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Abstract: An SVD–based normalized–transformed reconstruction scheme is described as a means 
to achieve real–time recovery of images from time–series DC intensity data.  Results from 
numerical and experimental studies will be presented.  
OCIS codes:  (100.2960) Image analysis; (170.3010) Image reconstruction techniques; (170.6960) Tomography. 

1. Introduction 
Recently we have put forward the hypothesis that optical tomography, adopted to provide a time series of image 
data, can allow for the examination of an entirely new class of information involving tissue function – the 
spatiotemporal dynamics of the vascular response [1].  As a practical matter, it can be anticipated that the study of 
dynamic phenomena associated with the vascular response will require the collection of data sets comprising 
hundreds to thousands of time points. This need brings into consideration of the anticipated computing times, 
especially if 3D reconstructions are sought.  

Much of the algorithm development work addressing image recovery in the area of optical tomography has 
focused on the use of recursive iterative methods (usually Newton–type) [2].  While the details of these methods 
vary, common to all is the realization that to achieve acceptable image quality, the computational effort needed is 
often substantial, especially for 3D problems.  Whereas these efforts remain tractable when the recovery of only a 
few images is sought, it is mainly infeasible in cases where analysis of a typical time series is considered.  
Compounding this concern is the expectation that the nature of dynamic studies often requires feedback in real time.  
Certainly such capabilities are common in the case of ultrasound imaging.  Here we describe an SVD–based 
normalized–transformed algorithm as a means to provide real–time analysis of time–series data.  

 

2. Methods 
The method used for real–time imaging of time–series data is a four–step process. The first step generates a set of 
time–dependent inverse system equations based on a recently described normalized–difference formulation that 
considers the evaluation of differential measurement data [3]. The second step scales the weight matrix by 
normalizing the row vectors to their respective mean values.  This makes the weight matrix more uniform and better 
conditioned.  The third step involves representing the unknowns as a linear combination of a set of independent 
basis functions.  In principle almost any function could be considered, but we have chosen to use the weight 
functions themselves as the basis functions, thereby permitting transformation of the normally large M×N weight 
matrix to a much smaller M×M one. The fourth step employs SVD method for solution for all of the time–dependent 
system equations. In this step, the singular vector decomposition of the weight matrix is only done once (i.e., the 
first time point). After that, all reconstruction solutions related to the sequential time points can be obtained by doing 
simple substitution, which only performs an N2 computation, for each new set of detector data.  

3.  Simulation conditions 
The target medium examined was a geometrically simple 2–D structure (8 cm diameter circle) containing eight 
embedded inclusions, each 0.6 cm in diameter.  The optical properties of the background medium were µa = 0.06 
cm-1, µs′ = 10 cm-1.  The absorption contrast for each inclusion was assigned one of four different aperiodic 
functions representative of the types of temporal behavior reported associated with vascular reactivity 
(quasiperiodic, stochastic and chaotic).  The mean value of the functions was twice the value of the background 
absorption coefficient and was modulated by 20%.  The scattering contrast for the inclusions was 50% greater than 
the background, but time–invariant.  In this manner, four different aperiodic fluctuations were occuring in the 
medium simultaneously, one for each designated pair of inclusions.  Figure 1 shows a schematic of the target 
medium.  Table 1 lists the ranges of absorption coefficient values and the types of temporal fluctuation modeled.  

 



 
 
 
 
 
 
 
 
 
 

Figure 1.  Test medium with inclusions.  Figure 2. FEM mesh of test medium.  
 

 
Table 1. Properties of temporal fluctuations assigned to inclusions’  

optical  absorption coefficient 

Dynamics Functions 
Range (cm-1) 

    µa(g,t)  µa(y,t)     µa(b,t)     µa(p,t) 

0.096 – 0.144 Chaotic 1 Quasiperiodic Chaotic 2 Stochastic 

 

 The details regarding these temporal fluctuation functions have been described in Ref. 4.  Simulated tomographic 
measurements (16 sources × 16 detectors, uniformly spaced) were obtained by computing solutions to the diffusion 
equation for a DC source for each of the 1000 time points considered.  The FEM grid used is shown in Figure 2.  
The mesh contains 789 nodes and 1488 elements.  Recovery of the image time series was performed using the basic 
scheme outlined above.   
 Several test parameters were examined with the aim of identifying the dependence of positional and temporal 
accuracy of the recovered objects on the optical properties of the reference medium and details of algorithm used.  
The latter involved computing solutions based on the SVD method itself, SVD plus row scaling, and SVD plus row 
scaling and the weight transform.  Inverse solutions were obtained using a mesh containing 408 nodes and 733 
elements. 
4.  Results 

Figure 3 shows a typical reconstruction 
result using the SVD method.  Here we 
considered the static case wherein the 
inclusion contrast was made equal to 
the temporal mean value of the assigned 
time series.  Inspection shows that 
whereas the inclusions located nearer 
the surface are well resolved, those 
located more interior are not, and 
appear as an aggregate.  The computing 
time for this solution was ~54 seconds 
using a SGI RISC 10000 processor.  
This compares to a computing time of 
4.6 seconds when the SVD + weight transform + row scaling method described above is used.  The corresponding 
result using this method is shown in Figure 4.  Comparison shows the two results are comparable, with the latter 
possibly having improved object resolution.  This improved computing time can in turn be greatly enhanced by pre-
calculating the singular values and singular vectors of the weight matrix.  In this case the complete image time series 
requires only 99 seconds to compute for all 1000 images.  It is obvious that even larger time savings can be expected 
for solutions of 3D problems.   

Figure 4.  SVD + weight Transform and 
scaling. 

Figure 3.  SVD–only solution. 

As we have recently emphasized and documented [1], improved resolution of the target medium can be obtained 
by post–processing the image time series to extract different temporal measures of the system.  An example of this is 



shown in Figure 5.  Here we have computed spatial covariance maps for each of the assigned time functions.  
Inspection reveals that nearly complete isolation of the each inclusion from the others is achieved.  These results 
show that methods adopted provide for computationally efficient solutions that have good–to–excellent spatial 
resolution.  Similar results modeled from 3D media and results on laboratory phantoms will be presented.  
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 Figure 5.  Covariance maps of image time series.  Panel A, Chaotic 1;  Panel B, Chaotic 2;  Panel C, Quasiperiodic; 

Panel D, Stochastic.   
 

4. Conclusion   

The SVD based reconstruction method described provides for fast image recovery and improved spatial resolution 
The method is well suited for 3D problems because computing times will scale by N2.   
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