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Noninvasive recording of fast optical signals presumably reflecting neuronal activity is a
challenging task because of a relatively low signal-to-noise ratio. To improve detection of
those signals in rapid object recognition tasks, we used the independent component
analysis (ICA) to reduce “global interference” (heartbeat and contribution of superficial
layers). We recorded optical signals from the left prefrontal cortex in 10 right-handed
participants with a continuous-wave instrument (DYNOT, NIRx, Brooklyn, NY). Visual
stimuli were pictures of urban, landscape and seashore scenes with various vehicles as
targets (target-to-non-target ratio 1:6) presented at ISI=166 ms or 250 ms. Subjects mentally
counted targets. Data were filtered at 2–30 Hz and artifactual components were identified
visually (for heartbeat) and using the ICA weight matrix (for superficial layers). Optical
signals were restored from the ICA components with artifactual components removed and
then averaged over target and non-target epochs. After ICA processing, the event-related
response was detected in 70%–100% of subjects. The refined signal showed a significant
decrease from baseline within 200–300 ms after targets and a slight increase after non-
targets. The temporal profile of the optical signal corresponded well to the profile of a
“differential ERP response”, the difference between targets and non-targets which peaks at
200ms in similar object detection tasks. These results demonstrate that the detection of fast
optical responses with continuous-wave instruments can be improved through the ICA
method capable to remove noise, global interference and the activity of superficial layers.
Fast optical signals may provide further information on brain processing during higher-
order cognitive tasks such as rapid categorization of objects.
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1. Introduction

There are many instances where the complexity of biological
phenomenology can only be studied in intact organisms. Since
the 1970s, a growing number of methods have been developed
that explore intact tissues at various spatial and temporal
scales (Baert, 2008). One technique that has proven especially
versatile is magnetic resonance (MR) imaging. While often
used for its ability to define the anatomy in exquisite detail,
the MRmethod has also been developed as an effective tool to
explore neuronal activation. This is possible because the
hemodynamic response associated with activation alters the
T2⁎ MR relaxation time. This has led to a wide array of reports
whose focus has been the spatial and temporal relationships
between neuronal activation and complex behaviors involving
sensory (Ogawa et al., 1992), motor (Richter et al., 1997;
Wildgruber et al., 1997), learning (Vaina et al., 1998), memory
(Reber et al., 2002) and other higher-order functions.

The MR method, however, does have clear drawbacks. For
one, the instrumentation and facility costs are high. Addi-
tionally, the need to restrict gross movement in the magnet
prevents the examination of subjects in natural settings or
undergoing complex tasks. Also, the relatively weak signal
associated with the hemoglobin response limits the temporal
resolution of the method to a few seconds.

An alternative technique that has been developed over the
past 20 years to study brain function is near-infrared spectro-
scopy (NIRS) (for review, see Pereira et al., 2007; Taillefer and
Denault, 2005; Wolf et al., 2007). The attraction of this
technique is the considerable flexibility by which the instru-
mentation can be deployed and its fast temporal response.
Also, its low cost and portability add to its utility. Further
extending its utility is the wide array of physical phenomena
that can be studied by optical methods. These include
absorption (Aronson et al., 1991; Barbour et al., 1990), light
scatter (Pogue et al., 2004), birefringence and optical activity
(Baba et al., 2002; de Boer and Milner, 2002), fluorescence
(Chang et al., 1995a,b, 1996, 1997), bioluminescence (Welsh
and Kay, 2005) and the Raman effect (Qu et al., 1999; Vinegoni
et al., 2004). In recent years, a particular focus of the NIRS
technique has been to employ array sensing methods to
provide for topographic (Koizumi et al., 2003; Toronov et al.,
2007; Wolf et al., 2007) and tomographic (Aronson et al., 1991;
Barbour et al., 1990, 1991, 2001; Graber et al., 1993b) imaging
studies. A key focus here has been the examination of the
event-related hemodynamic response (Gratton et al., 1997;
Gratton and Fabiani, 2003; Toronov et al., 2001) as a surrogate
of neural activity. Compared to the MR method, the NIRS
technique provides information about the complete hemoglo-
bin response (i.e., oxygenation and volume changes). Also of
interest is evidence that the NIRS method can be employed to
directlymeasure neuronal activation. This is believed to result
from light scatter changes that are associated with ion
currents across the neural membrane and occurs on a time
scale considerably faster than the hemodynamic response.
This dual sensing capability makes the NIRS technique the
only imaging method that is sensitive to changes in both
neuronal activity (fast signal) and hemodynamics.

During the last 10 years, there have been several attempts
to record the evoked fast optical signal noninvasively through
the scalp and skull in human subjects (Franceschini and Boas,
2004; Gratton et al., 1997; Gratton and Fabiani, 2003; Morren et
al., 2004; Rinne et al., 1999; Steinbrink et al., 2000, 2005; Syre et
al., 2003; Wolf et al., 2002, 2003). The results of these studies,
however, have been controversial. In a series of reports,
Gratton and colleagues have documented the fast signal as
being associated with a variety of event-related tasks invol-
ving the primary sensory (Gratton and Fabiani, 1998) and
motor cortex (Gratton et al., 1995). The ‘event-related optical
signal’ (EROS) showed spatial agreement with the fMRI and
temporal agreement with a visual evoked potential (Gratton et
al., 1997).

Reports by Steinbrink and colleagues have been less
consistent (Steinbrink et al., 2000; Steinbrink et al., 2005; Syre
et al., 2003). Steinbrink et al. (2000) were first tomeasure the fast
optical signal duringelectricalmediannerve stimulationusing a
continuous-wave NIRS system and intensity measurements
(ΔI/I), rather than photon delay. The reported signal changes
were, however, much smaller (~0.05%) than those from the
reports of Gratton's group. In another study, the same group
failed to reproduce the results obtainedbyGratton's groupusing
an almost identical instrumentation (phase measurement with
a frequency–domain system) andexperimental protocol (Syre et
al., 2003). A recent study by the same group yielded limited
results as the authors detected a significant change inactivity in
only onesubjectduring finger tapping taskanda lackof signal in
all 12 subjects during visual stimulation with a reversing
checkerboard (Steinbrink et al., 2005).

Another research group recorded the fast optical signal
using intensitymeasurements in 10 healthy volunteers during
finger tapping, tactile stimulation, and electricalmedian nerve
stimulation (Franceschini and Boas, 2004). The fast signal was
detected in 43% of the measurements during finger tapping,
60% of those during tactile stimulation, and 23% of those
during electrical median nerve stimulation. The relative
changes in intensity associated with brain activation were
~0.07% with latencies ~100 ms.

There is evidence that the method used for signal analysis
could be important. Morren et al. (2004) have employed an
adaptive filter and independent component analysis (ICA) for
better separation of a signal component containing the fast
signal. In 9 of 14 subjects, a significant fast neuronal signal
related to the finger tappingwas found in the intensity signals.
In the phase signals, indications of the fast signal were found
in only two subjects (Morren et al., 2004).

To summarize, it can be said that the feasibility of detecting
fast optical signal noninvasively remains controversial
because of the low signal-to-noise ratio, and the signal is not
detected in all subjects. In these studies, the detected signal
had a latency of 50–100 ms which corresponds well to
electrophysiological correlates of early sensory processing.

It remains an open question, as to whether other types of
event-related neural activity can be recorded using NIRS
methods. One well-established example is the event-related
potential (ERP) P300 recorded in response to infrequent stimuli
in the conventional oddball task. We are aware of only one
study where the fast optical signal was recorded in the dorsal
frontal cortex during an auditory oddball task and its temporal
dynamic was similar to the P300 potential (Low et al., 2006).
This study used a frequency–domain instrument and phase-
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based measurements of the fast signal. Event-related cogni-
tive potentials recorded by electrophysiological methods may
have a wider distribution over the scalp, which include
frontal–temporal, central and parietal locations depending
on the task in question.

To extend the published data and to further explore the
feasibility of detection of the fast optical signal from the human
scalp, here we have explored our ability to detect the event-
related fast optical signal using an intensity-based continuous-
wave imager (Schmitz et al., 2002, 2005a,b) while employing a
visual oddball task protocol. Specifically, we have searched for
optical analogs of cognitive potentials during a target detection
task using rapid serial visual presentation (RSVP) of complex
pictures, a variation of the object detection task initially
introduced by (Thorpe et al. 1996). A keymethodology employed
has been the use of independent component analysis (ICA) to
detectand remove technical andphysiological artifacts fromthe
signal including nonspecific activity of the superficial layers
(scalp and skull). The results show that the temporal dynamics
of the optical signal matches the known dynamics of the ERP
recorded in similar conditions, which allows us to relate the
observed optical signal to neuronal activity.
Fig. 1 – Optical probe on the head of a subject (top) and
schematic drawing of the probe position and geometry
(bottom). Position of the light source is marked by asterisk
and the area used to reconstruct the spatial distribution of the
fast optical signal is depicted by a rectangle. This area is
defined as to cover midpoint locations for all source–detector
pairs and the activity recorded at each detector is assumed to
be “located” at the midpoint of the corresponding
source–detector distance.
2. Results

2.1. Independent component analysis

A representative 5-second segment of the raw optical data
from subject #39 is shown in Fig. 2A. All 15 channels (1
source×15 detectors) are numbered starting from the leftmost
top location (subject's view, see Fig. 1) and first going down
(column-wise) and then to the right (row-wise). In this
scheme, the ‘co-located’ channel has #2 (for description of
the ‘co-located’ channel, see Optical data collection below).
The most distinctive feature of the raw optical data is the
presence of regular high amplitude waves with a period of
approximately one per second, which represent a heartbeat
artifact. Heartbeat artifact is the most common physiological
artifact found within the optical signal. It represents periodic
changes in blood oxygenation related to heartbeat and there-
fore belongs to the family of hemodynamic (slow) optical
signals. High-pass filtering N2 Hz used in this study did not
remove it completely and the main rhythm of heartbeat at
~1 Hz along with higher harmonics was usually present in the
optical signal after filtering. This artifact is seen in all channels
in Fig. 2A but less evident in channel #1, which is closest to the
source, and in the co-located channel #2.

The ICA components of the data presented in Fig. 2A are
shown in Fig. 2B. It can be seen that the heartbeat artifact is
present only in several components (#2, here the heartbeat
waves are marked by asterisks; ## 6, 10, 12 and 15). This
illustrates the ability of ICA to identify artifacts based on their
statistical independence from other signals and its potential
usefulness for signal de-noising.

TheweightmatrixA for the data of Fig. 2A is shown inFig. 3A
as a grayscale-coded plot. Matrix A was an important tool
guiding our selection of components which would have to be
removed from the raw signal. In this matrix, each cell with
indexes (i, j) represents the weight relating the j-th component
to the i-th data channel. Analysis of all available data revealed a
certain structure in matrices A, which was common in all
subjects (Fig. 3). This structure is exemplified in Fig. 3A by ovals
“a” and “b” depicting two clusters of relatively large weights.
Oval “a” represents the cluster related to theactivity at detectors
which are close to the source. The second cluster (oval “b”) was
usually found at the most distant detectors separated from the
source by 3–4 cm. In the first cluster in Fig. 3A, components ## 1,
4, 7, 8, 11, 13 and 14 have large weights along the second row of
matrixA and thismeans that these components representmost
of the activity of the co-located channel #2 and, therefore, they
should be removed from the signal. The distant cluster “b” is
likely to represent the activity of deeper (presumably cortical)



Fig. 2 – (A) Fifteen channels of raw optical data for wavelength=830 nm recorded from a representative subject (#39). Note the
presence of regular waves with a period of slightly shorter than 1 s in almost all channels (marked by asterisks in channel #12).
Those waves are caused by regular changes in blood oxygenation due to the heartbeat. (B) Independent components of the
same data. Note that the heartbeat rhythm is present mainly in components #2 (marked by asterisks), #6, #10 and to a weaker
extent in components #12 and #15. (C) First 2 s of the same record is shownwith a superposition of the raw data (thin line) and
the restored data with artifactual components removed (bold line). Note a significant reduction of heartbeat waves in the
restored signal. Signals are baseline corrected and normalized to standard deviation.
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layers and it is in this cluster where the signal reflecting
neuronal activity is expected to be found. A possible and
undesirable influence of the superficial layers on the activity
recorded at distant detectors can be also revealed using matrix
A. For example, components ## 4, 5 and 8 in Fig. 3A contribute to
the co-located (superficial) channel #2 as well as distant
channels ## 13–14. This illustrates the fact that, indeed, the
brain activity recorded at distant detectors can be contaminated
to various extents by the activity of superficial layers.

After finding components related to the activity of super-
ficial layers, those components were also excluded from
further analysis along with the heartbeat components found
through visual inspection of data records as described above.
At the next stage of data analysis, the signal for all channels
was restored using the remaining components. For the data
from subject #39, the restored signal is shown in Fig. 2C where
it is superimposed on the raw signal. The corresponding
power spectra of the raw and restored data are shown in Fig. 4.
In the raw spectra, the heartbeat artifact is seen as two
distinctive peaks at frequencies ~2.2 and 3.5 Hz which
correspond to the 2nd and 3rd harmonics of the heartbeat
signal. From Figs. 2C and 4, it can be seen that the ICAmethod
was very effective in removing physiological artifact as well as
noise generated in the superficial layers (note that the
spectrum of the co-located channel #2 in Fig. 4 is flat which
means that the signal in this channel contains mostly noise).
The restored signal was then used to calculate event-related
responses for target and non-target conditions.

2.2. Event-related optical signal

To demonstrate the effect of artifact removal on the event-
related optical signal, the signal from the representative subject
(#37) is shown in Fig. 5 before and after artifact removal. The top
panel shows the EROS calculated for one channel using the raw
data (before ICA) while the lower panel shows the same signal
after the ICA procedure and artifact removal. The average raw
signal in this subject appeared to be insignificantly different
from baseline and therefore did not reveal any significant
components related to the visual stimulus (Fig. 5A). Contrary to
that, the signal after artifact removal showed deviations from
baseline within 100–300 ms after the stimulus. Most interest-
ingly, the optical signal decreased from baseline in response to
targetswhile showingan increase in response tonon-targets (Fig.
5B). This pattern was consistent in all participants.

The group average EROS is shown in Fig. 6. It appeared to be
similar in all four experimental conditions. For each condition, a
few subjects were excluded from the group average because the



Fig. 3 – (A) The grayscale-coded plot of weight matrix A for data shown in Fig. 2. (B–E) Matrices A averaged over all subjects for
each of four experimental conditions: PR=6 Hz, wavelength=760 nm (B); PR=6 Hz, wavelength=830 nm (C); PR=4 Hz,
wavelength=760 nm (D) and PR=4 Hz, wavelength=830 nm (E). Each cell in the plots represents coefficient aij of matrix A. Oval
“a” represents one cluster of relatively large weights describing the contribution of several components into the activity of
co-located channel (#2) and other channels located close to the source. The activity within this cluster is largely contaminated
by the activity of superficial layers. Oval “b” represents the activity of channels distant from the source. These two clusters of
activity were commonly found in all subjects and can be seen in group average matrices (B–E).
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response was not significantly demonstrated in them. There-
fore, for all four conditions presented in Fig. 6, the numbers of
subjects used to derive the group averagewere as follows:NA=8
(condition A: PR=6 Hz, wavelength=760 nm); NB=10 (condition
B: PR=6 Hz, wavelength=830 nm); NC=7 (condition C: PR=4 Hz,
wavelength=760 nm); and ND=7 (condition D: PR=4 Hz,
wavelength=830 nm). As in subject #37, the major distinctive
feature of the group average response is that the optical signal
(measured by changes in light intensity) decreased significantly
in response to targets and this decrease occurred within 200–
300 ms after the stimulus. After 300 ms, the signal returned to
baselinewith some tendency for overshoot, that is, developing a
small positive wave at ~350 ms before the next negative
deviation from baseline after 400 ms. The later components
(N300ms), however, were weak and, as a rule, insignificant. The
average response to non-targets was quite different showing an
increase at approximately the same time of 200–300ms after the
stimulus (Fig. 6). However, the non-target-related response was
weaker and did not reach significance at wavelength=760 nm
and PR=6 Hz (Fig. 6A).

The differential response (targets minus non-targets) is
shown in Fig. 7. Its temporal pattern is, understandably,
similar to the target-related response also showing the largest
deviation from baseline around 200–300 ms. The differential
response was somewhat more robust at wavelength 830 nm
compared with wavelength 760 nm (showing more temporal
bins where signal amplitude was significantly different from
baseline; compare Figs. 7B, D with Figs. 7A, C).



Fig. 4 – Power spectra of the data presented in Fig. 2 before (thin line) and after artifact removal (bold line). Heartbeat-related
artifact present in the raw data is seen as two high amplitude peaks at low frequencies (2–3 Hz). Those peaks are the 2nd and
the 3rd harmonics of the heartbeat rhythm. Note a marked reduction in power of both the heartbeat and broadband noise after
ICA. Spectra for channels ## 10–12 are shown using logarithmic scale along y-axis to show the spectra after ICA in more detail.
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2.3. Spatial distribution of the fast signal

To analyze the spatial distribution of event-related optical
signal, we first identified an ICA component best representing
the optical response. This component was identified as having
the largest weight for a data channel (or a group of channels)
where the response was maximal. We then linearly inter-
polated the weights of the response-related component over
the area covered by the optical probe. Spatial maps for each
participant were finally group-averaged for each of four
experimental conditions. The group average spatial maps
are shown in Fig. 8. The cardinal points in thesemaps used for
interpolation grids represent the midpoints for each source–
detector pair and therefore themaps show spatial distribution
over the left half of the area covered by the probe (the imaged
area is depicted in the bottom panel of Fig. 1). Spatial maps
demonstrate that optical response was best recorded in the
data channels distant (3–4 cm) from the light source. Removal
of the ICA components contributing to the co-located channel
resulted in that the activity of the channels near the source
was also excluded (as illustrated in the spatial maps by blue
color near the source) and therefore, the signal became free of
the activity of superficial layers. Thus, the spatial maps also
illustrate the effectiveness of ICA to exclude nonspecific
activity of superficial layers from the signal of interest
(which in this context is a signal related to neuronal activity).
3. Discussion

3.1. Artifacts present in the optical signal

The optical signal measured exclusively as changes in light
intensitywithout concurrentmeasurements of phasedelay, as is
the case for all continuous-wave instruments, may be contami-
nated by noise or nonspecific changes from many different
sources. Because of the positioning of light sources anddetectors
on the scalp, photons necessarily pass through superficial tissue
layers (scalp and skull) before reaching the cortex. These
superficial layers may provide noise as well as nonspecific
hemodynamic variations which would unavoidably contami-
nate themeasured signal. Inaddition, hemodynamicoscillations
inside the brain (e.g., related to heartbeat and respiration) also
provide interference signals to the optical measurements of
brain activity. All these interferences either from superficial
layers or from inside the brain are often referred to as “global



Fig. 5 – Event-related signal (averaged over all target epochs
(bold line) and the same number of randomly chosen
non-target epochs (dotted line)) calculated using the raw data
(A) and the ICA-processed data (B) in subject #37. Stimulus is
presented at t=0 (picture onset). Significant deviations from
baseline (100ms pre-stimulus) aremarked by asterisks. Note
that averaging of the raw data does not reveal any
event-related signal while averaging of the ICA-processed
data reveals significant deviations from baseline for both
target and non-target stimuli. Signal amplitude scale is in
units of ΔI / I0 (%).

Fig. 6 – Group average event-related responses for
presentation rate (PR)=6 Hz and wavelength=760 nm, N=8
(A); PR=6 Hz and wavelength=830 nm, N=10 (B); PR=4 Hz
and wavelength=760 nm, N=7 (C); PR=4 Hz and
wavelength=830 nm, N=7 (D). N is the number of subjects
used in each of four conditions to derive the group average
response. Only subjects showing a significant response were
used in group averaging. Stimulus is presented at t=0
(picture onset). Blue line—response to targets; green
line—response to non-targets; dotted lines show standard
errors for the corresponding signals at each time point;
asterisks designate time bins with significant deviation of
responses from baseline (t-test, p<0.05). Signal amplitude
scale is in units of ΔI / I0 (%).
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interference” or “systemic physiological interference” (Zhang et
al., 2007). The global interference is a common problem for
intensity-based measures of both the hemodynamic measure-
ments of oxy-/deoxyhemoglobin concentration changes and the
fast (presumably neuronal) signal. Several studies have
addressed this problem through development of methods to
suppress global interference applying themmostly for hemody-
namicmeasurements. Thosemethods includeadaptive filtering,
average waveform subtraction and others (Franceschini et al.,
2003; Gratton and Corballis, 1995; Zhang et al., 2007). A recent
study has successfully employed independent component
analysis to remove the skin blood flow artifact from functional
near-infrared spectroscopic imaging data (Kohno et al., 2007).
The ICA method has also been used to improve the signal in
optical imaging of intrinsic signals (Chen et al., 2007; Schiessl et
al., 2008) and we are aware of only one study where ICA was
applied to detect fast optical signal in frequency–domain
measurements (Morren et al., 2004). Because intensity-based



Fig. 7 – Group average differential responses (target minus
non-target) for the data shown in Fig. 6. Dotted lines show
standard errors for the corresponding signals at each time
point; asterisks designate time bins with significant differ-
ence between targets and non-targets (t-test, p<0.05).

Fig. 8 – Group average spatial maps of the fast optical signal.
Panels (A–D) correspond to the panels in Figs. 6 and 7. Spatial
maps were calculated for each subject using relative weights
of the ICA component contributing to the observed
event-related response with the largest weight. To calculate
spatial distribution, thoseweightswere interpolated over the
area coveringmidpoint locations for all source–detector pairs
(see Fig. 1). S is location of the light source. Note that the
observed event-related response is best seen at detectors
distant from the source (3–4 cm source–detector separation)
while the contribution into the response of superficial layers
(activity of which is best seen at detectors close to the source)
is minimized through the ICA.
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measurements aremore sensitive to noise from various sources
such as superficial layers and changes in environmental light
intensity compared to phase-delay measurements (Gratton et
al., 2006), it is important to develop reliablemethods for removal
of global interference while attempting to detect the fast optical
signal using continuous-wave instruments. Themajor finding of
this study is that the feasibility to detect the fast optical signal in
intensity-based measurements can be significantly improved
through the application of independent component analysis. As
our data show, without removal of global interference, fast
optical signal may be completely undetectable (Fig. 5) and this
may explain the relatively poor results of some previous studies
demonstrating fast signal in only a relatively small percentage of
subjects. Our data show that the superficial layers are a powerful
source not only of nonspecific hemodynamic oscillations (such
as heartbeat-related) but also of white noise as judged from the
flat power spectra of the co-located channel (Fig. 4). Independent
component analysis was a significant part of data processing
used for artifact removal from optical signal in the current study
and with application of ICA we were able to detect fast signal in
70%–100% of our subjects.

3.2. Independent component analysis as a de-noising tool

The ICA as amathematical and computational method belongs
to a broad class of linear representations of multivariate data.
Principal component analysis (PCA), factor analysis and projec-
tion pursuit are several examples of linear transformation
methods commonly used in various data processing techni-
ques. Independent component analysis is a recently developed
method belonging to the family of the blind source separation
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techniques (Bell and Sejnowski, 1995; Comon, 1994; Jutten and
Hérault, 1991; Nadal and Parga, 1994). Themajor goal of ICA is to
find a linear representation of non-Gaussian data so that the
components are as statistically independent as possible given all
the available data. It has been shown that such representation
seems to capture the essential structure of the data in many
applications including feature extraction and signal separation
(see, e.g., Hyvärinen et al., 2001). While PCA considers signals as
random variables with Gaussian distribution and minimizes
their second-order statistics (i.e., decorrelates variables), ICA
considers non-Gaussian variables and minimizes both second-
order and higher-order dependencies in these variables (i.e.,
maximizes their statistical independence). The assumption of
non-Gaussianity of input variables is essential for ICA and it is
more general compared with the assumption of Gaussianity
used in PCA because non-Gaussian distributions represent a
broader class of variables. Moreover, PCA components are
orthogonal while ICA components may be non-orthogonal,
which is again a more general assumption because there is no
reason to expect neurobiologically distinct sources of activity to
be orthogonal (Jung et al., 1998). A direct comparison between
two regression methods, PCA and ICA, in terms of their
applicability for artifact removal from EEG while preserving
spectral properties of the EEG signal has revealed a higher
effectiveness of ICA (Jung et al., 2000). Therehave been suggested
several algorithms realizing the independent component analy-
sis. These algorithms include minimization of mutual informa-
tion,maximumlikelihoodestimationandthe Infomaxalgorithm
derived from the principles of the neural network theory (Bell
and Sejnowski, 1995; Nadal and Parga, 1994). Being similar from
the theoretical viewpoint, these algorithms differ in computa-
tional strategy and the assumptions on the nature of the data.
One of themost computationally effectivemethods of ICA is the
FastICA algorithm (Hyvärinen and Oja, 2000). The algorithm is
based onmaximization of non-Ggaussianity of the components
as an approach to increase their statistical independence.

We used the FastICA algorithm to perform ICA of optical
data and the following steps to identify those ICA components
which were considered noise (and discarded) as well as those
which were considered signal (and kept). First, the major
artifacts related to cardiac and respiratory activity were
identified from visual inspection of the records as illustrated
in Fig. 2. Second, we identified those ICA components which
had a significant contribution to the co-located channel (#2)
using the weight matrix A as illustrated in Fig. 3. Those
components were considered as representing the activity of
the superficial layers and were also discarded. This was
confirmed through the spectral analysis showing the flat
spectra of those ICA components. After the removal of all
artifactual components, we verified that the components with
a significant contribution to the distant optodes (depicted by
ovals “b” in Fig. 3) were kept in, considering them as the best
candidates for a neuronal signal.

3.3. Technical and physiological factors affecting the
detectability of fast optical signals

A comparative analysis of the fast optical signal using a
frequency–domain instrument and deriving the signal from
three differentmetrics has been done in a recent study (Gratton
et al., 2006). Thosemetricswere: 1) continuousmeasurement of
intensity (DC intensity), which is similar to using a continuous-
wavemachinewithout frequencymodulation; 2)measurement
of modulated intensity (AC intensity), which is similar to the
continuous-wave measurement with modulation of light
intensity (low-frequency (a few kHz) modulation of light
intensity is used in the majority of continuous-wave imagers,
including the DYNOT instrument used in this study, to allow
separation of different light sources through demodulation); 3)
photon delay measurement, which is specific for frequency–
domain instruments. The effect of wavelength (shorter and
longer than thehemoglobin isosbestic point at 800nm, thepoint
at which the absorption spectra of oxy- and deoxyhemoglobin
cross over) and the effect of source–detector distance were also
analyzed. It has been shown that the AC intensity and photon
delay measurement of the fast signal are more robust and
sensitive compared with the DC intensity measurement. A
possible explanation is that the DC intensitymeasurements are
more sensitive to various sources of noise, e.g., contribution of
superficial layers, while measures based on photon delay may
be exquisitely sensitive to differential effects occurring deep
into the tissue thus providing better control for external sources
of noise (Gratton et al., 2006). Supportive of thisview, the current
study demonstrates a significant effect of superficial layers and
global interference which may make the fast signal undetect-
able through intensity measurements. This result along with
other published findings emphasizes the need to employ de-
noising algorithms such as ICA or adaptive filtering, especially
with intensity measurements, in order to reduce artifacts
present in the optical signal. Given the fact that the contin-
uous-wave instruments cost significantly less than the fre-
quency–domain instruments, the demonstrated successful
application of de-noising algorithms in the current study
encourages further application of continuous-wave instru-
ments for the detection of the fast (presumably neuronal)
optical signal.

The current results are also consistent with the previous
data considering the effect of the source–detector distance and
demonstrating the best fast optical effects for source–detector
distances exceeding 22.5mm (Gratton et al., 2006). In our study
the event-related fast signal was also best recorded at the
detectors distant from the source (3–4 cm source–detector
separation),whichprovides further support for the brain origin
of this signal. Also, the signal observed in the current studyhad
the same sign for both wavelengths shorter (760 nm) and
longer (830 nm) than the isosbestic point of hemoglobin, which
is also consistent with the recent report (Gratton et al., 2006).
The same-sign effect has been interpreted as pointing to light
scattering as a more likely mechanism for the observed fast
signal rather than rapid deoxygenated effects (Gratton et al.,
2006). If the fast signal were due to rapid consumption of
oxygen (and therefore concurrent decrease/increase in oxy-
and deoxyhemoglobin, respectively), then one should expect
the opposite effects (e.g., decrease and increase) observed at
wavelengths on opposite sides of the hemoglobin isosbestic
point. If the fast optical signal is, instead, due to changes in
light scattering, then the same effects should be observed at
both wavelengths, as was the case in the current study, thus
supporting the light scattering mechanism for the observed
fast response.
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3.4. Physiological correlates of the fast optical signal

The major signal observed in our study as a decrease in light
intensity is consistent with a similar decrease in intensity
described by other groups who also used intensity measure-
ments (Franceschini and Boas, 2004; Steinbrink et al., 2000).
We observed a decrease in light intensity in response to
target stimuli only, which is in line with the results of Low et
al (2003) who also recorded a decrease in light intensity in
response to targets in a visual oddball paradigm. In our
experiments, the response to non-targets (frequent stimuli)
had a tendency to be opposite to the target-related response
showing a slight increase in light intensity (Figs. 5 and 6).
However, at relatively high stimulation frequencies used in
this study (4 Hz and 6 Hz), some overlap between consecutive
responses was unavoidable and a weak positive response to
non-targets might merely represent a return to the baseline
of a preceding target response, which occurred in approxi-
mately one fifth of all trials. At high presentation rates used
in this study, only the contrast between target and non-
target stimuli (i.e., a differential response) is really meaningful.
A possible physiological interpretation of the observed
differential optical effect between targets and non-targets is
as follows. Attendance to a target stimulus requires mobili-
zation of attentional resources; therefore it is reasonable to
suggest that target detection is accompanied by increased
neuronal activation in the brain areas engaged in the
response generation. It is probably this neuronal activation
that is recorded by an ERP (such as P300) during similar tasks
switching on the attentional mechanisms. If we assume that
the fast optical signal results from changes in light scatter-
ing, then target-related increased neuronal activation in our
experiments was accompanied by increased light scattering
with a parallel decrease in light intensity. This supposition is
in line with the evidence obtained from optical measure-
ments in cell culture that neuronal activity is associated with
an increase in light scattering (Stepnoski et al., 1991). It is
likely that optical response depends on the level of activation
and/or engagement of the underlying neuronal substrates.
How neuronal processes cause and shape those optical
effects and what their electrophysiological correlates are
(e.g., specific ERP components or spectral changes within
physiologically relevant frequency bands) are open questions
requiring further studies. For example, combined EEG and
optical recordings may provide new insights on the largely
unknown relationship between neural activity and fast
optical signal.

In an object detection task initially introduced by Thorpe
et al. (1996), the target stimuli were detected within complex
natural scenes and they were defined by higher-order
category information (presence of different animals within
those scenes; the target/non-target ratio was 1:1). Several
studies have explored this task in detail using the conven-
tional ERP approach and described an early difference
between targets and non-targets in the ERP starting at
150 ms after the stimulus and peaking at 200 ms, a response
termed “differential ERP activity”. It was observed as negative
potential over temporal–occipital and positive deflection over
frontal regions (Delorme et al., 2000; Fabre-Thorpe et al., 2001;
Thorpe et al., 1996). Using source localization techniques, a
more recent study has found the sources of activity related to
this object detection task within the posterior visual-associa-
tive brain regions and, although less pronounced, additional
anterior sources in the prefrontal cortex (Codispoti et al.,
2006). We utilized a modified version of this object detection
paradigm using different stimuli (various types of vehicles
within natural scenes rather than animals) and a lower
target/non-target ratio (1:6). Despite the differences, we
expected a similar response in the prefrontal cortex related
to the early target detection and the optical correlate of this
response was a focus of the current study. Although accurate
localization of the optode positions with respect to cortical
structures has not been performed in this study (which
requires co-registration of optode positions with anatomical
MRI and will be implemented in the future studies), our data
demonstrating the differential optical response (targets
minus non-targets) in the left prefrontal cortex at 200–
300 ms after the stimulus are consistent with the object
recognition-related “differential ERP activity” recorded
electrophysiologically.

In conclusion, the current results demonstrate that fast
optical response can be detected using continuous-wave
instruments provided that some advancedmethods of artifact
removal such as independent component analysis are imple-
mented. Similarly to the EEG data, when applied to the optical
signal, the ICAmethod appears to be a powerful tool capable to
reveal and remove components related to artifacts (such as
global physiological interference), noise and nonspecific
activity of superficial layers. The refined optical signal has a
potential to contribute to the spatial and temporal character-
ization of various types of brain responses including those
related to higher-order cognitiveprocesses suchas rapidobject
recognition.
4. Experimental procedures

4.1. Participants

Ten right-handed young adults (six females, aged 18–36
years, mean age 26.6 years) participated in the study. All
participants signed a consent form approved by the George-
town University Institutional Review Board and reported as
being in good health and without medications. All subjects
had normal (or corrected to normal) vision and undertook a
battery of behavioral tests which included measures of IQ
(Weschler Abbreviated Scale of Intelligence; the average IQ
score 118.3) and handedness before one experimental
session lasting 2 h during which they performed a target
detection task with simultaneous optical recording of brain
activity. All subjects were compensated for their participa-
tion in these experiments.

4.2. Optical data collection

Optical signals were recorded using a two wavelength (760,
830 nm) continuous-wave DYNOT (DYnamic Near-infrared
Optical Tomography) imaging system from NIRx Medical
Technologies, Brooklyn, NY. The system can be operated in
two modes. Recording of the hemodynamic response is



155B R A I N R E S E A R C H 1 2 3 6 ( 2 0 0 8 ) 1 4 5 – 1 5 8
accomplished using a time multiplexed illumination scheme,
adaptive gain control and frequency encoding techniques
(Schmitz et al., 2002). The image framing rate achieved is
roughly proportional to the number of illumination sites
employed. In the case of the maximum number for the
particular system, (i.e., 32 source locations, Model 264), the
framing rate is approximately 2 Hz. The core technology is
scalable, allowing for use of a greater number of illuminating
wavelengths, source and detector locations. Another impor-
tant element of the system is its optode design. In the current
study, we used optical fiber cables designed to support “two-
way” traffic of optical signals. Each cable containsmicro-fibers
transmitting light from the source to the tissue as well as
micro-fibers transmitting light from the tissue to the detector.
In this fashion, optical signals that are ‘co-located’ with the
source (i.e., light reflected by a tissue volume in closeproximity
to the source) can also be captured. This has the advantage of
isolating signals thathavepenetratedonly themost superficial
layers of tissue (<3 mm). In fact, we took advantage of this
when applying the ICAmethod for data analysis and using the
‘co-located’ channel (i.e., the output optical signal spatially co-
located with the source) as a channel representing mostly the
activity of the superficial layers (channel #2 in the current
design, which is co-locatedwith the sourcemarked by asterisk
in Fig. 1). Optodes positioned at greater distances capture
signals that have propagated along a banana shaped path that
has successively greater maximum depths (Graber et al.,
1993a). It deserves emphasis that because this system func-
tions as a tomographic imager, a greater sensingdensity canbe
achieved than that utilizedwith theNIRS systemsdesigned for
surface topography studies (Koizumi et al., 2003; Taga et al.,
2003). In the limit, data from every source and detector are
collected (32×64, 2048 channels/wavelength/image frame). In
practice, the maximum value achieved is reduced depending
on the particular source–detector separations employed.
Secure optode positioning is achieved using a helmet that
employs an open scaffolding design (Fig. 1). At maximum
density, the optodes (3 mm diameter) have a center-to-center
separation distance of 1 cm.

Recording of the fast optical signal requires a broader
bandwidthwhich is achieved by limiting the optical switch to a
single location thus allowing higher sampling rate of the
signal. In thismode, the imager captures a time series at nearly
75 Hz. For the current study, probe geometry was designed to
target the prefrontal cortex. A total of 15 optical fibers were
placedon the left side of the subject's foreheadandarrangedas
a grid with 3 horizontal rows and 5 optodes in each row
separated by 1 cm (Fig. 1). Here we use the term “data channel”
to refer to the signal recorded by the corresponding detector.
Because only one sourcewas employed, 3-D image reconstruc-
tion was not done and instead was restricted to presentations
of 2-D spatial maps based on the ICA weight matrices. During
reconstruction, for simplicity, data channels were assumed to
be “located” at spatial coordinates (x,y) defined at midpoints
between the corresponding source and detector.

4.3. Experimental paradigms

To investigate the feasibility of utilizing optical methods to
measure neuronal activity, we used a target detection task
within an RSVP stream of pictures. The paradigm was based
on an Animal–No Animal task modified from the original task
introduced by Thorpe et al. (1996) to study fast object
recognition using the ERP technique. In this paradigm, we
used picture chips with size of 500×500 pixels cut from several
broad view images of landscapes and some of those chips
contained vehicles such as planes, helicopters, cars and boats.
All these vehicles were designated as targets while picture
chipswithout vehicles served as non-targets. All pictureswere
shown to the subjects at the center of a computer LCDmonitor
at a viewing distance of 75 cm in blocks each containing 13
chips. The presentation rate (PR) within each block was 6 or 4
pictures per second and there was a 1.5-second break between
successive blocks. For each PR, 160 blocks were presentedwith
2080 pictures in total selected randomly from the same picture
set. As both presentation rates were too fast to allow manual
response on each trial, the task was to mentally count picture
chips containing targets and then verbally report the number
of targets immediately after each block during the inter-block
breaks. Counting targets served to engage the subject's
attention and provided a measure of behavioral performance.
Use of mental counting of targets instead of requiring a motor
response (such as button pressing) was advantageous because
this allowed us to achieve a relatively high PR while being able
to assess the behavioral performance of subjects based on
their verbal reports between blocks. Each picture was shown
for about 60% of time between successive presentations and
the baseline crosshair at the center of the screen was shown
for the rest of time (40%). This translates into 100 ms for each
chip exposure at PR=6 Hz (inter-stimulus interval (ISI)=
166 ms) and 150 ms at PR=4 Hz (ISI=250 ms). Infrequent
targets (total number=280 for each PR) were distributed
randomly between frequent non-targets (total number=1800)
and the target/non-target ratio was 15.5%. The overall
structure of the experiments included two sessions (for
PR=6 Hz and PR=4 Hz) with a couple of minutes break
between sessions and the order of sessions was counter-
balanced between participants. Each experiment also
included a short practice followed by several blocks of chip
presentation.

Data synchronization: Synchronization of picture presen-
tation and optical data acquisition was achieved using a TTL
pulse generated by the imager and sent to the presentation
software (E-Prime) through a hardware interface (DYNOT data
synchronizer).

4.4. Data analysis

Optical data were recorded at 75 Hz sampling rate continu-
ously during presentation of pictures and stored on acquisi-
tion PC computer for off-line analysis using original Matlab
scripts. To remove the slow (hemodynamic) and DC compo-
nents from the optical signal, the data were high-pass filtered
at N2 Hz, normalized (the signal at each channel was divided
by its standard deviation calculated over the whole record)
and then subjected to the independent component analysis.

4.4.1. Independent component analysis
The ICA decomposes signal into statistically independent
components which are linearly related to the original data
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(Hyvärinen et al., 2001). If x is a vector of n observed variables
(data channels) and s is a vector of n independent compo-
nents, then a linear relationship between x and s can be
written in matrix notation as:

x ¼ A � s ð1Þ

Here A is a transform matrix. The goal of ICA is to find
vector s such as its components are statistically independent.
This can be done if components of vector x have non-Gaussian
distributions and thus assumption of non-Gaussianity is
essential for the ICA method. After estimation of matrix A,
its inverseW can be computed and therefore the independent
components can be found:

s ¼ Wd s ð2Þ

Note that matrix A is also a weight matrix because its
elements aij show relative contributions of the j-th component
to the i-th original variable (data channel). We used the
FastICA algorithm available as a package of Matlab scripts at
http://www.cis.hut.fi/projects/ica/fastica/. The algorithm is
based onmaximization of non-Gaussianity of the components
s as an algorithm to increase their statistical independence.

As it has been shown in many EEG studies, each of the
common artifacts present in the EEG signal, such as eye blink-
related artifact, heartbeat and motion-related artifacts, is
usually identified by the ICA method as one or several
individual components. By definition, those artifactual com-
ponents are statistically independent from other components
and therefore all other components including those repre-
senting physiological activity of interest become (statistically)
separated from the artifacts. At the next step, the original
signals are linearly ‘restored’ back from the components and if
all artifactual components are excluded during restoration,
the restored signal becomes artifact-free. The method there-
fore is capable of removing artifacts from the original signal
while preserving physiological signal in question (see, e.g.,
Vigário, 1997; Jung et al., 2001; Vigário et al., 2000). Optical data
were therefore processed using ICA with the goal to remove
physiological artifacts (mostly related to heartbeat) and the
contribution of superficial layers from original records.

4.4.2. Event-related averaging
After ICA procedure, the signal in each data channel was
recalculated as relative change in light intensity (ΔI / I0). The
event-related optical signal was calculated for each source–
detector pair in each subject as follows. Continuously recorded
optical data were segmented into stimulus-related epochs
lasting from 100 ms before (baseline) to 500 ms after the
picture onset. Signals within each epoch were baseline-
corrected and then averaged across all targets. Because the
number of non-targets significantly exceeded the number of
targets, in order to statistically balance target and non-target
epochs, the non-target-related response was calculated over
the same number of epochs (280) randomly selected from the
total number of non-target epochs. Target (T)- and non-target
(NT)-related responses as well as the T–NT difference were
statistically evaluated within each subject using nonpara-
metric Mann–Whitney test with the 5%-significance level. The
test was applied for each time point within the trial epoch for
all data channels, as suggested by Thorpe et al. (1996) for the
ERP analysis. Event-related signals were analyzed within each
subject and channels were determined where the signal
showed significant difference from baseline within the time
window 0–500 ms after the stimulus in at least two time bins.
Those channelswere then averagedwithin each subject giving
an average signal representative of that subject. Those
representative signals were finally averaged across subjects
giving a group average signal, which was statistically assessed
against baseline for each time point using t-test (p=0.05). The
group average responses were calculated separately for two
presentation rates (6 Hz and 4 Hz) and two wavelengths
(760 nm and 830 nm) giving four conditions in total. If in a
given subject no channel showed significant deviation from
baseline within 0–500 ms after the stimulus in a particular
condition, this subject was excluded from the group average
for that condition.

4.4.3. Spatial localization
To analyze spatial distribution of the fast optical signal, we
used the weights of ICA components. Matrix A shows relative
contributions of each component to every channel of the raw
data. Namely, the n-th column of matrix A represents
contributions of the n-th component to all data channels
(Fig. 3). If this component relates to the physiological
response, its weights show how the response is spatially
distributed over all data channels and therefore can be used to
map the response. We represented the weights of the largest
response-related ICA component as a two-dimensional func-
tion of surface coordinates (x, y) defined at midpoints of all
source–detector pairs and did interpolation of that function
over the area covered by the optical sensor grid.
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