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ABSTRACT  

In this report, we present a method to reduce the cross–talk problem in optical tomography.  The method described is an 
extension of a previously reported perturbation formulation related to relative detector values, and employs a weight matrix 
scaling technique together with a constrained CGD method for imaging reconstruction.  Results from numerical and 
experimental studies using DC measurement data demonstrate that the approach can effectively isolate absorption and 
scattering heterogeneities, even for complex combinations of perturbations in optical properties.  The derived method is 
remarkably stable to errors originating from an insufficiently accurate estimate of properties of the reference medium. 
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1.  INTRODUCTION 

The ability to accurately define the absorption and scattering properties of tissue could significantly add to the diagnostic 
sensitivity and specificity of optical measurements.  In the case of imaging studies, a common problem is the issue of 
parameter cross–talk.  This refers to instances where, for example, localized variations in absorption also appear as localized 
variations in scatter.  This issue can arise from fundamental reasons related to the intrinsic information content of a data set, 
as well as from reasons related the numerical methods used to compute parameter maps.  In the case of DC measurement 
data, Arridge and Lionheart1 and Hebden et al.2 have claimed to have rigorously proven that there is an underlying non–
uniqueness in the inverse problem, and have strongly emphasized that total intensity alone is insufficient to distinguish 
effects of absorption from scatter. 

In this report we describe a new algorithm (i.e., the normalized–constraint algorithm) for DC imaging, and use it to 
demonstrate the ability to separate the effects of absorption from scatter under a wide range of conditions, as evaluated by 
numerical simulations and experimental laboratory studies.  These results clearly demonstrate that, contrary to previous 
assertions,1,2 DC imaging methods are fully capable of characterizing spatial variations in the absorption and scattering 
properties of highly scattering media. 

2. METHODS 

The normalized–constraint algorithm for minimizing coefficient cross–talk employs a three–step process.  First, we work 
with relative detector readings instead of absolute values.  We do this in recognition of the practical limits imposed on 
obtaining reliable absolute measurement data from arbitrary structures such as tissue.  We also do this in recognition that 
perturbation methods, in general, are sensitive to yield grossly incorrect solutions should the selected reference medium differ 
sufficiently from the actual target background properties.  As described in recent reports,3–6 we have shown that selection of 
insufficiently accurate reference media can severely alter the information content of the data vector.  Once corrupted, the 
recovery of images relatively free of artifact can be very difficult or impossible, even with use of full Newton updates.  The 
second step scales the weight matrix by normalizing the column vectors to their respective mean values.  This makes the 
weight matrix more uniform and better conditioned, and serves to suppress numerical errors and accelerate convergence.7,8  
The third step is to impose constraints on iterative solutions of absorption and diffusion coefficients within the CGD method 
used for solving the resulting system equation.  Ordinarily, this option is not applicable to the general case in which the 
direction of the perturbation is unknown.  As is described below, we have found that by adopting a two–step process wherein 
solutions are obtained for both signs of the constraints and then summed, satisfactory solutions can be obtained.  The details 
of this methodology are described subsequently. 



2.1. Forward model  

Light propagation in a scattering medium was modeled as a diffusion process.  For a domain / having a boundary �/, this is 
represented by the expression 

                ( ) ( ) ( ) ( ) ( ),a sD I Iµ δ ∇⋅ ∇ − = − − ∈ Λ r r r r r r r ,      (1) 

where I(r ) is the photon intensity at position r , r s is the position of a DC point source, and D(r ) and Pa(r ) are the position–
dependent diffusion and absorption coefficients, respectively.  Here we define the diffusion coefficient as 
D(r ) = 1/{3[µa(r ) + µs�(r )]}, where Ps�(r ) is the reduced scattering coefficient. 

2.2. The inverse formulation 

The optical inverse formulation was based on the normalized difference method3–6 and has the following form: 
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where aδ� andδ D  are the vectors of cross–sectional differences between the optical properties (absorption and diffusion 
coefficients, respectively) of a target (measured) and a “reference” medium (computed or measured) used to generate the 
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associated with the absorption and diffusion coefficients of a selected reference medium, respectively; and δI r represents a 
normalized difference of detector readings between two sets of data, which is defined by the equation 
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Here, I r
 is the set of computed detector readings corresponding to the selected reference medium, I  and I0 represent two sets 

of measured data (e.g., background vs. target, or time–averaged mean vs. a specific time point, etc.) and M is the number of 
source–detector pairs in each set of measurements. 

2.3. Weight matrix scaling 

We have previously described a scaling method that serves to improve the conditioning of the weight matrix.7  Here we 
extend this method to simultaneously recover absorption and diffusion coefficients.  The effect of scaling the weight matrix is 
to make it more uniform, which can often improve conditioning of the matrix.  A variety of scaling approaches could be 

adopted, but we have chosen one that scales each column of ( )a

r
µW and ( )D

rW  to the average value of the column vector.  The 
resulting new weight matrices have the form: 
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where k can be µa or D, and R(k) is the normalizing matrix with the following entries: 
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2.4. Solutions of constrained CGD method 

For most measurement geometries, since the weight matrixrW� is not symmetric positive definite, usually a least–squares 
solution of the system of linear equations shown in Eq. (6) is calculated by minimizing the mean–squared error E, which is 
represented as 
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obtained by setting the derivative of E to 0, i.e., 
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When the CGD method is applied, instead of explicitly solving Eq. (8), we have the following iterative formulation for 
computingδ x� : 
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The iterative procedure can be described as follows: 
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In our study, positive or negative constraints are separately imposed on the reconstruction results, ( )n
aδ�� and ( ) ,nδ D�  after 

each iteration.  In some instances we assume prior knowledge of the direction of the perturbation and apply the appropriate 
constraint.  In the more general case, we recognize that more than one approach could be adopted to implement solution 
constraints.  For instance, constraints could be applied in either a homogeneous or heterogeneous manner.  In the case of a 
homogeneous constraint, either a positivity or a negativity constraint could be imposed on both coefficients.  For the 
heterogeneous case, a positivity constraint could be imposed on one coefficient and a negativity constraint on the other.  
While we have not yet full explored the complete parameter space involving imposed constraints and the direction of the 
perturbations, it has been our experience thus far that the heterogeneous case provides the best solution.  In addition, if one 
assumes no prior knowledge, then arbitrarily imposing a constraint could result in a grossly incorrect solution.  We avoid this 
problem by adopting a two–step process, first imposing one set of constraints (positivity for one coefficient and negativity for 
the other), and second reversing the constraint directions, and summing the two solutions. 

The CGD method iteratively updates the reconstruction on the basis of the previous reconstruction result ( 1)nδ −x� and the 

entire set of preceding gradient vectors (0) (1) ( 1), , , n− ⋅⋅ ⋅ g g g  and conjugate gradient vectors (1) (2) ( ), , , n ⋅⋅ ⋅ d d d .  Imposition of 

constraints on ( )nδ x� may lead to miscalculation of the gradient and conjugate gradient vectors.  It also results in the loss of the 



A–orthogonality properties, so that the reconstruction may not converge after a large number of iterations, and may even 
diverge in some cases.  The criterion we use to detect divergence is that the ratio of two consecutive mean–squared errors, 

( )
( )

( )

1 ( 1)

nn

n n

EE
r

E E

δ

δ− −
≡ =

x

x

�

�

,      (10) 

 where ( )( )nE δ x  was defined in Eq. (7), is greater than 1.  Obviously, if the mean–squared error increases during any one 

iteration, it will continue to increase in all subsequent ones.  Once divergence is detected, we reset the conjugate–gradient 
vector by taking ( ) 0n =d  and restart the CGD reconstruction using ( 1)nδ −x� as the initial estimate of δ x� .  By doing this, the 
constrained CGD reduces, in the worst–case limit, to a standard gradient descent algorithm. 

After the intermediate solutions aδ�� and δ D�  are obtained, they are rescaled to get the final results using the formula: 
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For all reconstruction results shown, solutions were limited to a first–order computation involving 1000 iterations.  The finite 
element grid used comprised 1296 elements. 

3. SIMULATION RESULTS 

Figure 1 shows a sketch of the target medium considered for 
the simulation studies.  The optical properties of the 
background medium are Pa = 0.04 cm-1 and Ps� = 10 cm-1 
Included are up to four objects having the dimensions and 
locations shown.  Each tomographic simulation considered 6 
sources and 18 detectors, providing 108 source detector pairs.  
Computed were the detector responses for the target medium 
and those corresponding to a selected reference medium 
having the same external geometry, size, and source–detector 
configuration.  Simulated data from these calculations were 
subsequently analyzed using the methods described above. 

Figure 2 shows the original and reconstructed profiles for the 
target medium considered.  Columns (a) and (c) are the 
original profiles for GPa and GD, respectively; columns (b) 
and (d) are the corresponding reconstructed profiles.  In the 
first row are two objects: left, only Pa is increased; right, only D is increased.  In the second row, we considered four objects 
for which only one coefficient was perturbed in any one object (left and right, Pa was increased; top and bottom, D was 
decreased).  In the rows 3–7 we considered the more general case in which perturbations in both Pa and D can occur 
simultaneously for any object.  In row three, Pa and D for both objects were decreased and increased, respectively by an 
amount indicated by the gray scale.  In row four, three objects are present.  The absorption coefficient is increased in the left 
and top inclusions, while the diffusion coefficient is decreased in the right and top inclusions.  The geometric arrangements 
of the objects in rows five and six are the same as in row three and row four, respectively, These cases differ from the former 
ones in that Pa was increased in row five (rather than decreased, as in row three) and D was increased in row six (rather than 
decreased, as in row four).  It is worth noting that the latter two cases are similar to the more difficult examples explored by 
Arridge and Lionheart,1 in which the influence of an increase or decrease in absorption can be offset by a decrease or increase 
in scattering (i.e., increase or decrease in D).  These are conditions that produced evidence for solution nonuniqueness using 
intensity–only data.  In row seven, Pa and D are decreased and increased respectively for the left–hand object, while the 
opposite trend occurs in the right–hand object. 

Inspection of the reconstructed profiles shows that in each case we can effectively isolate perturbations in the absorption and 
diffusion coefficients, whether or not they are co–located.  In the first six cases, this was accomplished by assuming prior 
knowledge of the direction of the perturbations and applying the appropriate constraints as described in Methods.  In practice, 
this could correspond to situations where the influence of a particular manipulation of tissue (e.g., inflation of a pressure cuff)  
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Figure 1: Target geometry and source-detector configuration for 
simulation cases. 
Figure 1: Target geometry and source-detector configuration for 
simulation cases. 



would impose an expected response (e.g., 
venous congestion and hence an increase 
in hemoglobin absorption).  The more 
general case, shown in row seven, 
however, is the one in which the 
perturbation in either coefficient could be 
positive or negative.  To capture this 
information we applied a two–step 
process.  First we imposed a positivity 
constraint on one coefficient and a 
negativity constraint on the other.  
Second, we reversed the direction of 
these constraints and sum the two 
solutions together.  the resulting images 
clearly show that we can achieve 
parameter isolation with a high degree of 
fidelity and spatial accuracy.  In fact, 
common throughout is the finding that 
the spatial localization of the 
reconstructions is in most cases excellent.  
This is even more notable when it is 
considered that the results are limited to a 
first–order solution. 

4. EXPERIMENTAL RESULTS 

To validate the normalized–constraint 
method, we performed a series of 
laboratory studies on phantom vessels 
containing one or more objects whose 
optical properties differ from a 
homogeneous background primarily in 
either its scattering or scattering and 
absorption coefficients.  In addition to 
acting as optical perturbations, we also 
introduced dynamic behavior by moving 
the objects in a circular motion as 
indicated, while all the time acquiring 
fast tomographic data sets using the DC imager described in an accompanying report.9 

Sketches of the target media explored are shown in Figure 3.  In case 1, we introduced three white plastic rods (6 mm dia.) 
composed of white Delrin´ into a cylindrical vessel having a diameter of 7.6 cm and filled with 1% (v/v) Intralipid´.  It has 
been reported that the optical properties of white Delrin are Pa = 0.02 cm-1, Ps� = 12 cm-1 ,10 while those of 1% Intralipid are 
Pa = 0.02 cm-1, Ps� = 10 cm-1 .11  Thus, it is only the scattering coefficient of the rods that is increased (decreased D) relative 
to the background.   While we did not independently verify these values, we did observe that the light intensity was increased 
on the same side of the source, and decreased on the side opposite the source in the presence of the rods, a finding consistent 
with the reported coefficient values.  In case two, a similar experiment was performed, except that a black glossy metal rod of 
comparable diameter was substituted for one of the white plastic rods.  We treated this substitution as introducing a 
perturbation in both absorption and scatter.  In cases three and four we performed similar studies, and increased the 
complexity of the medium by introducing a 3–mm–thick clear plastic layer, serving as an optical void.  Theses cases were 
intended to determine whether our methods could correctly isolate optical perturbations (and dynamic behavior) under 
conditions wherein the assumptions underlying the diffusion equation are strongly violated.  As a further confirmation, the 
above–described experiments were repeated in numerous live demonstrations using our DC imaging system being exhibited 
at this conference.  Data acquisition involved 16 equally spaced source positions with 16 co–located detectors (256 source–
detector pairs).  The illumination wavelength was 785 nm, and full tomographic scans were acquired at 3 Hz for 
approximately 25 seconds (75 scans). 

                           (a)                      (b)                      (c)                      (d) 
 

Figure 2: the original and reconstructed profiles for the target medium considered. 
Columns (a) and (c) are the original profiles for GPa (cm-1) and GD (cm), respectively; 
columns (b) and (d) are the corresponding reconstructed profiles, respectively.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 shows a typical reconstructed profile for absorption and diffusion coefficients, for case 1.  Because of format 
limitations, movies of the reconstructed image time series cannot be presented in this report, and instead we show 
representative image frames.  Inspection of the other image frames reveals that all are similar to those shown here.  In every 
case, almost complete separation of absorption from scatter was obtained.  Careful inspection the absorption map reveals that 
artifact is restricted to the region near the boundary, and the interior is almost completely featureless.  The reconstructed 
diffusion map shows, with high contrast, the correct locations of the inclusions.  A quantitative comparison reveals that the 
amplitude of computed absorption perturbation is quite small in absolute terms and also small compared to the magnitude of 
the computed perturbation in D.  That is, there is minimal cross—talk.  Another feature we have observed particularly in 
solutions obtained using Eq. (2) is that whereas the recovered δµa and δD values scale with the selected reference medium, 
their ratio does not.  Thus we find that the relative magnitude of cross–talk between the coefficients maps is essentially 
independent of the chosen properties of the reference medium. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 5 shows that similar results are obtained for case 2.  Again, because of format limitations, movies of the image maps 
are not available, and only four of the 75 computed image frames are shown.  Results obtained in this case are qualitatively 
similar to these reported for row 4 in Figure 2.  The presence of the plastic rods is revealed only in the reconstructed diffusion  
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Figure 3.  Experimental phantom cases 1, 2, 3, and 4. 

Figure 4: The top and bottom rows are the reconstructed profiles of absorption and diffusion coefficients, 
respectively, from representative image frames for case 1. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
maps, whereas images of the glossy metal rod appear in both reconstructed maps.  Note, as with case 1, nearly complete 
isolation of absorption from diffusion coefficient is obtained for the included plastic rods with only a minimum distortion of 
object shape and location. 

Data in Figures 6 and 7 show results obtained in the presence of a circular optical void for selected image frames.  This 
geometry was considered as a crude representation of the layered structure that occurs in the head.  Here, the void is meant to 
represent the clear fluid space occupied by cerebrospinal fluid in the subarachnoid space.  We have considered this case 
because it has been reported by Dehghani et al.12 that reconstruction methods based on the diffusion approximation perform 
poorly under conditions similar to those examined here.  In the case of a single inclusion (white plastic rod, Figure 6), we 
observe that the occurrence of an intervening optical void does not prevent new complete separation of the coefficient 
profiles.  Data in Figure 7 shows that qualitatively similar results are obtained using three plastic rods in terms of minimizing  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: The top and bottom rows are the reconstructed profiles of absorption and diffusion coefficients, 
respectively, from representative image frames for case 2.  Arrows identify spatial coincidence of the 
reconstructed absorption and diffusion profiles for the glossy metal rod.  

Figure 7: The top and bottom rows are the reconstructed profiles of absorption and diffusion coefficients, 
respectively, from representative image frames for case 4. 

Figure 6: The top and bottom rows are the reconstructed profiles of absorption and diffusion 
coefficients, respectively, from representative image frames for case 3. 



cross–talk, though increased artifact levels are present.  Note that the rods in this case are more centrally located than in case 
1, and the positions of the diffusion–coefficient minima in the images correspond closely to the actual spacings of the rods.  
These findings show that, using the methods described here, we do not encounter the difficulties that Dehghani et al.12 have 
reported using diffusion–based imaging codes. 

5. DISCUSSION AND CONCLUSIONS 

A working hypothesis of our group is that measures of dynamic variations in the optical properties of tissue can significantly 
extend the utility of optical imaging studies for diagnostic and monitoring purposes.  In a series of recent reports,6,15–17 we 
have shown by numerical simulation and experiment the capacity to identify and accurately characterize complex dynamic 
states arising from linear and nonlinear dynamic phenomena.  Key to these studies has been the use of new a formulation to 
the inverse problem that relies on the analysis of normalized detector data.3–6  As described in Methods, we evaluate the 
quantity (GI r)i = [(I  – I0)i/(I0)i](I r)i (i = 1,2,…,M).  Critical to this formulation is appreciation that normalized quantities can be 
obtained with much greater reliability than can absolute measures.  Thus, for a typical case we consider the situation where 
our data vectors are expressed as perturbations about a temporal mean value.  Significantly, we have shown that using this 
approach we can accurately define dynamic behavior without the need for instrument calibration.  We have also observed that 
this scheme is mainly insensitive to image distortion caused by selection of an insufficiently accurate reference medium.3–6  
In these previous studies, images were reconstructed without use of the matrix scaling method.  Our experience with these 
methods has been, similar to that of other investigators,18 that the recovered images are subject to parameter cross–talk. 

Matrix scaling methods are known to improve the conditioning of a matrix, thereby leading to more stable solutions.7,8  In the 
current report we have combined this capability with the use of range constraints in an effort to improve separation of the 
coefficient values.  Overall, we have found that there are three steps essential to producing stable solutions with minimal 
cross–talk.  These are (1) use of normalized data, (2) use of the matrix scaling method, and (3) application of appropriate 
constraints on solutions within the CGD method.  In the third step, different approaches can be applied.  Most successful are 
those that employ a priori knowledge of the direction of the perturbation.  We recognize, however, that in the more general 
case the directions of the perturbations are unknown, and can involve both coefficients at any location.  In these cases we 
apply a two–step process.  First, we impose a positivity constraint on one coefficient and a negativity constraint on the other.  
Second, we reverse the direction of these constraints and sum the two solutions together.  The solutions obtained are 
frequently qualitatively accurate (i.e., the correct direction of the perturbation is identified, as is target location, and 
parameter cross–talk is minimized).  These findings are contrary to the assertion that total intensity data alone (i.e., DC 
methods) are insufficient to distinguish effects of absorption and scatter.1,2 

A restriction we have imposed in this study is to limit inverse computations to first–order solutions.  We have imposed this 
mainly in recognition of the practical limits that inversion of large number of data sets (e.g., an image time series) would 
impose should iterative recursive updates be attempted.  It is our experience, however, that especially as it relates to defining 
and characterizing the dynamics of the optical properties of a target, we are nevertheless capable of achieving remarkably 
accurate estimates of these using the described methods, even when they are restricted to computing  first–order solutions. 

It is worth noting that results presented here represent only a small portion of a more comprehensive investigation of 
numerous other test cases, including situations involving complex spatiotemporal coincident variations in absorption and 
scattering coefficients.13,14  In all, we have found that the described procedure produces results that are stable to inaccurate 
estimates of the reference medium and can effectively isolate variations in the absorption and scattering (diffusion) 
coefficients, in least in the case of simply structured target media. 
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