or the Kaczmarz method'.

We propose a different model of the physical problem. We assume that the radiation entering the medium travels through
the medium according to some well defined probabilistic model which can be simulated using relaxation techniques. An cxam-
ple of a relaxation technique is the solution of Laplace’s equation using the standard five point grid template. That computa-
tional model is based on a simple discrete approximation to the partial differential equation.

¥+ = fip5(n) + 15500+
£ija(m) + 549 5(0),

(n) refers to the iteration number.

For our case (2-D) we assume that each cell gives up all of its energy to its eight nearest neighbors at each step of the re-
laxation iteration, and the portion it loses is modified by an absorption coefficient. For the homogeneous case, the absorption is
uniform throughout the medium. The relaxation equation governing this case is as follows:

B Pijln+l) = £y ) + £ () + £ 4(n) +
fiv1,jer(n) + £y, j(n) +
fig,50m) + 5 54(m) + £5595.1(n),
and

fm(l'l'l'l) = wij f’i.j(l']+1)
where w;; is the absorption coefficient for the ij" cell.

We also consider a directed flow discrete model which accounts for the fact that the energy tends to flow in the same dircc-
tion in which it is propagating. The extreme case is x-radiation which is assumed to follow a straight line path through the me-
dium. In describing this formulation we will assume that energy is lost to four (n,e,s,w) neighbors. The case for ¢ight
neighbors follows easily.

Assume that the flux in each cell is a vector of four components. F(i,j) = [f*, %, f*, f*]". Then the relaxation equations for
the directed flow take the following form.

4% Fj(n+1) = [T]* (1% 5.1 (0), 5,1 (n) j, 541 (), £%1 51T

[T] is a transmission matrix defining the path of the radiation through the medium. For example, if [T] is the identity ma-
trix, then the radiation is constrained to flow along the path in which it was initially directed. Using the identity matrix, the
above equation expresses the idea that northerly radiation out of (i,j) is due to northerly radiation out of the cell 1o its south. An
example of the use of directed equations is shown in Figure 1. In Figure 1 note the leakage around the absorber in the random
case, and the lack of spreading when we use the identity matrix for [T).

Thus we propose a discrete model for the transmission of radiation, not necessarily based on a stochastic differential equa-
tion, but rather based directly on a discrete physical model of the medium. The complexity of this model has an effect on com-
putation time, but not on the basic methodology. In generating this model we follow a suggestion in references 5 and 6.
Random effects are included by assuming that each of the entries in matrix [T] has a degree of randomness. Mathematical
techniques for dealing with stochastic differential equations are discussed by Gard %, These relaxation iterations become a ba-
sic part of the image estimation method, so it is a requirement that suitable computational facilities be available. In Figure 1
energy is introduced at the top (9.99). The edges are modeled as perfect absorbers, (0.00) because once energy leaves the me-
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0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.00

Figure 1 Flux Transmission - Random and Straight Line for a simple absorber.

Absorption matrix

0.00 059 0.99 0.99 0.99 0.99 0.99 0.99 0.00 (0.00) indicates absorbing cells

0.00 0.99 0.99 0.00 0.00 0.00 0.99 0.99 0.00
0.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.00
0.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Random

0.00 0.00 0,00 0.00 9.99 0.00 0.00 0.00 0.00
0.00 0.12 039 1.79 1.97 1.79 0.39 0.12 0.00
0.00 0.15 0.43 0.70 0.86 0.70 0.43 0.15 0.00
0.00 0.11 0.19 0.28 0.29 0.28 0.19 0.11 0.00
0.00 0.05 0.05 0.04 0.02 0.04 0.05 0.05 0.00
0.00 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Straight line

0.00 0.00 0.00 0.00 9.99 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 9.99 0,00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 9.90 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 9.80 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

dium 1t 1s lost. Energy introduced into the medium is by proper selection of the boundary conditions. We assume that energy
can be introduced on all six faces of a rectangular body, or a suitable set of faces on an irregular body.

In the following we describe a neural network formulation of our image estimation algorithm, and the computing system
we have designed to meet the computational demands. The algorithm we propose is closely related to the system identification
problem, which is commonly used in the design of control systems. The reason for using the neural network approach is that it
is a technique well suited for estimating absorption in the medium that does not assume a straight line path for the radiation.
However as will be seen in the following section, the neural network computations require a means for computing an estimate
of the output radiation pattern which is computationally efficient, and which at the same time is a good model of the actual
transport phenomena in the medium in question. The relaxation equations shown above meet both requirements. Computations
are minimal and the model has enough structure to account for directivity, randomness, reflection and absorption.

Of course we make no claims that these computing models accurately model the physical phenomena in a particular medi-
um. However we do feel that we have a sufficiently rich formulation which could be modified as needed to meet particular
transmission phenomena. We hope that others will suggest suitable modifications. The models we employ need not be con-
strained by computer limitations.

3.0 NEURAL NET FORMULATION

In the following some knowledge of neural networks is assumed. Two references are cited which present an excellent in-
troduction. Wasserman '© is the simpler, and Pao!! goes into the mathematical details. We use the LMS algorithm of Wid-
12
row

In the case of the physical model we assume that it is possible to introduce radiation from all sides of an object. It scems
clear, at this stage of our work, that it will be more difficult to locate an object, such as the one shown in Figure 3, on the basis
of backscatter or transmission from a single surface alone. However it is by no means impossible as has been shown by using
either time-independent 22 or time-gated '# signals. We believe that by locating various sources as shown, we can oblain a
better reconstructed image. In addition, the degree to which we assume the radiation is flowing in a directed path will greatly
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influence the quality of the reconstruction. Figure 2 shows a block diagram of the neural network we have constructed (o per-
form the image estimation algorithm. Figure 3 shows the physical model. In Figure 2 the inputs x, represent input encrgy into
the medium. The w;;’s represent the absorption of each of the cells. Using these values for absorption we compute the {lux, {7 J
in each cell, and in particular the cells at the surface which produce the observables, Oy. These are then fed through the activa-
tion function, F, a gain constant 1, and the derivative of the activation function F’,

Figure 2 Neural Network Block Diagram
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Figure 3 Physical Model \L T . N
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Radiation > @ je—— Backscatter

The output of this part of the circuit is fed into a set of loops which update the values for the w;j- The values in the block
prior to the summation in the update loop are equal to the flux in the cell, f*; j» prior to multiplication by the absorption coelli-
cient. Ty are the training vectors, which would represent measurements in an actual application, but in our casc represent

simulated test cases. The challenge is o derive an estimate for the w;’s, which is, in fact, an estimate of the true image.

In this computational model the relaxation operation is forming an estimate of the radiation pattern at the surfaces of the
material under consideration, by calculating the flux at all of the interior points according to the equations in Section 2, using
the most recent'values for the wj;. This pattern is compared with measured data to form a new estimate for the wij. The control
loops implement a steepest gradient decent algorithm which is described in detail in Pao'!. The quantity, E, to be minimized is

E=2X (T, - O

Incremental changes, Awy;, are proportional to -8E/3wy;.

It should be noted that there will be many “correct” solutions in the sense that the w;; satisfying a particular set of data are
not unique. Therefore there needs to be another set of inputs or a “cost” function to limit the solution to a desired sel. There
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is begun, the nodes communicate among themselves to maintain synchronism. This style of computing is essential [or systems
with large numbers of computing nodes. It is the key that makes our system scalable and extensible.

Other components such as hardware, operating system and software are almost a secondary consideration, provided they
meet guideline of simplicity and speed. It is, however, important that each of the nodes has a large local memory because this
minimizes communication overhead. The Kilonode environment could exist on any number of platforms; Sun, Intel, Ncube,
Wavetracer. We have chosen CSPI because it is simple, fast and cost effective.

The performance of Kilonode on a standard benchmark program (1000x 1000 matrix inverse) indicates that we achicve an
efficiency of almost 50% for a 1000 node machine. Our four node system solves a dense 1000x1000 system of equations in
about one minute, using double precision floating point. The relaxation problem is much simpler, requiring much less commu-
nication and for this problem Kilonode should have even better performance.

7.0 Example

In our present work we have used a linear activation function in order to gain a better understanding of the stability of the
basic neural network control loop. The stability is a function of 1. With a suitable choice of 1 stable operation of the net is as-
sured.

The results of image estimation with the use of backscatter alone indicates that while we are able to discern the presence
of an absorber, the degree to which we can localize the absorber is very poor. From this we have concluded that it is necessary
to introduce additional information, such as data from other sources, either on the same face or other faces of the object, or
from a priori knowledge such as might be obtained from techniques suggested previously by Barbour. ' 1©

The ability to discern the presence of an absorber based on surface measurements depends on the signal-to-noise ratio and
on the sensitivity of the surface data to the position of the absorbing object. At present we have not performed measurements
to determine the noise levels, although the experimental setup is in place.

We have however run many 2-D simulations with absorbers at different depths, and results are encouraging. As a typical
example, an absorber at a depth of 10 cells, with a length of 5 cells in a medium whose width is 31 cells will produce differenc-
es in reading, as compared with the homogeneous case, of about 5%. This, we feel, is very respectable and should produce real
data with adequate signal-to-noise ratio.

The introduction of data based on information derived form other sources requires the use of dala preprocessing or, in
neural network terminology, functional links 10 For example when we introduce radiation on opposites sides of an object it is
natural to use the difference of the backscatter response form each of the faces as primary input to the neural network. In prin-
cipal the neural network should eventually learn this transformation, but we feel this is an unnecessary computational burden.
Similar considerations apply to the use of data introduced into other faces of the object.

Figure 5 shows the results of a 2-D image obtained from backscatter using a single source entering from the top, boltom
and each of the sides. In performing the iterations we take advantage of a priori knowledge of the location of the absorber by
desensitizing the layers near the surface during the initial learning phases. In this way the network atlempls a correction at in-
ternal layers first. After this initial phase we allow all of the layers 1o take part in the learning process.

In Figure 5, the first 1000 iterations were performed with the outer layers desensitized. After that 500 additional iterations
were performed allowing all of the cells to adapt. It is important to note that early learning was not “unlearned”, although there
was some blurring of the edges.

Figures 6 through 11 show a series of 3-D plots which depict the passage of radiation into the medium as a function of the
scattering. The “z” direction corresponds to energy magnitude.The amount of scattering is given by the diagram in the lelt
hand corner of each of the figures. The medium contains an absorber in the middle, which is causing the radiation o go 10 zero.
Note that even for the case of uniform scattering, there is still a significant amount of input radiation impinging dircctly onto
the absorber.
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Figure 5 Estimated Absorption Matrix for 1000 Iterations

ABSORPTION MATRIX

.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990
.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990
.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990
.990.990.990.990.990.990.000.000.000.990.990.990.990.990.990
-990.990.990.990.990.990.000.000.000.990.990.990.990.990.990
-990.990.990.990.990.990.000.000.000.990.990.990.990.990.990
-990.990.990.990.990.990.990.990.990.990.990.990.990.990.950
.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990
-990.990.990.990.990.990.990.990.990.990.990.990.990.990.990
-990.990.990.990.990.990.990.990.990.990.990.990.990.990.990

ESTIMATED MATRIX

.990.990.990.990.990.990.991.989.991.990.990.990.990.990.990
-990.990.990.988.988.988.989.991.990.988.988.988.990.990.990
-990.990.990.988.977.973.969.967.969.973.977.987.990.990.990
.990.990.990.987.978.942.934.931.934.942.978.987.990.990.990
-989.990.990.987.979.953.831.829.834.953.979.987.990.990.989
-991.990.990.987.979.957.854.856.858.958.979.987.990.990.991
-989.990.990.987.979.953.843.843.847.954.979.987.990.990.989
.990.990.990.987.978.945.940.938.940.945.977.987.990.990.990
-990.990.990.988.977.974.969.967.968.972.976.988.990.990.990
-990.990.990.988.987.987.988.988.988.988.989.989.990.990.990

-990.990.990.990.989.989.989.991.991.990.990.990.990.990.990

The numbers in this Table are absorption coefficients.
1.0 is no absorption. 0.0 is full absorption

Figures 12 through 17 shows the results of the neural reconstruction algorithm as a tunction of the amount ol scattering,
Note that the results become worse as the amount of scattering increases, which is to be expected. However it is very important
(o note that the result in Figure 17 is not incorrect as far as the neural network is concemed. In fact there are many solutions to
the inverse, given the set of boundary conditions. The solution found depends on the path of the search.

Thus we are led to the idea of directing the search of the neural network by starting the search at a place of high absorp-
tion. In a real case this would require additional knowledge which might be gained in any number of ways such as time re-
solved measurements, or other. If the neural network search is directed in this way, then we obtain the result shown in Figure
18, which is for uniform scattering. This is quite a remarkable result. In Figure 19, we start with the result given in Figure 18,
but allow unconstrained search in the neural network. This indicates that the result is stable in the sense that once the network
has found a solution, it will not wander off to another solution, once unconstrained operation is invoked. Figures 20 -22 show
the case for a more complicated absorption pattern. Our data show similar results as for the one absorber case.

8.0 Conclusions

From the above discussion it should be clear that imaging in diffusing media is bound to be an enormous computing prob-
lem, one that will require the resources of the parallel machines which are currently being designed using powerful integrated
circuits like the 1860 from Intel. It is also clear that use of large parallel machine in itself is not sufficient to meet the require-
ments. New algorithms have to be devised to take advantage of the hardware, and especially the parallelism. With regard Lo el-
fective utilization of parallelism, the key requirement is to devise algorithms which have a minimum of communication
requirements among processors.

Our approach to this has been to rethink fundamental reconstruction algorithms and concentrate on schemes which will
permit the estimation of the medium, with minimal assumptions about the path of the radiation. Neural network schemes oflcr
that possibility. At present we solve the forward problem using relaxation methods, but in the near future we will begin (o in-
vestigate direct methods using matrix inversion. In either case the computing requirements are large. A typical matrix size [or
an interesting problem would be tri-diagonal with 100,000 rows and columns. However with the computing machines which
are becoming available, this size of problems will be practical for systems in a clinical setting.

New algorithms are based on the idea that communication costs are the dominant factor in large scale computing, and that
numerical effects will be critical because of the large numbers of operations involved. It is very easy for limit cycles due Lo
limited word length to dominate the results. The solution to these kinds of problems is two-fold. One is proper choice of algo-
rithm, (Householder’s vs. Gaussian elimination, e.g.). The other is the neural network formulation which allows us to intro-
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duce other data (e.g., time-gated, frequency domain). We can either employ this to localize the neural network search spacc
and to provide additional information to aid in the preprocessing of data, prior to using the data in the neural network compu-
tations. The use of the directed relaxation algorithm allows us to accurately model the actual passage of radiation through the
real medium, which greatly decreases the learning time of the network.

Our next step is to compare measured and computed results. The major purpose will be 1o learn 1o make eflective use of
directed radiation in creating images. Using our experimental and computational capability we will be able 1o experimentally

determine the scattering properties of various materials. This knowledge, in conjunction with other measurements such as time
resolved methods, will provide us with the clues we need for effective neural network performance.
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