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Optical measurements of tissue can be performed in discrete, time-averaged, and time-varying data
collection modes. This information can be evaluated to yield estimates of either absolute optical coef-
ficient values or some relative change in these values compared with a defined state. In the case of
time-varying data, additional analysis can be applied to define various dynamic features. Here we have
explored the accuracy with which such information can be recovered from dense scattering media using
linear perturbation theory, as a function of the accuracy of the reference medium that serves as the initial
guess. Within the framework of diffusion theory and a first-order solution, we have observed the
following inequality regarding the sensitivity of computed measures to inaccuracy in the reference
medium: Absolute measures �� relative measures � dynamic measures. In fact, the fidelity of derived
dynamic measures was striking; we observed that accurate measures of dynamic behavior could be
defined even if the quality of the image data from which these measures were derived was comparatively
modest. In other studies we identified inaccuracy in the estimates of the reference detector values, and
not to corresponding errors in the image operators, as the primary factor responsible for instability of
absolute measures. The significance of these findings for practical imaging studies of tissue is discussed.
© 2001 Optical Society of America
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1. Introduction

An unresolved issue in optical imaging of tissue is a
clear appreciation of just what types of information
can be obtained, and with what reliability. In prin-
ciple, model-based reconstruction methods are capa-
ble of providing quantitative measures of tissue
absorption and scattering coefficients. As a practi-
cal matter, however, the accuracy and reliability of
this information can be expected to depend strongly
on both the algorithm used for image recovery and
the approach taken for data collection. Each of
these domains includes a host of adjustable parame-
ters, the optimal values of which frequently are not
independent of choices made in addressing the other.

A challenge in developing practical methods is to
identify suitable trade-offs that confer stability on the
overall collection and recovery process, while still
providing useful information. An example of this
dependency is the practical difficulties that attend
the performing of contact-based optical measure-
ments on tissue. Confounding factors include the
natural plasticity of tissue, which can deform upon
probe contact; its variable size; the mainly arbitrary
geometry and composition of a tissue structure; the
inherent vascular reactivity of tissue; and uncer-
tainty stemming from the expected variable coupling
efficiency of light at the tissue surface. Apart from
presenting problems for data collection, the uncer-
tainties that accompany these conditions can also
adversely affect the reliability of derived imaging in-
formation. This is especially true when reconstruc-
tion methods are used. It is worth emphasizing
that, unlike analytical measuring techniques that
provide direct quantitative information about a par-
ticular parameter, image reconstruction is an indi-
rect method that, not infrequently, is limited to
providing qualitative measures of one form or an-
other.

Among the various approaches proposed for image
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recovery, commonly used are perturbation methods
applied in either the Born or the Rytov approxi-
mations.1–3 It is well appreciated that the accuracy
of imaging data derived with such methods depends
strongly on the use of a sufficiently accurate reference
medium that serves as the initial guess.4 While this
sensitivity is not equivalent for the two approxima-
tions, with the Rytov formulation usually less sensi-
tive,5 a strong dependence nevertheless is observed
for both. An accurate reference is one that closely
matches the external geometry of the target medium,
has the same size, has nearly the same internal com-
position, and for which the actual locations of the
measuring probes and their efficiency coincide well
with those modeled. While such conditions are eas-
ily met in numerical studies, they represent a much
greater challenge in the case of tissue studies.

In recognition of these concerns, we have recently
sought to identify alternative measurement and
analysis schemes that are better suited to dealing
with such uncertainties. Motivating our approach
has been an appreciation that relative measures of-
ten can be made with much greater reliability than
can absolute measures. The former can take on
many forms, depending on the intended application.
A domain we have recently emphasized,6–8 and one
commonly investigated in other fields,9–11 is time-
varying states. Typically the goal of such measures
is to define the dynamics of a particular parameter,
rather than to quantify the level of the parameter
itself. Because features of dynamic states are often
independent of the amplitude of the measured signal,
data in the form of relative measures frequently re-
veal the desired feature without loss of information.
In the case of optical imaging methods, we believe
that dynamic measures, should they prove reliable,
can provide fundamental new insights into a range of
physiological states and disease processes. This
consideration is based, in part, on appreciation that
vascular reactivity, which is closely tied to tissue
function and the influence of central control mecha-
nisms, exhibits a structure-dependent frequency re-
sponse. For instance, the cardiac frequency is
restricted mainly to arterial structures, while the va-
somotor and respiratory signals are limited mainly to
the microvessels and venous side of the vascular tree,
respectively. It follows that detection of these sig-
nals in a cross-sectional view from analysis of dy-
namic imaging data should allow for identification of
different components of the vascular tree. In addi-
tion, since it is evident that vascular reactivity is
coordinated, measures of its temporal correlations
within an image could also provide new insights re-
garding modulation of tissue–vascular coupling. In-
sight at an even more fundamental level might also
be possible from characterization of the known non-
linear, or even chaotic, properties of vascular dynam-
ics.

Recently we have described experimental systems
that are well suited to monitor the dynamic state of
the vasculature in large tissue structures by use of
optical imaging methods.8,12,13 Using this instru-

mentation, we have, in preliminary studies on the
human forearm, made observations that support
our ability to detect the above-mentioned vascular
responses. These include evidence of nonlinear
chaotic dynamics in the vascular response,14 spon-
taneous15 or induced16 beat frequencies that coin-
cide with the correct anatomical structures, and
confirmation of the expected vascular response fol-
lowing an autonomically mediated peripheral vas-
cular stimulus �e.g., a cold shock17�. Throughout
these and related6–8 investigations, two anecdotal
observations that we consistently made were that
�i� dynamic measures can be extracted with remark-
able accuracy from image data whose quality is,
comparatively speaking, considerably more modest
and �ii�, unlike efforts to define absolute optical
coefficient values, the quality of image data based on
relative measures, and the dynamic features derived
therefrom, depend only weakly on the specifics of the
reference medium chosen. Thus it appears that there
may well be considerable differences in the reliability
of the types of information derivable from imaging
data generated with perturbation methods.

For the present study, we have systematically ex-
tended these observations and, in particular, have
examined the dependence of derived information on
the reference medium chosen as the initial guess.
The findings obtained confirm and amplify our initial
observations and also provide an explanation for the
origin of the instability of reconstructed images of
absolute coefficient values.

2. Theory

A common approach used in optical tomography is to
cast the inverse problem as a linear perturbation
equation. As it is most typically applied to optical
imaging of tissue, the perturbation formulation re-
lates the difference between a measured and a pre-
dicted optical signal level at the surface to the
difference between coefficient values of the true tar-
get and a specified reference medium, weighted by a
set of proportionality coefficients whose values de-
pend on, among other things, the source–detector
configuration and the optical properties of the me-
dium. In practice, tomographic measurements con-
sider some array of measurement data, thus forming
a system of linear equations having the form

u � ur � �u � Wr�x, (1)

where �u is the vector of differences between a set of
measured light intensities �u� and those predicted for
a selected reference medium �ur�, Wr is the Jacobian
operator, and �x is the position-dependent difference
between one or more optical properties of the target
and reference media �i.e., the change in absorption
coefficient ��a and the diffusion coefficient �D, where
D � 1��3��a � �	s�
 and �	s is the reduced scattering
coefficient�. The operator, referred to as the weight
matrix, has coefficient values that physically repre-
sent the fractional change in light intensity at the
surface caused by an incremental change in the op-
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tical properties at a specified point in the medium.
Mathematically this is represented by the partial dif-
ferential operator �ui��xj, where i refers to the ith
source–detector pair at the surface of the medium
and j to the jth pixel or element in the medium.

Although the perturbation equation in Eq. �1� can
be solved with any of a number of available inversion
schemes,18 the accuracy and reliability of the results
obtained can be greatly limited by many factors, in-
cluding �but not limited to� uncertainties and errors
associated with the quality of the measurement data,
inaccuracies in the physical model describing light
propagation in tissue, specification of an insuffi-
ciently accurate reference state, the existence of an
inherently underdetermined state caused by insuffi-
ciently dense measurement sets, and weak spatial
gradients in the weight function. One approach
that we have taken to minimize the influence of these
uncertainties has been to evaluate relative measures.
The perturbation equation, expressed in the Born
approximation, that relates such measures to the
fractional change in coefficient values can be written
as

��u1�i � �u2�i

�u2�i
��ur�i � �

j
�Wr�ij��x�j, (2)

where �u1�i and �u2�i represent any two measures of
interest acquired by the ith source–detector pair and
�ur�i and �Wr�ij are the previously described quanti-
ties computed from the reference medium; the sum-
mation in the right-hand side of Eq. �2� is over all area
or volume elements considered by the image-
reconstruction algorithm. Examples of such mea-
sures could include those made before and after
administration of a contrast agent or, of interest to
us, measurements at a specified time point compared
with the temporal mean value. Just as when using
Eq. �1�, we assume that the relative change in the
detector values is small. A corresponding expres-
sion can be written in the Rytov approximation, in
which case the natural logarithm of the ratio of �u1�i
to �u2�i is substituted for the bracketed quantity on
the left-hand side of Eq. �2�. Note that in the limit
where �u2�i � �ur�i, Eq. �2� reverts to Eq. �1�. As will
be demonstrated, however, this is not a necessary
condition for recovery of accurate measures of dy-
namic states or for obtaining qualitatively correct
images or feature maps. The equivalent matrix ex-
pression for Eq. �2�, relating all source–detector pairs
to the medium properties, is

�Du1
Du2


1 � I�ur � Wr�x, (3)

where I is the identity matrix �i.e., �I�ii � 1, �I�i� j�i
 �
0
, and the diagonal matrix Dv for any given vector v
is defined by �Dv�ii � vi, �Dv�i� j�i
 � 0. Formally,
multiplying out the left-hand side of Eq. �3� and re-
arranging gives

�x � Wr

1�u1 � ur� � Wr


1�Dur
Du2


1 � I�u1, (4)

where Wr

1 is the appropriate inverse or pseudoin-

verse for the linear system under consideration. We
refer to this formulation as the normalized difference
method �NDM�. Note that the first term on the
right-hand side of Eq. �4� is the solution that would be
obtained by solving the system u1 
 ur � Wr�x, i.e.,
the standard perturbation equation. The second
term amounts to a correction factor whose value is a
function of the accuracy of the selected reference me-
dium.

It is well appreciated that linear perturbation for-
mulations are sensitive to the latter and that a suf-
ficiently inaccurate initial guess can lead to a poor
solution or even divergence. Significantly, we have
demonstrated that the correction factor provides for a
solution that can render an ordinarily grossly inac-
curate map, provided by the first term on the right-
hand side of Eq. �4�, to one that, while not equal to the
true solution, is proportional to it throughout the
cross section. As will be shown, this allows us to
compute, among other things, images reflecting tem-
poral variations in optical properties that occur in a
dense scattering medium with remarkable fidelity,
even when the estimated background optical proper-
ties of the reference medium differ from those of the
true target background by a factor of more than �3.
It is worth emphasizing that Eq. �3� can readily pro-
vide for solutions that simultaneously compute per-
turbations in absorption and scattering �diffusion�
coefficients �see below� and that are updateable with
iterative methods.19

3. Methods

A. Target Media Examined

Figure 1 shows a schematic of the test medium ge-
ometry explored. In all cases, the diameter was 8
cm and there were two inclusions embedded in a
homogeneous background. Each inclusion had a di-
ameter of 1 cm, and the pair was positioned symmet-
rically about the center, with a separation distance of
3 cm. The optical properties of the inclusions were
examined under both static and dynamic temporal
states. In the latter case, temporal variability in the
absorption coefficient was introduced by assigning
values to �a that correspond to different mathemat-
ical functions. The specific functions chosen were
meant only as representatives of the varying degrees
of complexity associated with vascular reactivity that
likely exists in vivo. The absorption coefficient of
the right-hand-side inclusion varied according to a
quasiperiodic series, while that of the left-hand-side
inclusion varied according to a particular solution of
the Hénon equation.20 A quasiperiodic time course
was calculated from the equation qn � �cos���8�n �
sin(���4�n
�2. A Hénon-function time course was-
calculated from the formula hn � �1 � 0.3hn
2 

1.4hn
1

2 ��1.3, with numbers sampled from a random
variable uniformly distributed between 
1 and �1 as
the two initial values. In each case, the temporal
mean value of �a for the inclusions was 0.12 cm
1 and
the modulation depth was 20%. The reduced scat-
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tering coefficient of the inclusions was time invariant
and had a value of 15 cm
1. The optical properties
of the background also were static, with �a � 0.06
cm
1, �	s � 10 cm
1. That is, we considered condi-
tions wherein the optical properties of the inclusions
differed from those of the background in both coeffi-
cients, but temporal variability was limited to only
�a.

In a second series of studies, we examined the sta-
bility of reconstruction results over a broad range of
values for the reference medium. In these cases, the
optical properties of both the inclusions and the back-
ground were static. The structure of the medium
was the same as before. The optical properties of
the background were similar to the dynamic case,
differing only in that the value for �a was 0.04 cm
1.
The coefficient values for the inclusions were set to
�a � 0.02 cm
1 and �	s � 5.0 cm
1.

B. Photon-Propagation Model—Forward Problem

Light propagation in a scattering medium was mod-
eled as a diffusion process. For a domain � with
boundary ��, this is represented by the expression

� � �D�r����r�
 � �a�r���r� � 
��r � rs�, r � �,
(5)

where ��r� is the photon intensity at position r, rs is
the position of a dc point source, and D�r� and �a�r�
are the position-dependent diffusion and absorption
coefficients, respectively. Here we use the definition
given above �see Section 2� for the diffusion coefficient
�and therefore D�r� has dimensions of length rather
than, as in the alternative convention adopted by
certain other groups, of length squared divided by
time21
, and the � in the source term on the right-
hand side of Eq. �5� denotes the Dirac delta function.
Solutions to the forward problem were obtained by
use of a finite-element method that employed a pre-
conditioned conjugate-gradient algorithm22 for nu-
merically solving the associated systems of linear
equations.

C. Computation of Tomographic Data—Forward Problem

When photon intensity values were computed in the
manner just outlined, Dirichlet boundary conditions
on an extrapolated boundary were imposed on the
solution. Depending on the problem, sources and
detectors were positioned 1–2 transport mean-free-
path lengths below the extended surface. Source–
detector geometry consisted of six sources spaced 60°
apart �positions indicated by arrows in Fig. 1�, with
eighteen detectors per source, also equally spaced
about the circumference �positions indicated by small
circles in Fig. 1�, for a total of 108 source–detector
pairs.

Tomographic data sets modeling dynamic behavior
were computed, with the above-described illumina-
tion conditions, for each of 1000 consecutive time
points in the dynamic imaging study and for every
combination of reference medium properties consid-
ered in the reconstruction stability study.

D. Image Reconstruction–Inverse Problem

A conjugate gradient descent algorithm was used to
reconstruct images by numerically solving Eq. �3�.19

In producing the results presented below, these com-
putations were limited to 1000 iterations within the
first-order Born solution.

In the dynamic imaging study, reconstructions
were carried out for several specified reference media
to produce sets of image time series, which were sub-
jected to further analysis with methods described be-
low. The specific results presented in Section 4 were
produced from inverse-problem computations that
took only the �a perturbation as the unknown quan-
tity �x in Eq. �3�. �We note that qualitatively similar
results, not shown, were obtained when �x comprised
the perturbations in �a and D simultaneously.� In
the reconstruction stability study, tomographic data
were analyzed by reconstructing images of �a and D
simultaneously under conditions listed in Table 1.

E. Analysis of Time-Series Image Data

To evaluate the quality of the information obtained
from the computed image time series, we generated,
using the “method of delays,”23 pseudo-state-space
�PSS� trajectories from the pixel time-series data.
This is a standard approach for providing a geomet-

Fig. 1. Geometry and composition of the tissuelike target media
and source–detector configuration used for measurement simula-
tions and imaging reconstructions. Target diameter, 8 cm; inclu-
sion diameter, 1 cm; distance between inclusions’ centers, 3 cm.
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rical rendering of a function that can greatly facilitate
qualitative inspection of results, as the trajectory
that is produced frequently reveals the presence and
nature of temporal correlations that are not evident
from casual inspection of quantity versus time plots.
A time series consisting of numbers x1, x2, . . . , xn is
“embedded” into a PSS of dimension m by sorting of
the xs into m-dimensional vectors X1 � �x1, x1��, . . . ,
x1��m
1��
, X2 � �x2, x2��, . . . , x2��m
1��
, and so on;
the parameter � that appears here is called the “time
delay.” Selecting the “correct” values for m and � in
a given case remains something of an art, although
useful guidelines have been given by Griffith,24 and a
lower limit for m can be obtained by the “method of
false nearest neighbors.”25 In many cases it is found
that the m-dimensional vectors eventually are con-
fined to a distinct subset of all the points in the PSS;
this subset is then referred to as the “attractor” for
the dynamical system that produced the time series.

4. Results

A. Fidelity of Dynamic Measures

Motivating the current study were two anecdotal
findings that we had previously noted on a number of
occasions: �i� dynamic features can be extracted
from the image data with remarkable accuracy, and
they can produce maps having high contrast even if
the quality of any individual image in the time series
is comparatively modest; �ii� the quality of the recon-
structed images and the accuracy of the derived dy-
namics depend only weakly on the choice of the
reference medium, a finding that strongly contrasts
with the sensitivity that absolute measures have on
the accuracy of the initial guess. An example of the
dichotomy observed in the first case is shown in Fig.
2. In panels �a�–�c� we show representative recon-
structed images obtained at different points in the
time series. Recall that we obtained these results by
expressing the input data vectors as relative varia-

tions about the temporal mean value. In addition,
for the purpose of comparison with other results
shown below, we assumed prior knowledge of the
optical properties of the background. Comparison of
these results with the original shown in Fig. 1 reveals
that whereas the two-object structure is well re-
vealed, spatial blurring is evident, as is the presence
of low-amplitude artifacts in the background. We
characterize these as results having modest quality.
It is worth emphasizing that we are aware that the
image quality can be improved with additional com-
putational effort �e.g., recursive updates�. Instead,
we have intentionally limited this effort to a first-
order solution, to retain reasonable computing times
for the time series �1000 images�. Nevertheless, as
is shown subsequently, we find that even with this
constraint the functional form of the inclusions can be
extracted from the image series with remarkable ac-
curacy.

Data in panels �a� and �b� of Fig. 3 show plots of the
temporal functions assigned to the left- and right-
hand inclusions and geometrical renderings of these
as PSS attractors. It is apparent that the dynamics
of the two inclusions have quite different functional
forms. In panels �c� and �d� we show the correspond-
ing plots of the reconstructed time series for selected
pixels lying within the boundaries of the recovered
inclusions. Comparison reveals that the recon-
structed time-series results agree remarkably well
with the functional forms of the original. The con-
siderable fidelity of these results stands in sharp con-
trast to the comparatively lower quality of the
reconstructed images from which the dynamic fea-
tures were derived.

B. Sensitivity of Dynamic Measures to Systematic Errors

The second characteristic feature we have observed
when using Eq. �3� is the relative insensitivity of the
reconstruction results and extracted dynamics to er-

Table 1. Summary of the Test Cases Exploreda

Test Case
Parameters

Involved
Range of Reference
Optical Properties

Where Results
Are PresentedNo. Formulation �W�x � �u� u u0 ur Wr �a �cm
1� �	s �cm
1�

1 W � Wr, ��u�i �
ui � �u0�i

�u0�i
�ur�i C C V V 0.0–0.3 3–30 6 � 6 Matrix

�Fig. 5�

2 W � Wr, ��u�i � ui 
 �ur�i C — V V 0.02–0.08 5–15 5 � 5 Matrix
�Fig. 6�

3 W � Wr, ��u�i � �ur�i ln� ui

�ur�i
� C — V V 0.0–0.3 3–30 6 � 6 Matrix

�Fig. 7�

4 W � Wr, ��u�i � ui 
 �ub�i C — C V 0.0–0.3 3–30 6 � 6 Matrix
�Fig. 8�

5 W � Wb, ��u�i � ui 
 �ur�i C — V C 0.02–0.06 5–15 5 � 5 Matrix
�Fig. 9�

aThe symbol V designates the parameter that was varied; C, a parameter whose value was held constant. The type of weight matrix
used in each simulation study, and the expression for the ith source–detector pair of the data vector, are given under Formulation. The
symbols b and r designate background and reference, respectively.
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rors in the initial guess �i.e., the reference medium�.
This is shown by the results in Fig. 4. Panels �a� and
�b� show images reconstructed under the conditions
modeled in Fig. 3, except that here we used a refer-
ence medium whose background absorption and scat-
tering coefficients differed considerably from those of
the actual target background. The specific results
presented here were obtained with a reference me-
dium having optical properties of �a � 0.02 cm
1 and
�	s � 25.0 cm
1, which are 0.33 and 2.5 times the true
background values, respectively. Comparison of
these results with those in Fig. 3 reveals that func-
tional forms of the two are almost identical. We note
that similar results were obtained in the case of a
reference medium whose properties were �a � 0.2
cm
1 and �	s � 3.0 cm
1, as well as for many other
cases wherein the absorption and scattering coeffi-
cients lay between these extremes. We have also
obtained similar findings for dynamic states having
wholly different functional forms �e.g., stochastic�, in-
cluding in the limiting case of spatiotemporally coin-
cident dynamic behavior in two different optical
parameters �either �a and �	s at a single wavelength26

or �a at two different wavelengths7,27�. These find-
ings confirm that the temporal features of dynamic
states in dense scattering media can be defined with
a high level of accuracy that is largely independent of
the selected reference medium used.

In the next several figures we explore this phenom-
enology in more detail. Of particular interest is to
gain a clearer understanding as to why analysis of
relative measures �Eq. �3�
 should produce stable re-
sults when, as will be shown, its counterpart �i.e., the
standard perturbation formulation, Eq. �1�
, is highly
unstable to errors stemming from an insufficiently
accurate estimate of the reference medium.

C. Dependence of Image Quality on Accuracy of
Reference Medium

Solutions to a perturbation formulation ordinarily
require three types of input data. The vector u �the
surface detector responses� is usually obtained from
measurements on the target medium, and the other
two quantities, ur and Wr �the reference intensity
vector and weight functions, respectively�, are de-
rived from solutions to the forward problem for a
specified reference medium. In the linear approxi-
mation, to achieve an accurate reconstruction, the
properties of the reference medium should closely
approximate those of the target. As this difference
grows, so too will the error in the recovered coefficient
values. We have explored this dependence by vary-
ing the parameters listed in Table 1 and computing
solutions according to different formulations of the
perturbation equation. The target medium exam-
ined was similar to that shown in Fig. 1, having the
same geometric structure and physical dimensions
but slightly different optical coefficients. In this
case the background optical properties were �a �
0.04 cm
1 and �	s � 10 cm
1, while in the inclusions
both coefficients were halved. For each case exam-
ined we explored the dependence of the quality of the

Fig. 2. Reconstructed images of absorption coefficient obtained
at time points �a� 1, �b� 5, and �c� 13, based on the simulated
dynamic measurement data associated with the time-varying
absorption �see Figs. 3�a� and 3�b� for functional form of fluctu-
ations
. Accurate prior knowledge of the optical properties of
the background, i.e., �a � 0.06 cm
1 and �	s � 10 cm
1, was
assumed.
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reconstructed image on a specified reference medium
whose optical properties were varied over selected
ranges. In some cases we assumed prior knowledge
of the most accurate estimate available for either ur
or Wr, �i.e., the detector readings and weight func-
tions for a reference medium whose optical properties
are identical to those of the background of the target
medium� and substituted values for the remaining
input data that were computed for a different �i.e.,
inaccurate� selected reference medium. Test cases
1–3 explored the general case in which no specific
knowledge of the test medium is available. The
ranges of optical properties examined for the refer-
ence medium were 0.0–0.3 cm
1 for �a and 3–30
cm
1 for �	s in cases 1 and 3, and 0.02–0.08 cm
1 for
�a and 5–15 cm
1 for �	s in case 2. As will be shown,

compared with the standard perturbation formula-
tion using either the Born or the Rytov approxima-
tion, significantly improved image quality is achieved
by use of the NDM formulation. Test cases 4 and 5
assumed prior knowledge of the optical properties of
the background medium from which either ur or Wr is
computed, and they substitute values that corre-
spond to different reference media for the remaining
input data.

Images were reconstructed as before, with the
above-mentioned conditions for data collection, with
the exception that both coefficients ��a and �D, rep-
resented as �x in Table 1, were reconstructed simul-
taneously.

Data in Fig. 5 show the reconstruction quality ob-
tained as a function of the optical properties of the

Fig. 3. Panels �a� and �b� are plots of the temporally fluctuating �a assigned to the left- and the right-hand inclusions, respectively, and
the corresponding PSS trajectories for m � 3, � � 1 �see Subsection 3.E for explanation of symbols�. Panels �c� and �d� are the
corresponding plots of reconstructed time series for selected pixels lying within the two inclusions �examples of individual reconstructed
images in the time series are shown in Fig. 2�.
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reference medium. Panel �a� shows the computed
absorption maps; panel �b�, the computed diffusion
maps. Recall that the true background properties
are �a � 0.04 cm
1 and �	s � 10.0 cm
1. Inspection
reveals that the two-object structure is recovered for
both coefficients over nearly the entire matrix, with
the exception of cases in which both the absorption
and scattering coefficients of the reference medium
are significantly greater than those of the true back-
ground. Note that these results were obtained with
the NDM formulation, which requires consideration

of two different experimental measures. In the pre-
vious examples �Figs. 2–4�, one quantity was the de-
tector reading at a specific time point and the other
was the corresponding temporal mean value. As in-
dicated, other forms of relative measures can be con-
sidered as well. In the present case, we consider
data obtained in the presence and the absence of the
inclusions. A practical example of this could be data
obtained before and after administration of a dye.
These data are examined in a more quantitative
manner below.

Shown in Fig. 6 are the results corresponding to
those in Fig. 5 but obtained when the standard per-
turbation formulation �Eq. �1�
, in a first-order Born

Fig. 4. Demonstration of weak dependence on reference medium
properties of image time series obtained by use of Eq. �3� to perform
the reconstructions. Conditions modeled are the same as for Fig.
3, except that optical coefficients of reference medium are �a �
0.02 cm
1 and �	s � 25 cm
1. Panels �a� and �b� are time courses
and corresponding PSS trajectories for selected pixels in the left-
and the right-hand inclusions, respectively.

Fig. 5. Results obtained from test case 1 listed in Table 1 �i.e.,
NDM formulation �Eq. �3�
, “experimental” data fixed, reference
medium properties are varied�: �a� absorption profiles, �b� diffu-
sion profiles.
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approximation, was used instead of Eq. �3�. Note
that the ranges of absorption and scattering coeffi-
cients considered for the reference medium are con-
siderably smaller in Fig. 6 than in Fig. 5. Inspection
reveals that the two-object structure is revealed
within a much more restricted range, outside of
which only artifact is recovered. Results of a similar
analysis that employed the Rytov approximation are
shown in Fig. 7. In this case we see some evidence of
an improved solution over a range greater than that
provided for by the Born approximation but still
small compared with the range over which qualita-

tively accurate reconstructions are achieved using
the NDM algorithm. It is clear that the stability of
the two formulations �i.e., Eq. �1� versus Eq. �3�
 to
insufficiently accurate knowledge of the reference
medium is quite different. To gain insight as to why
this should be, we have considered two other cases, in
which we assumed accurate prior knowledge of either
the reference detector readings or the weight matrix
values.

Data in Fig. 8 show the results obtained with the
most accurate knowledge of the reference detector
readings ur available �i.e., those corresponding to a

Fig. 6. Results obtained from test case 2 listed in Table 1 �i.e.,
conventional first-order Born formulation �Eq. �1�
, “experimental”
data fixed, reference medium properties are varied�: �a� absorp-
tion profiles, �b� diffusion profiles. Note that in every instance,
the set of reference properties used in the calculation of the com-
puted detector readings is the same as that used in the calculation
of the imaging operator.

Fig. 7. Results obtained from test case 3 listed in Table 1 �i.e.,
conventional first-order Rytov formulation, “experimental” data
fixed, reference medium properties are varied�: �a� absorption
profiles, �b� diffusion profiles. Note that in every instance, the set
of reference properties used in the calculation of the computed
detector readings is the same as that used in the calculation of the
imaging operator.
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homogeneous medium whose optical coefficients are
identical to those of the background of the target
medium�. In this case, only the values of the weight
functions are varied; the substituted Wrs were com-
puted from reference media whose absorption and
scattering coefficients lay in the ranges indicated in
row 4 of Table 1. Inspection of these results shows
that, qualitatively, they are nearly identical to those
in Fig. 5 �quantitative differences are present�. Sig-
nificantly, these results and those shown in Fig. 6
were both obtained with the standard perturbation
formulation. The only difference is in the accuracy
with which the reference detector readings are
known. For results shown in Fig. 8, the ur used was

maximally accurate, while for those shown in Fig. 6,
in most cases it was not. This suggests that the
principal cause of instability is insufficiently accurate
knowledge of ur.

This possibility is directly explored by the study
whose results are shown in Fig. 9. Here we consid-
ered a situation similar to that adopted for Fig. 8
except that the most accurate knowledge of Wr,
rather than ur, is available. Recall that this is the
case in which properties of the reference medium
equal the background properties of the target me-
dium. While Wr was thus fixed, ur values were com-
puted from reference media whose optical coefficient
values varied over the ranges indicated in row 5 of

Fig. 8. Results obtained from test case 4 listed in Table 1 �i.e.,
conventional first-order Born formulation �Eq. �1�
, “experimental”
data and computed detector readings fixed, reference medium
properties used for computation of imaging operator are varied�:
�a� absorption profiles; �b� diffusion profiles.

Fig. 9. Results obtained from test case 5 listed in Table 1 �i.e.,
conventional first-order Born formulation �Eq. �1�
, “experimental”
data and imaging operator fixed, reference medium properties
used for computation of computed detector readings are varied�:
�a� absorption profiles; �b� diffusion profiles.
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Table 1. Similar to results shown in Fig. 6, the re-
sults obtained indicate that the two-object structure
is revealed over only a limited range of reference
medium absorption and scattering coefficients.
These findings confirm that the excessive sensitivity
of the standard perturbation formulation to an insuf-
ficiently accurate estimate of the reference medium is
primarily a consequence of errors in the estimated
intensity values and not of corresponding errors in
the imaging operators. This is a new finding, and as
discussed below, one we believe holds considerable
significance for practical imaging studies.

5. Discussion

A. Analysis of Different Sensitivities of Standard
Perturbation and NDM Methods

In this paper we have examined the reliability of
information obtained from optical tomographic image
data generated with linear perturbation methods.
The accuracy of recovered images of perturbations in
the absolute coefficient values, maps revealing rela-
tive changes in these quantities, and information re-
garding the dynamic state of inclusions all were
examined. Results obtained demonstrate that when
limited to a first-order solution, the accuracy of the
derived information depends strongly on the optical
properties of the selected reference medium. The
sensitivity of these measures to an insufficiently ac-
curate reference obeys the following inequality: Ab-
solute coefficient values �� relative change in
coefficient values � dynamic state of coefficient val-
ues. Given the expected range of uncertainties as-
sociated with tissue measurements, it seems doubtful
that estimates of the properties of an appropriate
reference medium can be obtained with sufficient ac-
curacy to avoid artifact-dominated results, at least
when restricted to first-order solutions. While this
situation may improve with additional computational
effort, it seems likely that the improvement will be
accompanied by a diminishing rate of return. We
wish to emphasize that the indicated inequality holds
irrespective of whether the Born or the Rytov approx-
imation for Eq. �3� was evaluated. Further, as noted
in the text, whereas we confirmed previously re-
ported differences in the sensitivity between the two
approximations for the standard perturbation
scheme �Eq. �1�
,5 these differences were largely min-
imized when Eq. �3� was evaluated.

In clinical medicine, as well as with a range of
physiological studies, experience has shown that in
many instances measures revealing relative changes
in a parameter can provide highly useful information.
Measures of this type are often employed when one
monitors the response to a physiological or a meta-
bolic provocation. In addition, in these cases, the
information sought after not infrequently is some
type of time-dependent response. In recognition of
this we have recently developed experimental sys-
tems that are well suited for monitoring time-
dependent features of large tissue structures, in a
cross-sectional imaging modality operating at near-

infrared wavelengths.8 As a starting point we have
sought to evaluate the time-dependent tomographic
detector data as relative fluctuations about the tem-
poral mean value. The approach we used was to
evaluate the derived data according to Eq. �3�. Our
experience with this formulation has been that, un-
like the strong sensitivity to the reference medium
properties observed with the standard perturbation
equation �Eq. �1�
, the relative contrast of inclusions
throughout the reconstructed image is weakly depen-
dent on the choice of the reference medium. It is
instructive to understand why the difference between
the sensitivities of the two approaches should be so
large.

In the case of the standard formulation �i.e., Eq. �1�

the input data vector is actually the difference be-
tween a measured and a computed quantity. This
vector contains information regarding the subsurface
coefficients that, as shown, can be extracted provided
that an accurate reference medium is available.
The difficulty, however, is that the reference inten-
sity values are extremely dependent on the optical
coefficient values of the reference medium. Signifi-
cantly, this dependence is a nonlinear function of the
distance between source and detector. It follows
that a small change in the optical properties of the
reference medium may significantly influence the
value of the computed intensity differences ��u� by a
relative amount that is different for each source–
detector pair, thereby altering the information con-
tent of the data vectors. An example of this is shown
in Fig. 10.

Figure 10�a� shows the central angle �which is pro-
portional to the source–detector separation� depen-
dence of the computed �u, for a source located on the
target diameter perpendicular to the line joining the
centers of the two inclusions �i.e., the “12 o’clock”
position in Fig. 1�, for several reference media whose
properties correspond to row 3 of Fig. 5. Inspection
of the plots clearly reveals a bimodal attenuation
profile indicating the presence of two buried objects.
In contrast, this structure is almost completely ab-
sent from results, shown in Fig. 10�b�, derived with
the standard perturbation formulation under the
same measurement conditions, even though the
range of variation of the reference medium is much
less than that used to generate the data in Fig. 10�a�.
This directly demonstrates that the information con-
tent of the data vector can be grossly distorted when
Eq. �1� is used to evaluate detector data, whereas this
information is mainly preserved when Eq. �2� or Eq.
�3� is used. This is a critical distinction. It is im-
portant to recognize that essentially all tomographic
methods effectively are mapping procedures. That
is, they project information onto the image domain in
accordance with the structure of the operators. In
the case of scattering media, the characteristic struc-
ture of the weight functions is observed over a wide
range of coefficient values. Thus it would seem rea-
sonable to expect that, provided the information con-
tent of the data vectors is not corrupted, the use of
operators that basically have the correct structure
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should result in recovery of images that are at least
qualitatively correct. It is our belief that this ex-
plains the results shown in Figs. 3 and 4. These
data also confirm and extend results reported by Gra-
ber et al., who observed a similar phenomenon when
reconstructing images while using weight functions
derived from numerical �Monte Carlo simulations�
solutions of the transport equation.28

It is important to recognize that the sensitivity of
the reference medium’s detector readings to small
variations in its optical coefficients is inherent in the
physics of light propagation in scattering media and

so would persist even if the measurement data were
error free. Thus, whereas much effort has been de-
voted to improving the computational efficiency of the
standard perturbation scheme29 and its stability to
noise,19 it seems that these efforts may have limited
practical value when applied to imaging studies of
tissue, in view of the expected difficulties associated
with identifying a sufficiently accurate reference me-
dium.

B. Stability of Dynamic Measures

Motivating our interest in the use of dynamic imag-
ing methods is the fact that the time dependence of a
measured or derived property, especially if it is asso-
ciated with a complex system, frequently exhibits
meaningful phenomenology that is simply undetect-
able from static observations. Importantly, in many
cases useful quantitative descriptions of these are
independent of the amplitude of a measured re-
sponse. For instance, the temporal cross-correlation
function30 of a data time series and the frequency
structure31 of its Fourier transform are independent
of the amplitude of the signal. Parameters of inter-
est in the study of nonlinear chaotic systems, such as
the shape of an attractor, its correlation dimension,32

and its Lyapunov exponent spectrum,20 also are in-
sensitive to signal amplitude.

An observation we have made, which may be of
considerable practical value and which is related to
the foregoing discussion on sensitivity to choice of
reference medium, concerns the stability of dynamic
measures. In our dynamic imaging efforts, one con-
sistent finding has been that the quality of derived
dynamic measures is considerably more accurate,
both qualitatively and quantitatively, than that of
the image time series from which they were ex-
tracted. The reason, more fully developed else-
where,33 why this observation is not surprising is that
while the specific numerical values of the recon-
structed coefficients are not quantitatively accurate,
in each pixel the relative error is highly consistent
throughout the image time series. The only neces-
sary condition for quantitatively accurate determina-
tion of the above-mentioned dynamic properties, and
others33 is that, over time, the reconstructed coeffi-
cient be nearly a linear function of the true coefficient
value. Each pixel is independent of the others for
this purpose; i.e., the numerical values of the param-
eters in these linear relations can be different in ev-
ery one. The key issue then becomes the following:
Under what circumstances is it most probable that
the relations between true and reconstructed optical
coefficients will in fact be linear? The results and
preceding discussion indicate that this is best accom-
plished with a reconstruction method based upon rel-
ative differences between detector readings, because
of its reduced sensitivity to the difference between
the properties of the target and reference media.

Another issue related to dynamic investigations
concerns the potential diagnostic sensitivity and
specificity of dynamic measures compared with that
of information obtained directly from images of rela-

Fig. 10. �a� Dependence of �ur, i.e., ��ur�i � �ur�i��ui 
 �u0�i
�
�u0�i�, on angular separation between source and detector, for
reference-medium properties corresponding to row 3 of Fig. 5 �test
case 1, NDM formulation�. �b� Dependence of �u, i.e., ��u�i � ui 

�ur�i, on angular separation between source and detector, for
reference-medium properties corresponding to row 3 of Fig. 6 �test
case 2, standard Born formulation�. The source located at the “12
o’clock” position indicated in Fig. 1 was used for both panels. Be-
cause the quantities plotted on the ordinate scales take on positive
and negative values, logarithmic scaling is not appropriate. In-
stead, we make use of the transformation y � x1�n, with n � 7 in
the examples plotted here, to permit the display of data ranging
over several orders of magnitude on a single set of axes.
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tive optical contrast. To be clear, we recognize that
whereas the former is derived from a time series of
the latter, the two are not equivalent in terms of the
feasibility of meaningfully comparing data obtained
for different individuals within a population. This
issue here is not one of biology but is a practical
matter associated with the analysis schemes used.
Assume for the moment that measurement of some
relative change in optical coefficient value �for in-
stance, in response to a specific provocation� has the
same intrinsic diagnostic value as does a measured or
a derived dynamic response. As we have shown
here, the latter type of information �e.g., functional
form of the dynamic process� is essentially indepen-
dent of the chosen reference medium.34 However,
whereas this information comes from our analysis of
relative measures, the choice of the reference me-
dium certainly does influence the amplitude of the
relative response itself. Given the variability of tis-
sue size and composition, it is likely that comparison
of measures among individuals will require selection
of some range of reference values, which would result
in relative measures having a higher variance than a
corresponding dynamic measure.

C. Quantitative Analysis of Image Data Provided by the
NDM Algorithm

As one might expect, use of reference media that
increasingly differ from the true target background
will produce results having correspondingly greater
errors in the estimated unknown coefficients. While
this is seen �cf. Fig. 5�, we have nevertheless observed
some interesting quantitative dependencies that may
have practical value. One such finding is that
whereas the computed coefficient values ��a and �D
depend strongly on the reference medium properties,
the ratio ��a��D is nearly independent of them.
This result is seen in Table 2 for image data pre-
sented in Fig. 5. In fact, for the examples studied,
we find that ���a��D�Image � ���a��D�Target

2 over most

of the range of reference values explored. In other
examples �results not shown� we have explored this
relationship for a variety of perturbation values for
the inclusions, with a similar range of reference me-
dia. In all cases a constant error in the ratio of the
derived coefficients was obtained. The value of the
proportionality constant, however, varied depending
on the magnitude and direction of the perturbation
but remained within a relatively small range. In-
terestingly, this coefficient ratio is closely related to
a quantity known as the diffusion length �L�, which
is related to the more familiar properties by L �
�D��a�1�2. Thus, if it can be shown that the ob-
served relationship is a general feature of images
reconstructed under the NDM formulation, it would
suggest that perturbations in L can be recovered with
greater accuracy than can either the absorption or
the diffusion coefficient.

Another observation we have made is that use of
reference media whose coefficient values are smaller
than those of the true background in many cases
results in reconstructions wherein the optical coeffi-
cient values are significantly overestimated but
which are relatively free of artifact. We mention
this because it may represent a simple numerical
means whereby the contrast of the inclusions can be
enhanced.

D. Comparison with Other Recent Studies

An earlier study of the quantitative effect on recon-
structed images of differences between the back-
ground optical coefficients of the target medium and
those assigned to the reference medium was pub-
lished by Cheng and Boas.35 Consistent with the
results presented here, they report that underesti-
mating or overestimating the background absorption
or scattering coefficient by even a small amount pro-
duces large errors in the numerical values of the
reconstructed coefficients �they do not address spatial
resolution or other qualitative aspects of reconstruc-
tion accuracy�. It also is demonstrated that the ratio
of two reconstructed coefficients has a quantitative
error that is many times smaller than the error in
each by itself. While this does not provide a com-
plete analogy to the studies reported on here, because
they did not evaluate relative changes in detector
readings, their findings are nonetheless consistent
with our observations. We find additional grounds
for optimism that the NDM formulation will have
general utility in the fact that the principal features
of the results that Cheng and Boas present do not
depend on the choice of image-reconstruction algo-
rithm and that their images were reconstructed from
data obtained in a limited-view measurement �reflec-
tance from a single surface, or transmission through
a slab�. It would thus appear that the advantages of
the NDM formulation are independent of choice of
measurement geometry �i.e., it has been directly
demonstrated here for data recorded in the full tomo-
graphic mode and is implied by the findings reported
in Ref. 35 for the reflectance and transmission
modes�.

Table 2. Ratio of Average Contrasts of Reconstructed Absorption and
Diffusion Coefficients Shown in Figs. 5�a� and 5�b�, Respectivelya,b

�	s �cm
1�

�a �cm
1� 3 5 10 15 25 30

0.00 0.3427 0.3435 0.3441 0.3429 0.3427 0.3429
0.02 0.3627 0.3682 0.3882 0.4000 0.3846 0.3469
0.04 0.3715 0.3887 0.4042 0.3608 0.2758 0.2380
0.10 0.4048 0.3817 0.2816 0.1891 0.2000 0.0000
0.20 0.3463 0.2761 0.1212 0.1428 0.0000 0.0000
0.30 0.2863 0.1683 0.1000 0.0000 
NANc 
NAN

aMatrix format is the same as that of Fig. 5 �for the target
medium, ��a��D � 0.02�0.0332 � 0.6024, ���a��D�2 � 0.3626
.

bTo minimize the effect of near-surface artifacts on these com-
puted ratios, ��a and �D were averaged over only the area lying
within 2 cm �i.e., half the radius of the target medium� of the center
of each image.

cNAN means “not a number” and here indicates that the quan-
tity �D was equal to zero throughout the entire area included in the
computation of ��a��D.
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Interestingly, the NDM formulation described here
is quite similar to a more general expression derived
by Ntziachristos et al.,36,37 who also considered a dif-
ferential measure. These authors recognized that
the generation of interesting contrast features in tis-
sue, such as produced by injection of a dye, or re-
sponse to a particular provocation, can sufficiently
change the average tissue optical properties to limit
the accuracy of images recovered on the basis of lin-
ear perturbation theory. The expression they de-
rived �Eq. �20� in Ref. 36
 effectively removes this
average shift, which, in their test example, had the
effect of producing images with reduced surface arti-
facts. Seemingly, the advantage of this scheme is
that it allows for evaluation of an expression more in
line with the basic premise of perturbation theory
�i.e., perturbations are weak�. We have found, how-
ever, that this improved result is not without its
trade-offs. Specifically we have determined �results
not shown� that to achieve accurate reconstructions,
the ratio of computed intensities �i.e., U	0�U�0, listed in
the left-hand side of Eq. �20�
 corresponding to those
obtained from the initial guesses of the estimated
background optical properties before �U	0� and after
�U�0� a provocation, must be known with considerable
accuracy. Whereas in practice this might be possi-
ble from analysis of time-resolved or equivalent mea-
surement data, we consider it unlikely that similar
quality estimates could be derived in the case of dc
data. In its absence we have found that reconstruc-
tion results derived with their36 Eq. �20� exhibit a
dependence on the accuracy of the initial guess at
least as sensitive as do the standard Born and Rytov
approximations described here �cf. Eq. �1�
.

It is worth pointing out that in the limit where the
computed ratio of U	0�U�0 approaches unity, Eq. �20�
of Ref. 36 becomes essentially equivalent to our NDM
formulation in the Rytov approximation. Interest-
ingly, the latter expression is exactly equivalent to
their Eq. �22�, which they refer to as the typical Rytov
approximation.36 We should point out, however,
that this description is not in keeping with the “typ-
ical Rytov approximation” referred to in the com-
puted tomography literature.38 The data vector
corresponding to the latter, using the notation of Ref.
36, is the quantity ln�U	�U0�, whereas for the former
it is ln�U��U	�, where U0, U	, and U� are the detector
readings computed for the initial state, measured
prior to a provocation and measured following a prov-
ocation, respectively. As we have shown here, this
distinction is critical. To reiterate, results in Fig. 7
demonstrated that the “typical Rytov approximation”
�i.e., ln�U	�U0�
, is quite unstable to insufficiently ac-
curate estimates of the initial guess. In contrast,
when evaluated with the NDM scheme, such sensi-
tivity is markedly reduced. Thus it would appear
that while the basic benefits of adopting differential
schemes are well appreciated,35–37 what has not been
evident until now is how such measures can be eval-
uated to maximize solution stability.
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