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Abstract

In this paper we describe a new technique for imaging in
random media using a neural network approach based on a
modified backpropagation algorithm. Simulation results in-
dicate that we are able to produce images of simple struc-
tures in 2-D media with a reasonable computation time. Our
approach is computation intensive and for this reason we
have developed a machine architecture and machine, Kilon-
ode, which is well suited to this class of computing prob-
lems, and which can ultimately be produced at a cost which
is suitable for commercial application of the neural network
algorithms.

[. INTRODUCTION

Auempls to recover images from objects which diffuse
radiation pose an especially challenging problem both in
terms of defining a suitable reconstruction algorithm and
with regard to identifying an appropriate computing environ-
ment for efficient processing. In this paper we describe re-
sults of an algebraic technique for imaging the interior of
objects which diffuse penetrating radiation using a novel
multicomputer environment. Our interest in this problem
concerns the possibility of obtaining 3-D optical images of
tissue which could identify the availability of oxygen by
evaluating oxygen-dependent changes in the near infrared
spectrum of hemoglobin. These studies were motivated by
recent reports from our group {1-3) and others, [4-6)which
showed promising results for imaging in dense scattering
media given only diffusely scattered signals.

In our model we assume the use of an NIR laser to pro-
vide the input radiation and suitable detectors lo measure
both transmission and backscalter. In our present work we
assume a simple Markov process model for the way in which
the energy travels in the medium, but it should be noted that
the reconstruction technique we propose can use any model,
including nonlinear as well as linear effects, and higher order
processes. Current simulations are in 2-D but the methods
are casily extended to 3-D.

The algorithms we propose are more closely related o
algebraic reconstruction algorithms such as ART, SIRT and

SART [7] than to algorithms based on the Born and Rytov ap-
proximations such as used for tomographic imaging with dif-
fracting sources. Our algorithms are a significant departure
from those based on these standard algebraic methods. We as-
sume only a probabilistic knowledge of the path of the radia-
tion, and minimal knowledge of the absorption profile of the
medium.

In more traditional algebraic methods a matrix, w, is as-
sumed, where w; ; represents the fractional arca of the jth image
cell intercepted by the ith ray. The equation which is solved is

(wl*f] = p]

where f] represents the absorption of each of the cells and p]
the detector readings. It is assumed that [w] is known. Typical-
ly the dimension of p] is M and the dimension of [] is N, where
M<N in most cases of practical interest. Standard methods are
available for the solution of such equations such as least
squares, linear programming or the Kaczmarz method. [7]

We propose a different model of the physical problem. We
assume that the radiation entering the medium travels through
the medium according to some well defined probabilistic mod-
el which can be simulated using relaxation techniques. An ex-
ample of a relaxation technique is the solution of Laplace’s
equation using the standard five point grid template. That com-
putational model is based on a simple discrete approximation
to the partial differential equation.

4f; 5(n+1) = £y j(n) + [ 4y () +
fjJ'.]{.nJ} * I-|+1J(n).

(n) refers to the iteration number.

For the case of a 2-D approximation we assume that each
cell loses all of its energy Lo its cight nearest neighbors at each
step of the relaxation iteration, and the portion it loses is modi-
fied by an absorption coefficient. For the homogeneous case,
the absorption is uniform throughout the medium. The relax-
ation equation governing this case is as follows:
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Figure 1 Neural Network Block Diagram
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rIJ(I'H'l) = W” f’IJ(I'H'l)
where w;; is the absorption coefficient for the i} cell.

Thus we propose a discrete model for the transmission
of radiation, not necessarily based on a differential equation,
but rather based directly on a discrete physical model of the
medium. The complexity of this model has an effect on com-
putation time, but not on the basic methodology. In generat-
ing this model we follow a suggestion in [4,5].

Energy is introduced into the medium by proper selec-
tion of the boundary conditions. We assume that energy can
be introduced on all six faces of a rectangular body, or a suit-
able set of faces on an irregular body. These relaxation itera-
tions become a basic part of the image estimation method, so
it is a requirement that suitable computational facilities be
available.

In the following we describe a neural network formula-
tion of our image estimation algorithm, and the computing
system we have designed to meet the computational de-
mands. The algorithm we propose is closely related to the
system identification problem, which is commonly used in
the design of control systems. We believe our algorithm is a
novel application of the combination of several well-known
and accepted computing techniques.
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Figure 2 Physical Model

iI. NEURAL NET FORMULATION

In the following some knowledge of neural networks is as-
sumed. Two references are cited which present an excellent in-
troduction. [8] is the simpler, and [9] goes into the
mathematical details. We also rely heavily on the LMS algo-
rithm of Widrow. [10].

In the case of the physical model we assume that it is pos-
sible to introduce radiation from all sides of an object. It scems
clear, at this stage of our work, that it will be very difficult to
locate an object, such as the one shown, on the basis of back-
scatter or transmission from a single surface alone, although it
is by no means impossible as shown by the work of Barbour, et
al [1-3] and Aronson et al[2]. We believe that by locating vari-
ous sources as shown, we can obtain a better reconstructed im-
age.
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Figure 3 Kilonode Block Diagram

Figure 1 shows a block diagram ol the ncural network
we have constructed Lo perform the image estimation algo-
rithm. Figure 2 shows the physical model. In Figure 1 the in-
puis x, represent input energy into the medium. The w;;'s
represent the absorption of each of the cells. Using these val-
ues for absorption we compute the flux, 7 ; in cach cell, and
in particular the cells at the surface which produce the ob-
servables, O,. These are then fed through the activation
function, F, a gain constant 1), and the derivative of the acti-
vation function F’.

The output of this part of the circuit is fed into a set of
oops which update the values for the w; ;. The multiplica-
tions prior to the summation in the update loop are equal 1o
the flux in the cell, [y ;, prior Lo multiplication by the absorp-
tion coelficient. Ty are the training vectors, which would rep-
resent measurements in an actual application, but in our case
represent simulated test cases. The challenge is 1o derive an
estimate for the w-l_j‘s‘ which is, in act, an estimate of the
Lrue image.

This computing strategy requires that the relaxation op-
eration be performed as part of an inner loop which is repeat-
edly executed. The number of computations required is
estimated as follows. Assume 3-D, for which there are N*
cells. In our proposed model each cell has 26 neighbors. One
relaxation operation requires O(26 N%) floating point opera-
tions for a single pass or iteration. Our experience has been
that we can achieve a reasonable degree of convergence in
about 40 relaxation iterations. Thus, for the casc of a
100x 100x 100 cells, a single relaxation requires O(1 09) oper-
ations for a single update. (26x40x108) Neural networks are
known 1o be slow to converge, and we are estimating O(100)
neural network iterations to achieve convergence. Currently,
however, convergence of the neural network is requiring
O(1000) operations.

Using Kilonode we can perform operations required for
the 3-D relaxation operation in about 100 seconds on a single
node. We propose the use of a 100 node machine which, in
our case, has an efficiency of about 90%. This means that we
should be able to achieve convergence to an image in about

SBC - Single Board Computer
M - Memory; Nk - CSPI Supercard

100 seconds, assuming that the neural net given a reasonable
starting point, converges in 100 iterations.

One important improvement will result from the use of a
good estimate for the starting values for w; j, such as might be
obtained from the methods proposed by Barbour et al {1,3].
Another improvement in the cost/performance of computing
will be obtained by the use of special processors to perform the
relaxation operation. This is a very real possibility since the
operations involved are very simple (adds and shifis) and the
communication requirements are minimal. However for the
present it is important to use parallel machines such a Kilonode
because we are still in the stages of exploring various algorith-
mic possibilities and studying the numerical effects associated
with many new neural algorithms.

Our computing methods represent a significant departure
from the norm for several reasons. First, we attlempt 1o estimate
the weight matrix directly, making only probabilistic assump-
tion about the path of the rays. Second, rather than use a matrix
multiplication as part of the neural network model, we use a re-
laxation solver to form intermediate estimates ol the image.
Our third departure from the conventional is the computing
machine we have designed which is equal 1o the task ol the in-
creased complexity. Our computer is described next.

[11. KILONODE

Kilonode is a computing machine with a scalable parallel
architecture capable of supporting thousands of powerful com-
puting nodes. The hardware used for realizing this machine is
based on the Intel 1860 microprocessor as embodied in board
level products generally available from a number of vendors.
Currently we are using the CSPI Supercard with excellent re-
sults. As mentioned above, future versions might utilize a sim-
pler processor for performing the relaxation operations.

A block diagram for Kilonode is shown in Figure 3. The
host is connected 1o Kilonode via Ethernet, VME bus, FDDI or
other. The host and each of the nodes have 16 channels used o
communicate among the host and nodes. This permits the con-
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Figure 4 ESTIMATED ABSORPTION MATRIX FOR 1000 ITERATIONS

ABSORPTION MATRIX

.990.990.990.990.990.990.990.990.990.990.990.990,990.990.990
.990.990.990.990.990.990.990.990.990.990.990.990.99().990.990
2990.990.990.990.990.990.990.990.990.990.990.990.990,990.990
-990.990.990.990.990.990.000.000.000.990.990.990.990.990.990
.990.990.990.990.990,990.000.000.000.990.990.990.990.990.990
2990.990.990.990.990.990.000.000.000.990.990,990.990.990.990
.990.990.990.990.990.990.990.990.990.990.990.990.990.990.990
2990.990.990.990.990.990.990.990.990.990.990.990.990.990.990
-990.990.990.990.990.990.990.990.990.990.990.990.990.990.990
-990.990.990.990.990.990.990.990.990.990.990.9590.990.990,990

ESTIMATED MATRIX

.990.990.990.990.990.990.991.989.991.990.990,990.990.990.990
.990.990.990.988.988.988.989.991.990.988.988.988.990.990.990
-990.990.990.988.977.973.969.967,969.973.977.987.990.990.990
990.990.990.987.978.942.934.931.934.942.978.987.990.990,990
-989.990.990.987.979.953.831.829.834.953.979.987,990.990,989
991.990.990.987.979.957.854.856.858.958.979.987,990.990,991
.989.990.990.987.979.953.843.843,847.954.979 987.990.990.989
.990.990.990.987.978.945.940,938.940.945.977.987.990.990.990
990.990.990.988.977.974.969.967.968.972.976.988.990.990.990
-990.990.990.988.987.987.988.988 988.988.989,989,990.990.990
990.990.990.990.989.989.989.991.991.990,990.990.990.990.990

The numbers in this Table are absorption
coefficients. 1.0 is no absorption. 0.0 is full
absorption

struction ol many lopologies. For most applications a simple
ring is preferable, as shown in Figure 3.

Scalability derives from the simplicity of the architec-
ture and the node manager. This, in turn, derives from the
concentration on algorithm design for ultra-large computing,
and on the idea of sending only the numerically intensive
parts of a computation to the Kilonode server. Growing a
system from 4 10 40 nodes involves little more than installing
the additional hardware.

The performance of Kilonode on a standard benchmark
program (1000x1000 matrix inverse) indicates that we
achieve an efficiency of almost 50% for a 1000 node ma-
chine. The relaxation problem is much simpler, requiring
much less communication and should have even better per-
lormance.

Without a machine such as Kilonode it is not possible 1o
entertain work of this kind. The development of neural net-
work algorithms is an art, requiring much experimentation.
We measure our compulting times in term of minutes rather
than hours, and that makes this work feasible.
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IV. RESULTS and CONCLUSIONS

In our present work we have used a linear activation func-
tion in order to gain a better understanding of the stability of
the basic neural network control loop. The stability is a func-
tion of M. With a suitable choice of 11 stable operation of the 1.1
is assured.

The results of image estimation with the use of backscatter
alone indicates that while we are able 10 discern the presence of
an absorber, the degree 10 which we can localize the absorber is
very poor. From this we have concluded that it is necessary o
introduce additional information, such as data from other
sources, either on the same face or other faces of the object, or
from a priori knowledge such as might be obtained form tech-
niques such as those proposed by Barbour.

The ability to discern the presence of an absorber based on
surface measurements depends on the signal 1o noise ratio and
on the sensitivity of the surface data to the position of the ab-
sorbing object. At present we have not performed measure-
ments Lo determine the noise levels, although the experimental
setup is in place.

We have however run many 2-D simulations with absorb-
ers at different depths, and results are encouraging. As a typical



example, an absorber at a depth of 10 cells, with a length of 5
cells in a medium whose width is 31 cells will produce dif-
ferences in reading, as compared with the homogencous
case, of about 5%. These we feel is very respectable and
should produce real data with adequate signal to noise ratio.

The introduction of data based on information derived
form other sources requires the use of data preprocessing or,
in neural network terminology, functional links. [9]. For ex-
ample when we introduce radiation on opposites sides of an
object it is natural to use the difference of the backscatter re-
sponse form each of the faces as primary input to the neural
network. In principal the neural network should eventually
learn this transformation, but we feel this is an unnecessary
computational burden. Similar considerations apply to the
use of data introduced into other faces of the object.

Figure 4 shows the results of a 2-D image obtained from
backscatter using a single source entering from the top, bot-
tom and each of the sides. In performing the iterations we
lake advantage of a priori knowledge of the location of the
absorber by desensitizing the layers near the surface during
the initial leaming phases. In this way the network attlempts a
correction at internal layers first. After this initial phase we
allow all of the layers to take part in the leaming process.

In Figure 4, the first 1000 iterations were performed
with the outer layers desensitized. After that 500 additional
iterations were performed allowing all of the cells to adapt. It
is important to note that early learning was not “unlearned”,
although there was some blurring of the edges.

V. FURTHER WORK

Transform methods are an important extension of this
work. There is no reason why the relaxation part of the solu-
lion cannot converge Lo a transform of the image, rather than
the image itself. However the choice of a suitable transform
is not clear at the present time.

Another arca of activity is in the stability of the neural
network solution. We have seen oscillatory behavior which
impedes convergence Lo a final solution, although the solu-
tion in the presence of instabilities is actually better. It is
clear that we must develop an adaptive learning procedure
wherein we change the gain of the neural network as a func-
tion of the iteration number, using the error measure as con-
trol.

We intend to explore the possibilities of a two layer net-
work with a suitable activation function between the layers.
One purpose of the second layer will be to compensate for
the fact that the “gain” between an interior cell and the sur-
face is very small. The function of the second transformation
is 1o compensate for this effect in an adaptive manner.
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To be sure, these results are preliminary, but it is clear o
us that as we explore larger models, which we are only able 10
consider because of the availability of a computing platform
such as Kilonode, the results will be sharpened. In particular
we must consider the effects of noise on the performance of
these neural network algorithms.
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