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ABSTRACT
We have constructed a 64 channel dual breast imager for simultaneous bilateral time-series detection.  Studies on 37 
subjects (14 with cancer) shows that tumor detection and localization is possible with high sensitivity and specificity.  
Validation studies (10 cancer subjects) demonstrate that the diagnostic metrics derived from analysis of the original 37-
subject data correctly predict cancer status in a majority (60–90%) of cases.

OVERVIEW
Here we present results of a systematic examination of data obtained from 37 subjects who comprise a cancer group 
and a control group, each of whom underwent a simultaneous bilateral breast scan using the NIRx dynamic 
mammographic imager.1 The two groups were matched in terms of age and body mass index.  The cancer group 
contained 14 subjects, while the control group included 23 subjects.  The composition of the latter group was 
heterogeneous, in that it included both healthy subjects and subjects who had other breast pathologies (non-cancers).  
Data collection involved two contiguous measurement periods: baseline measurements, and measurements taken while 
the subjects were performing one or more quantitative Valsalva maneuvers (QVM).  Data analysis was performed to 
answer three principal questions:

1.  What are the diagnostic predictor values for globally derived metrics?

2.  To within the spatial scale of a breast quadrant, how accurately can tumors be located?

3.  How accurate are estimates of tumor size for subjects whose quadrant localization is correct?

The selection of diagnostic metrics was motivated by knowledge of differences between the vasculature of tumors and 
healthy tissue, and of the responses that can be expected, from each, to a vascular challenge.  Three groups of metrics 
were devised.  Multiple parameters were evaluated for each group, in many cases using several alternative 
formulations for the differences between the responses of each subject’s left and right breasts.

METHODS

1) Subjects:

Table 1 lists the age, tumor size and tumor location, for subjects diagnosed with breast cancer.  Tumor sizes ranged 
from <1 cm to >7 cm; of these, 6 were in the left breast, 7 in the right, and 1 bilateral (the last case folded into the 
right-breast tumor group, as her right-breast tumor was larger).  Table 2 lists the age and health status of the 
heterogeneous control group (N = 23), who had a variety of lesions and prior surgical procedures on the breast.  Table 
3 reports the summary statistics for demographic comparisons between the two groups; they are not statistically 
different with respect to age or body-mass index (BMI).

2) Measurement Protocol:

After giving her informed consent, each subject lay prone on the measurement gantry, with both breasts hanging 
pendent.  The dual measuring heads were adjusted to make comfortable contact with the breasts.  The instrument gain 
settings appropriate to each individual breast (961 source-detector pairs/ wavelength/ breast) were found by using an 
automated routine.1 Dual-wavelength time-series optical tomographic data were collected during two consecutive 
measurement periods: baseline and provocation.  Baseline data were collected for a period of 10 minutes with the 
subject at rest.  Provocation results were obtained while the subject held a 40 mm resistance for a period lasting up to 
30 seconds.  Four QVMs, with a 4-minute recovery period after each, were attempted.  In practice, only 21 subjects 
correctly performed at least one.

3) Time-series Image Recovery:

Collected data were analyzed, using previously described software2 and algorithms3, to produce a time series of 
volumetric images for each Hb state parameter: HbOxy, HbDeoxy, HbTotal, and HbO2 Sat.

4) Data Analysis for Tumor Diagnosis:

4.1) Hb-State Time-series-derived Metrics [Table 4]:

• Group 1: Indices of resting vasomotion amplitude

• Computed from baseline measurement data

• Governing hypothesis is that tissues exposed to hypoxic environments have increased amplitude at 
vasomotor frequencies

• Group 2: Index of spatially coordinated dynamics

• Computed from baseline measurement data

• Governing hypothesis is that blood delivery to affected breasts is less spatially coordinated than that to 
healthy breasts

• Group 3: Measures of pressure-induced blood volume and oxygenation shifts

• Computed from data collected during QVM

• Governing hypothesis is that a tumor will increase a breast’s hemoglobin oxygen desaturation in response 
to QVM, increase the blood volume change, and introduce a response time lag.

4.2) Formulations for Inter-breast, Intra-subject Comparisons [Table 4]:

• Compute difference between metric values for each subject’s two breasts

• Tumor minus non-tumor for training-set cancer subjects

• Left minus right for training-set non-cancer subjects, and for validation-set subjects

• Compute diagnostic accuracy parameters for six “normalizations” of the difference

• Difference divided by larger, smaller, or average of the two individual-breast values

• Difference multiplied by larger, smaller, or average of the two individual-breast values

4.3) Univariate Tests of Diagnostic Ability [Tables 4,5]:

• Treat each metric/formulation/Hb-state permutation separately

• Unequal-variance t-test for difference between means of CA and non-CA subgroups of the training set

• Tabulate which metrics yield statistically significant differences

• Perform spot-checks with non-parametric test (Mann-Whitney), to ensure that small sample sizes is not an issue

4.3) Multivariate Tests of Diagnostic Ability [Table 6]:

• For each difference formulation:

• Postulate a multivariate predictive model, consisting of an unknown linear combination of all univariate
predictors that yield statistically significant differences between the sub-group means

• Use a logistic regression4 (LR) algorithm to find the optimal coefficients for the multivariate model

• Eliminate least significant metric from the model and repeat LR computation, until performance of the 
reduced multivariate model begins to degrade (i.e., remove redundant metrics)

• Combine metrics for different Hb states, but not (yet) for different difference formulations

• Use leave-out-one cross-validation5 to determine sensitivity of multivariate predictive models to idiosyncrasies 
of the training-set subjects 

• Predictive models including Group 3 metrics can consider only 21 subjects; models including only Group 1 
and/or 2 metrics consider all 37 subjects

5) Data Analysis for Tumor Localization (Breast-Quadrant Level) [Table 7]:

• Re-compute univariate diagnostic metrics, for each subject’s eight breast quadrants separately

• Determine which quadrant has the largest (Groups 1 and 3) or smallest (Group 2) metric value

• Tabulate the number of subjects for which each metric identifies the correct quadrant, and the number of metrics 
that correctly localize each subject’s tumor

6) Data Analysis for Tumor Sizing [Table 8; Figures 1,2]:

• Tumor-volume estimates computed for only those CA subjects whose tumors were correctly localized

• Volume estimation based on Group-3 data

• 50% of maximum QVM response amplitude chosen as a threshold value

• Count the number of voxels in tumor-quadrant volume that have QVM amplitudes exceeding the threshold

7) Data Analysis for Validation Study [Table 9; Figure 3]:

• Compute values of previously employed inter-breast, intra-subject univariate metrics for the subjects in the 
validation set

• Combine new metric values with multivariate-predictor coefficients derived from the training-set subjects, to 
compute an estimated probability of CA for each validation-set subject

FINDINGS/CONCLUSIONS

Question 1:

• Diagnostic sensitivity, specificity, PPV, and NPV all vary over a range of 43-100%, depending on the particular 
combination of metric and inter-breast difference formulation, and whether the computations are based on 
individual or combined metrics.

• Univariate data analysis:  Clinical predictive values, over the complete set of available metrics and formulations, 
range from 57 to 91%.  Mean values for these diagnostic accuracy indices range from 60% to 86%.  
Corresponding values averaged over all data groups, parameters and formulations range from 69% to 81%.

• Multivariate data analysis:  In many instances the composite clinical predictive values increase markedly, 
ranging from 82% to 100%, with the best-case composite having minimum values >90% for all measures.

• Cross-validation procedure: Predictive values declined only modestly in most cases.  The best-case cross-
validation result, encompassing all three data groups, yields values of 100%, 70%, 73% and 100% for diagnostic 
sensitivity, specificity, PPV and NPV, respectively.

Question 2:

• With group 1 data, localization accuracy ranged from 32% to 68%. For group 2 data, values ranged from 50-
61% and for group 3 data values ranged from 68-72%.

• The preceding values were obtained without prior knowledge of which breast contained a tumor.

• when a similar analysis was expanded to consider multiple parameters simultaneously and used to distinguish 
which breast contained a tumor (i.e., a global analysis), assignment accuracy improved to a range of 91-100%.

• These findings strongly argue for the value of imposing a maneuver that can alter the tissue oxygen supply-
demand balance.

Question 3:

• For those subjects having the best quadrant-level tumor accuracy (N = 6), we estimated tumor volume by 
computing the fraction of image volume wherein the contrast level exceeds a 50% threshold value for one or all 
of several different metrics.

• The functional tumor volumes thus obtained underestimate the anatomical volume by approximately a factor of 
two in most cases.

Validation Study:

• Predictive power of previously defined metrics for cancer detection was confirmed.

• The finding that rather crude measures are nevertheless capable of accurately detecting cancer speaks to the 
inherent sensitivity of the method and strongly indicates that the biological processes underlying the measures 
extends considerably beyond the boarders of the tumor.

• Given that only subjects with cancer were tested here, the overall false negative rate was ~30%.

• Predictive power of the multivariate estimators would likely increase should more that one estimator group be 
considered simultaneously.

• Not presently warranted, given the size of the data sets so far considered.

Subject No. Age (yr.) Diagnosis(a Tumor Size(b (cm) Tumor Location(c

1 32 L Ductal CA 7×5×2.5 UOQ

2 56 R Ductal CA 2×3 Lateral (9 o’clock)

3 60 R Ductal CA 3×4 UOQ

4 40 L Mucinous CA 7×4×3 UIQ (11 o’clock)

5 62 R Inflammatory CA 3.5 Lateral (9 o’clock)

6 45 L Ductal CA 3 UOQ (2 o’clock)

7 29 L Metastatic CA 2.7 UOQ(2-3 o’clock)

8 70 R Lobular & Ductal CA 3.0 Lateral (9 o’clock)

9 44 L CA (unspecified type) 2.5 UOQ (1 o’clock)

10 65 L Inflammatory CA Entire Breast Entire Breast

11 48 R Ductal CA 2×1.5×1.5 UOQ

12 39 R Ductal CA recurrence 0.7×0.8 UOQ (11 o’clock)

13 37 R/L Ductal CA R 2×1.5×1, L 0.5 R (11 o’clock), L (12 o’clock)

14 43 R Ductal CA 3×2×1 Inferior (6 o’clock)

Table 1: Tumor Characteristics in Breast Cancer Subjects

a) L = left, R = right
b) Source: subjects’ medical charts.  In some cases the reporting physician or pathologist recorded tumor size in three dimensions, in 

others only two or only one.
c) UOQ = upper outer quadrant, UIQ = upper inner quadrant

Subject Sub-category

Healthy Prior 
Lumpectomy

Prior Cystectomy or 
Other Surgery

Fibrocystic 
Disease Other Conditions

43 62 (R) 44 (L,R breast 
reduction)

55 44 (R galactorrhea)

33 39 (L,R) 47 (L) 44 40 (L fibroadenoma

26 38 56 (L cyst)

31 46 40 (R cyst)

35 46 49 (R cyst)

53 50 (L cyst)

53

54

Total 8 2 2 5 6

Age 
(yr.)

Table 2: Sub-categories of Non-Cancer  Subjects

6.330.119(b26-628.744.723Non-CA 

0.505.528.7140.3929-7012.747.914Cancer

p(aSDMeanNp(aRangeSDMeanN

BMIAge (yr.)Demographic 
Parameter

Subject 
Category

Table 3: Age-matching and BMI-matching Statistical Tests

a) Probability that the means of the sub-populations are not different, from equal-variance group t-tests 
(F-test shows that sub-population variances are not unequal, for both parameters)

b) Either height or weight was not recorded for four of the 23 non-CA subjects, so BMI could not be calculated

Table 4 Various Metrics and Formulations
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Group 3 
(Valsalva 

Maneuver) 
Metrics

Group 2 
(Temporal 
Coherence)

Metrics

Group 1 (Baseline Integration) Metrics

Legend: TSDSMts (amplitude of regional blood redistribution -autonomic control), Temporal standard deviation of spatial mean time series; TMSSDts (amplitude of 
autoregulation), temporal mean of spatial standard deviation time series; TSDSSDts (variance of autoregulation), temporal standard deviation of spatial standard 
deviation time series; SMTSDi (amplitude of mixed control), spatial mean of temporal standard deviation image; SSDTSDi (heterogeneity of mixed control) , spatial 
standard deviation of temporal standard deviation image.  fi 0.01 ≤ p < 0.05 for difference between group means occurring by chance; fi 0.001 ≤ p < 0.01; 

fi p < 0.001.

Table 5  Diagnostic Measures for Group 1 - 3 Data  Minimum – Maximum (Mean)

68.4-91.7 (80.7) 44.4-100 (69.0) 56.5-100 (78.6) 42.9-90.0 (70.7) Average Composite For Groups 1-3

76.9-91.7 (85.2) 75.0-100 (85.7) 72.7-100 (86.4) 70.0-90.0 (83.3) Composite Group 3 Data

68.4-82.4 (77.1) 44.4-88.9 (69.8) 56.5-95.7 (82.6) 42.9-78.6 (59.8) Composite Group 2 Data

70.8-90.0(81.5)50.0-78.6(62.0)56.5-84.2(72.7)50.0-85.7(72.5)Composite Group 1 Data

NPVPPVSpecificitySensitivity

Table 6: Summary of Multivariate Analysis Results

LOOCV89.566.773.985.7

All Subjects10082.487.0100
1, 2Oxy (3), Deoxy (1), 

Total (1)537Diff.*Max.

LOOCV75.087.590.070.0

All Subjects10083.381.8100
1, 2, 3Oxy (1), Deoxy (1), 

Total (1)321Diff.*Max

LOOCV(a90.087.590.087.5

All Subjects10090.190.9100
1, 3Oxy (2), Total (1)321Diff./Max.

NPV 
(%)

PPV 
(%)

Spec. 
(%)

Sens. 
(%)

Data Groups 
IncludedHb States IncludedNmetricsNsubjectsFormulation

Table 7 Summary of Breast-quadrant Tumor Localization Results

96.3e-50.73Range

HbO2 Sat.

5- -- -2.7e-40.682.7e-40.68Multi-parameter
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Table 8 Summary of Tumor Sizing Results

3×2×16.002.014.241.572.021.913.6414

2×1.5×13.001.943.841.511.82- -- -13

0.7×0.80.27- -- -1.461.621.461.6212

2×1.5×1.54.501.712.631.913.64- -- -11

2.58.181.050.61- -- -0.730.209

3.014.12.245.861.873.431.833.238

7×4×384.0- -- -- -- -1.672.424

2×314.12.387.072.074.651.913.642
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Figure 1. Thresholded Valsalva Maneuver Responses, Cancer Subject 14
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Figure 2.  Thresholded Valsalva Maneuver Responses, Healthy Subject
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5 O'clock and 3 O' clock 5.1cm and 8mm by SonoLeft Breast Invasive Ductal Ca27.456

12 and 9 O' clock3cm by CBERight Breast Invasive Ductal Ca31.256

Above level of nipple in UOQ2x2 cm by CBELeft Invasive Ductal Ca25.848

6 o' clock3.1cm, 1.1cm, 2.7cm by SonoRight Invasive Ductal Ca26.644

Sub-areolar region10 cm by CBERight Infiltrating Ductal Cancer22.759

12 o'clock in anterior depth4.5cm by MammoRight Infiltrating Ductal Cancer35.664

upper part3cm by CBER Breast Infiltrating Ductal Carcinoma3442

Upper outer (axillary tail)5x4.9x3.4cm(Sono)UO L Breast Infiltrating Ductal Ca33.258

12 O'clock 6cm deep to nipple3cm by CBE, 3x1.5cm Surg(10-05)Left Breast Invasive Ductal Carcinoma32.865

Upper outer quadrant3cm by CBEL Breast Infiltrating Ductal Carcinoma2540

LocationSizeCancer: Side and typeBMIAge
Table 9 Subject Parameters
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Figure 3. Probability of disease for indicated number of subjects as a function of multivariate 
estimator.  Inset in bar graph is the mean and SD probability for the >90% decile.
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