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ABSTRACT

In this paper, a reconstruction algorithm for fluorescence yield and lifetime imaging in dense scattering m
formulated and implemented. Two frequency domain radiation transport equations based on the diffusion a
imation are used to model the migration of excitation and emitted photons. In the forward formulation, a
element approach, which is specially effective for complex geometries and inhomogeneous distribution of m
properties, is adopted to obtain the required imaging operator and the simulated detector responses related to
photon fluxes on the boundary. Inverse formulation is derived based on the integral form of two diffusion equati
The technique is demonstrated by reconstructing spatial images of heterogeneous fluorophore distribution and
time using simulated data obtained from homogeneous and complex (i.e., MRI breast map) media containing objs
with fluorophore and with and without added noise.

Keywords: fluorescence optical imaging, image reconstruction, inverse scattering, diffusion approximation, ﬁ-
element method, CGD method

1. INTRODUCTION

Over the past several years, fluorescence studies of tissue have been explored as a potential tool to provide use
diagnostic information [1, 2]. Recently, these have been extended to include model studies of thick tissues [3-7] wk
have provided insight into the possibility of acquiring spatial maps of important physiological states and metabol
levels (e.g., tissue oxygenation, pH, Cat™, lipid environments, eic.,) derived from analysis of tomographic da
sets. These include reports by Chang et al. [8], O’Leary et al. [9] and Paithankar and Sevick-Muraca [10],
have described formulations that yield spatial maps of fluorescence yield and fluorophore lifetime based on inves
computations derived from data obtained from solution to the diffusion [9,10] and transport [8] equation.

In this paper, we extend recent computation and experimental studies [8, 11] by our group and describe resul
obtained that simultaneously compute images of fluorescence yield and fluorophore lifetime. These studies consi
a bounded medium having either a uniform background or an anatomically accurate background of the female brez
derived from MRI data. Included in these backgrounds are one or two inclusions, simulating a pathology (e.g., tume
that differs in their absorption and scattering contrast with the background and in the amount of fluorophore preses
Also modeled are examples in which a varying amount of fluorophore was present in the background. Solutions to &
forward problem were obtained using the finite element method. Inverse formulations were derived from a scatter®
integral equation which describe the perturbation produced by the added fluorophore using the technique describe
in [12]. Image reconstructions are performed using a regularized least squares approach based on conjugate gradies
descent (CGD) algorithm [13]. The results obtained demonstrate the ability to reconstruct images of fluoresces
yield and fluorophore lifetime in media having homogeneous and complex backgrounds.

2. THE MATHEMATICAL FORMULATION

It is known that propagation of photons through a dense scattering medium with low absorption can be accur
described by the diffusion approximation to the radiation transport equation. Consider one or more objects (
terers) with fluorophore embedded in a inhomogeneous scattering background medium occupying a domain Q wi
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boundary 2, such as human tissue. In the frequency-domain, the excitation field, u*(x', r;), at any location 7’ due
to an amplitude-modulated point source at location ry, and the subsequently produced emission field of fluorescent
photons, u™(r, '), at any detector position r can be represented by a coupled diffusion equation as:

V- [D*(x")Vu(r, )] + [—pi () — ps (') + :'%]u’(r',r,) =—6(r' —r,), (1)

and w
V- [DPE) VU (e + [-p (r) + i Ju (r, 1) = =ST(x), (2)

where superscripts z and m represent the excitation light and emission light, respectively, D* = 1/3(pZ + ps + p'*
the optical diffusion coefficient for excitation light, D™ = 1/3(ul* + p'™) is the diffusion coefficient for emission
light, u, and p are the absorption coefficient and the reduced scattering coefficient, p; the fluorophore absorption
coefficient associated with the local concentration of fluorescent probes, w the modulation frequency, v the speed of
light, and S™ the emission source, which is given by

L N q T )
S'"(r)—mu (x'). (3)
Here, 7 is called fluorescence yield, which is the product of fluorophore absorption coefficient, uf, and fluorescent
quantum yield, v, (i.e.,n7 = pgy). ¥ = 7/7o. To is the intrinsic lifetime of the fluorophore, and 7 the fluorophore
Lifetime.
The photon fluxes on €, corresponding to the excitation light and the emission light can be determined from
Fick’s law:
J*(r) = =D*(x)h - Vu®(r)|a,, (4)
and
J™(r) = -D™(r)a - Vu™(r)|q,, (5)
here n(r) is the normal unit vector of Q.
In this paper, we employ the finite element method to solve Egs. (1) and (2) with the zero fluence boundary
nditions, (i.e., u* =0 on Q; and v™ =0 on Q;), to obtain the solution of the forward problem. For solution of
the inverse problem, two step reconstructions are required in the general case where no previous knowledge about the
tical properties of the medium are known. The first solution is solved for the absorption and diffusion coefficients
the medium, and the second uses this result to compute the expected excitation field from which we derive the
aging operator followed by the fluorescence yield and fluorophore lifetime. Here we employ an inverse formulation
compute 67 and é7 based on a scattering integral equation similar to that previously described in [12] assuming
and D known.
By considering the actual medium as perturbation from a background, we define the position-dependent incre-
ntal changes in the fluorophore optical properties with respect to the background to be:

én(r) = n(r) —m(r), and é7(r) = 7(r) — n(r), (6)
[here the corresponding changes of the fluorescent photon density and the fluorescent photon flux are denoted as
6u™ () = w™(x) — uP(x) (7)
Bnd
8J™(r) = J™(x) — Ji* (). (8)

inserting Eq. (7) into Eq. (2) in such a way as to isolate the source term S™ corresponding to the background in
right-hand side, we have

V- [D™(r)Vu™(x,x") + [-pg (r) + 5%]“'“(1\ ') = =Sy (r) = £ (x'), )
Behere
"no_ UL Tyt
Sy (r') = I—son® (x') (10)
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and

f(x') = O )u* ('), (11)

where O is a complex function of fluorescence yield, 5, and fluorophore lifetime, =, and

00w, 4" = Tt - ) (12)

The volume integral equation for the perturbation of fluorescent photon density can be expressed by
Su™(r) = / O(x")u*(x")G™ (r,x)dr’, (13)
fy!
while the perturbation of fluorescent photon flux on the surface of the bounded medium can be given by

§J™(x) = —D™(r)i - Véu™(x). (14)

Using the finite element technique, let N and M denote the total number of the nodes and elements, respectively,

L the number of the nodes on the boundary, d the number of detectors for each source, s the number of sources, and
Q; the region of the j'* element.

The perturbation of fluorescent output flux vector §J™(P) at detector location (é1,€2,- - -, &) for p'* source
configuration can be expressed as

6J™P) = T su™®), (15)

where, T is a d x (N — L) transformation matrix, which can be computed from Eq. (3) using the FEM technique, and

[6um@]T = [6u]® 6u7®) ... 6u7®) ... 5uTP)] is the interior nodal field perturbation vector due to perturbations
6n and 67, in which

M
sup® = Yo f u*®)(r")G™ (rg, ') dr’.
j=1 Q;
(16)

Note that Jui” ) is the perturbation of the fluorescent photon density at the k** interior node due to the p** source.

- We can rewrite 5u™® in a matrix notation:
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su™®) = B(P)o, (17)
where OT =[0; O, --- Ou]. The entries of B®) are computed from
BY) = f u*®)(x')G™ (xx, r')dr". (18)
Q;
Substituting Eq. (18) into Eq. (16), 6J™(®) can be represented as
63m#) = T BP)0 = w0, (19)
where
we) =T B®), (20)
A complete perturbation equation can be obtained by Eq. (15) for all sources as:
§3™ = WO, (21)
where
w1 §Jm(1)
W= , 6= . : (22)
W) §J™(s)



In fact, only those 6uf) connected to detector locations contribute to §J(P). Therefore, for a complete weight matrix
W, only s + a x d FEM runs are required, where a is the number of nodes connecting with each detector location
which can vary with the type of element and generated mesh used in FEM. For 2-D cases using linear triangular
elements, « is usually a value equal to or less than 3.

Object function O can be solved from Eq. (21), from which 67 and 67 can be derived from the real and imaginary

parts of the object function O. So, we have from Eq. (12):

M + 61 U
= - 3
RO = i Tae =
and
_ [+ bn)(m + 67) s
0= 1+w?(n+67)2  1+4w?r?|’ @4
Solving the above two equations, 6n and 67 can be obtained as follows:
?’;.'b‘."g 5 & Im(O)
1+ wn QL
oT = - T (25)
Ty TR0
and
M6 2 2
n=|——m——s 1 — . 2
n 1+“.’21ﬁ;‘,+}?.¢=:(0) 14+ w?(m+67)%] —ms (26)

The expression given in Egs. (25) and (26) consider the general case where fluorophore is present in the back-
ground. For most practical applications of clinical interest, this level might well be small and can be safely ignored
as previously considered [9]. In situations where it is not, estimates can be made in which case iterative procedures
should be adopted.

3. SIMULATION RESULTS

In this section, we show some results to demonstrate a working implementation of the reconstruction algorithm
described above. We provide examples of representative results obtained from two different bounded media, one
homogeneous and other complex, the latter being represented by a MRI map of the breast. Five different test cases
were explored. Case I-IV are all based on an otherwise homogeneous background having cylindrical geometry to
which fluorophore was added to an included object and/or to the background medium. Case V considers as similar
situation except the background is represented by a 2-D MRI image of an adult female breast segmented into fat
and parenchyma tissue. Added to this are two inclusions whose absorption, scattering and fluorescent properties
differ from each other and from the background tissue. All computations made are 2-D for both forward and inverse
calculations. The latter were computed in the presence and absence of up to 3% added noise and limited to the first
Born approximation.

3.1 Fluorescence Imaging in Simple Media

In our implementation we used the Dirichlet boundary condition u = 0 on the physical boundary, and 10 point
sources evenly spaced at a position d & 1/u) below the physical boundary. For each source position photon flux
values corresponding to a total of ten detectors, uniformly spaced on the physical boundary, were obtained yielding
a total of 100 source-detector measurements. The medium has a radius of 4 ¢em and was divided into 1800 elements.
The source modulation frequency is 50 MHz. the intrinsic life time, 79, of the added fluorophore was 10 nsec. Table
1 lists the optical properties of the added inclusions and background media for the different test cases examined.

Case I: Here we considered a homogeneous medium having a total optical thickness of approximately 40 trans-
port mean free pathlengths. Added to this was a single diamond shaped inclusion having a diagonal dimension of
approximately 1.3 cm, and absorption and reduced scattering values are double those of the background. Added
fluorophore was restricted to the inclusion. Reconstruction results are shown in Figure 2.
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Table 1: Optical Properties Assigned to the Test Cases

Background Medium Target Medium 1 Target Medium 2
Test Cases
a b s T Ha . T La T4 e
(em™) | (em™1) | (em™?) | (ns) | (em™) | (em™Y) | (em=1) | (ns) | (em=2) | (em™?) | (em™})
Case I 0.02 5 - - 0.04 10 0.004 1 - - -
Case 11 0.02 5 0.001 0.5 0.04 10 0.004 1 - - =
Case V F* 0.04 10 0.0005 0.5 0.07 6.0 0.001 1 0.06 2.0 0.0015
P 0.08 7.0

= F represents Fat.
#x P represents Parenchyma.

Case II: This test is identical to case I, except with additional fluorophore being present in the background. For
this example it was assumed that the properties of the fluorophore present in the background were known, a priors,
and thus the perturbation was limited to added fluorophore in the inclusion. Reconstruction results are shown im
Figure 3.

Case III: this test is identical to case II except no prior knowledge regarding the background fluorophore prop-
erties are assumed. Here the perturbation is due to the fluorophore being present in different amounts in both the
background and inclusion. Reconstruction results are shown in Figure 4.

Case IV: This test serves to determine the ability to recover the properties of fluorophore uniformly distributed
in a uniform medium. The background optical properties are the same as in case I except no inclusion is present,
rather added fluorophore is distributed uniformly. Reconstruction results are shown in Figure 5.

3.2 Fluorescence Imaging in Complex Media

To model light propagation in tissue, we acquire a MRI image of the breast from an adult volunteer as described
previously [14]. A transverse section [7] located approximately half-way between the chest wall and nipple, shown in
Figure 1, was reconstructed from 24 sagittal images and segmented according to fat (darker regions) and parenchyma
(lighter regions) tissues. Added to this, symmetrically displaced from the center, were two diamond shaped inclusions
having a diagonal length of approximately 0.9 cm. Optical properties of the target and those of the background tissue
are listed in Table 1. To simplify computation of the flux associated with an irregular boundary, we extended the
boundary of the breast to conform to circular geometry having a radius of 4 cm. The properties of the extended
regions were arbitrarily designated to correspond to-fat tissue. The measurement geometry used here was the same
as that employed with the simple phantom above. The total optical thickness of the breast phantom is approximately
80 transport mean free path lengths.

Case V: This test explored our ability to spatially resolve two added inclusions having different fluorescence yield
and fluorophore lifetime values in the presence of fluorophore in the background tissue whose properties were known
a priori. Results shown in Figure 6 are for the case where contrast between inclusions and background media is low.
Not shown are test cases where higher contrast between inclusion and background is present and similar results were
obtained.

4. SUMMARY AND DISCCUSION

In this paper, we present a reconstruction algorithm for fluorescence yield and lifetime imaging in a bounded dense
scattering media based on diffusion model of propagation of fluorescent photons. A finite element approach is adopted
in solving the forward problem to compute the simulated detector responses associated with the photon fluxes on
the boundary and to obtain the required imaging operator. The inverse formulation is derived based on a scattering
integral equation which describes the perturbation produced by the added fluorophore. Image reconstructions are
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Figure 1: The distribution of the absorption (2) and diffusion (b) coefficients in an axial slice derived from the MRI
data. Two “pathologies” are added to the background medium. -

performed using a regularized least squares approach based on CGD algorithm. The results obtained show that
for a single target (cases I, IT and III) in a homogeneous background, the target position can be accurately located
with computed lifetime values being more accurate than fluorescence yield values even up to 3% noise is added.
Qualitatively similar results are obtained in the case of two targets located in heterogeneous background media (i.e.,
MRI data), but with greater sensitivity to added noise. We have also shown that recovery of accurate target position
1s possible in the presence of background fluorophore with 3% added noise.

Results shown in Figure 5 have added significance. Here we have examined the ability to recover fluorophore
properties when the perturbation is uniformly distributed throughout the medium. Results obtained demonstrate a
large artifact in the vicinity of the sources even in the absence of added noise. We believe this result can be traced
primarily to the boundary conditions employed. Here, selection of Dirichlet boundary conditions was made in part
for convenience and partially from the expectation that knowledge of exact boundary conditions in any physical
measurement on an unknown medium, will never be known with certainty. The assertion of zero intensity at the
boundary is clearly not physically accurate, especially near the source. Despite this, inspection of results for cases I-II1
show predominately artifact free results in the absence of added noise and acceptable solutions even in the presence
of 3% noise for cases I and II. Case III, which has perturbation throughout the medium, produces a qualitatively
ieorrect solution in the presence of 3% noise, but has enhanced artifact near the boundary. Comparison of these
#inding, together with results from Figure 5 indicate that the error introduced by Dirichlet boundary conditions is

nlinear, having its maximal effect near the physical boundary. In spite of this, we find it encouraging that for a
trally buried target, the most difficult region to detect, it is possible to recover target location with good precision
d obtain quantitatively accurate results for fluorophore life time.
In summary, the present studies serve to confirm and extend original reports from our group [8,11] based on
ratory experiments that qualitatively accurate images of fluorescent objects buried in dense scattering media can
recovered from tomographic measurements.
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igure 2: Reconstruction images of fluorescence yield 7 (left figure) and lifetime é7(nsec) (right figure) with and
ithout added noise for Case I (simple medium) containing centered target. Perturbation = added fluorophore in
target only; no fluorophore present in reference medium.
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Figure 3: Reconstruction images of fluorescence yield 67 (left figure) and lifetime 67(nsec) (right figure) with and
without added noise for Case II (simple medium) containing centered target. Perturbation = added fluorophore in
target only; fluorophore present in background reference and target medium.
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Figure 4: Reconstruction images of fluorescence yield 67 (left figure) and lifetime é7(nsec) (right figure) with and
without added noise for Case III (simple medium) containing centered target. Perturbation = added fluorophore in

target plus background; no fluorophore present in reference medium.
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Figure 5: Reconstruction images of fluorescence yield é7 (left figure) and lifetime §7(nsec) (right figure) with and
without added noise for Case IV (simple medium) without centered target. Perturbation = added fluorophore in
background; no fluorophore present in reference medium.
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Figure 6: Reconstruction images of fluorescence yield 67 (left figure) and lifetime é7(nsec) (right figure) with and
without added noise for Case V (MRI breast map) containing two separate targets. Perturbation = added fluorophore

in target only; fluorophore present in background of reference and target medium.
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