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Abstract

This paper describes a new inverse solver for optical
tomography. As with prior studies, we employ an iterative
perturbation approach, which at each iteration requires the
solution of a forward problem and an inverse problem. The
inverse problem involves the solution of a linear
perturbation  equation, which is often severely
underdetermined. To overcome this problem, we propose to
represent the unknown image of optical properties by a set of
linearly independent basis functions, with the number of
basis functions being equal to or less than the number of
independent detector readings. The accuracy of the solution
depends on the choice of the basis. We have explored the use
of the weight functions associated with different source and
detector pairs (i.e. the rows in the weight matrix of the
perturbation equation) as the basis functions. By choosing
those source and detector pairs which have uncorrelated
weight functions, the inverse problem is transformed into a
well-posed, uniquely determined problem. The system matrix
in the transformed representation has a dimension
significantly smaller than the original matrix, so that it is
feasible to perform the inversion using singular value
decomposition (SVD). This new method has been integrated
with a previously reported forward solver, and applied to
data generated from numerical simulations using diffusion
approximation. Compared to the Conjugate Gradient Descent
(CGD) method used in previously reported studies, the new
method takes substantially less computation time, while
providing equal, if not better, image reconstruction quality at
similar noise levels.
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Introduction

The imaging problem in optical tomography deals with the
reconstruction of the absorption and the scattering
coefficients of a heterogeneous scattering medium from the
measurements of multiple scattered light signals on the
medium surface. The problem is inherently difficult because
the scattered field is non-linearly related to the optical
properties of the underlying medium. To overcome this

difficulty, we have developed an iterative perturbation
approach [1,2]. Each iteration involves the solution of a
forward problem to set up a new perturbation equation, and
the solution of the perturbation equation, which constitutes
the inverse problem. This approach is equivalent to the
Gauss-Newton method (also known as Newton method).
When Tikhonov regularization is employed in the least

* squares solution, it leads to the Levenberg-Marquardt

method. The same overall approach has been taken by
research groups of Arridge [3] and Paulsen [4,5], although
our approaches to solving the forward and inverse problems
differ from theirs.

One challenging problem in solving the perturbation

" equation,

Wx=y, (1)

is that the affordable number of source and detector (SD)
pairs, M, is usually substantially smaller than the number of
unknowns, N. That is, the system is severely
underdetermined. Among many possible solutions, we are
interested in obtaining the minimum norm solution, which is
equivalent to finding the minimal perturbation from the
previous reconstruction to satisfy the measurement data.
Theoretically, one can obtain this solution using singular
value decomposition (SVD) of the weight matrix W [6].
However, the very large dimension of W can make the
computation of SVD unfeasible in terms of both computation
time and memory requirement. To overcome this problem,
we have adopted the Conjugate Gradient Descent (CGD)
method in our prior studies [1], which obtains the solution by
minimizing the error norm |wx—y|* through a conjugate

gradient descent scheme. A problem with this approach is
that the resulting solution depends on the initial solution.
There is no easy way to guarantee the solution is minimum
norm. In our previous studies, the initial solution is set to
zero, which usually gives good solutions.

Paulsen, et al. uses Gauss elimination to solve the
normal equation associated with the perturbation equation.
The problem with this approach is that it gives a meaningful
(least squares) solution only when the system is
overdetermined. ~When the problem is severely
underdetermined, the solution can be far from the desirable
one. For this reason, in their earlier work, a coarse mesh is
used to represent the target medium so that the number of
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elements is roughly the same as the number of SD pairs.
However, using a coarse mesh hinders the accuracy of the
forward solver, and consequently the accuracy of the
reconstructed image. Sufficiently accurate results can be
obtained only when the object size is large relative to the
medium size [4]. In order to overcome the underdetermined
problem, they proposed a dual mesh technique that uses a
fine mesh for the forward solution, but a coarse mesh for the
inverse solution. Very good reconstruction results have been
obtained from experimental data for a test medium
containing a single target [5].

In this paper, we propose a new method for solving the
perturbation equation which is significantly faster than the
CGD method and the direct SVD method, when the number
of SD pairs is an order of magnitude smaller than the number
of unknowns.

The WTSVD Method

As described in Introduction, the perturbation equation given
in Eq. (1) is usually severely underdetermined. In addition,
depending on the SD configurations, many rows in the
weight matrix (the weight functions) may not be linearly
independent, which causes the weight matrix to be rank
deficient. Rather than solving this ill-posed linear equation
directly, we first perform a preprocessing on the original
perturbation equation to delete rows that are known to be
correlated a priori, we then apply a linear transformation to
the unknowns before using SVD to solve the transformed
equation.

Preprocessing of the Perturbation Equation
In general, with an arbitrary SD configuration, one needs to
apply some sophisticated operation to derive independent
rows in the weight matrix. However, in the most common SD
configuration, in which the sources and detectors share the
same set of locations, there is a simpler way. Because of the
symmetry of r and ry in the integral formula for calculating
the weight matrix, exchanging source and detector positions
gives us the same weight functions, and therefore the rows in
the weight matrix that corresponding to these two pairs of SD
are correlated. Instead of solving the original equation, we
replace every two rows in the augmented matrix [W y] that
correspond to the two SD pairs with exchanged positions by
their average. The SD pairs that do not have counterparts are
those where the source and detectors are co-located. Because
the detector readings at exactly the source locations are not
very informative, we choose not to use these SD pairs. It is
easy to show that the number of rows after such a reduction
is K=L(L-1)/2, where L represents the number of SD
locations. To make the solution of the equation more stable
numerically, we further normalize the row vectors in the
resulting weight matrix. We denote the resulting equation as
Wx='jf' (2
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Transformed Representation Using Weight Functions
With the transformed representation, the unknown x is

spanned by the row vectors W, in the weight matrix as

x=1,%, =Wt €))
k
where t=[t, , 1, , ... , tx]". Substituting Eq. (3) into Eq. (2)
leads to
At=y with A=WW’. 4

Once t is determined by solving the above transformed
equation, one can derive the desired solution by using Eq.
(3), which can be considered as the inverse transform. The
overall solution can be represented as

x=WT(WW)'y. (5)

With the weight functions as the basis functions, as
given in Eq. (3), the contribution of each SD pair to the final
solution is in the form of the weight function associated with
it. Since the weight functions tell us where we can see the
object more clearly given a source and detector pair, by
using this transformation basis, we only try to solve the part
of the object that can be seen by the source and detector
pairs used, thus reducing the ambiguity of the inverse
problem. The reconstruction of the original unknowns x from
the transformed vector t, i.e., the inverse transform in Eq. (3),
resembles the well known back-projection process. It is easy
to recognize that the final solution in Eq. (5) is in fact the
minimum-norm solution for an underdetermined system with
rank equal to the number of rows. Note that the /j-th element

in the transformed matrix A is a; = (W;,Wj) , the inner

product of the normalized weight functions of two SD pairs.
This ensures that the diagonal elements in A is equal to or
larger than the off-diagonal elements. Although we still need
to solve a linear equation, the properties of A are very

different from that of W. A is a square symmetric matrix
with a dimension equal to the number of uncorrelated SD
pairs, and it is diagonally dominant in that all diagonal
elements are one and off-diagonal terms are less than one in
magnitude. The decay of the off-diagonal elements, however,
is not very rapid.

Solution of the Transformed Equation

Theoretically, as long as the K normalized weight functions
are independent, then the square matrix A is guaranteed to be
non-singular, and the transformed equation (4) can be solved
reliably using the simplest inversion method --- the Gauss
elimination method. In practice, however, some rows in the
weight matrix could still be correlated, and the Gauss
elimination method may lead to unstable solutions. In order
to circumvent this problem, we solve the transformed
equation using the SVD method with Tikhonov
regularization. This is feasible because the dimension of A,
K, is usually on the order of hundreds, for a practically
feasible number of SD pairs. For example, if L=18, than
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K=153. The incorporation of regularization is to suppress the
noise effect. Let O, represent the singular value of A,

arranged in a descending order, andu (and Vv, the

corresponding left and right singular vectors, the regularized
SVD solution of Eq. (4) is

a, -
= T T x} " (6}
¢ ;'(ak'+l' ULV,

The regularization parameter A is chosen based on the
Miller’s L-curve criterion [7].

Simulation Results

The proposed method has been used to accomplish
simultaneous reconstruction of absorption and diffusion
coefficients from numerically calculated data for several
test media. In all the simulations, a frequency modulated
source is employed with a modulation frequency of 200
MHz. The detector measures the photon density on the
surface, which is a complex variable. All the test media
have a circular boundary with a radius of 4 c¢cm. The
medium is represented with an FEM mesh with 1800 nodes
so that the number of unknowns is N=3600 (2 unknowns
for each node). This spatial resolution is used for both the
forward and inverse calculations. The sources and detectors
are located uniformly on the circular boundary sharing the
same set of locations. Two SD configurations are tested,
with 10x10 (L=10,K=45) and 18x18 (L=18K=153) SD
pairs, respectively. The forward calculation is based on the
diffusion approximation using an FEM method, using the
Dirchlet boundary condition [8]. For the inverse problem,
we compared the WTSVD method and the CGD method.
With the CGD method, the original perturbation equation is
solved directly. The number of iterations at each
perturbation step varies but is limited to at most 1000
iterations. With both methods, the perturbation iteration
stops when the ratio of the energy (sum of squares) of the
current perturbation solution to the energy of the total
perturbation until this iteration is less than 10~, or when the
number of perturbations reaches 10. In the following, we
describe the reconstruction results for two test media. The
properties of these test media are summarized in Table 1.
In either case, the initial estimate is set to the same as the
background medium.

Test Medium I Figure 1 shows the reconstructed images
under different test conditions. In the noise free case, the
results obtained using WTSVD and CGD are very similar
when 10x10 SD pairs are used, with the reconstructed
objects having a size noticeably larger than the true object
size. With 18x18 SD pairs, the shape of the reconstructed
object by the WTSVD method is very close to the true
object, better than the CGD result. In the noise-added case
(10% or 20dB), the reconstructed object by WTSVD is
blurred compared to the noise-free case, but the object
structure is clearly visible. The CGD method has produced a

similar reconstruction result. Figure 2 plots the root mean
square error (RMSE) between the reconstructed Ay, and AD
and the true Ay, and AD. This plot clearly shows that the
WTSVD method converges faster than the CGD method.

Test Medium II Figure 3 shows reconstruction results
under different test conditions, all obtained with 18x18 SD
pairs. The reconstructed AD images have a severe ringing
artifact initially, which gradually goes away with more
iterations. It can be seen that images obtained with WTSVD
is much sharper than with CGD. With both WTSVD and
CGD method, the true Ap, values are underestimated,
whereas the recovered AD values are quantitatively accurate.
With noise-added data (3% or 30 dB), the object is blurred,
but is reconstructed at the right location. At higher noise
levels, reconstructed images after first one or two iteration
usually were correct in terms of location and contrast of the
objects, but the reconstruction results after subsequent
iterations become unacceptable. We have found that the
reconstruction of a medium with two objects is more
sensitive to noise than a medium with a single object. Also,
reconstruction from 18x18 SD set-up is more sensitive to
noise than from 10x10 SD set-up. Figure 4 compares the
RMSEs of the reconstructed Ap, and AD after different
iterations, using the WTSVD and CGD methods,
respectively. In this case, the WTSVD method yielded lower
RMSE for both A, and AD after one iteration, than CGD.
But upon convergence, the WTSVD has a higher RMSE for
Ay, but lower RMSE for AD. Note that with the CGD
method, the RMSE for Ay, continues to decrease and
eventually may become lower than that of WTSVD, but the
RMSE for AD either stays flat or even increase with more
iterations. Visually, the reconstructed AD image by the CGD
method tends to become noisier on the boundary as the
number of perturbations increases. The rational behind this
also needs further investigation.

Comparison of Computational Complexity The results
presented before showed that the WTSVD method and the
CGD method achieves about the same quality, with the
WTSVD method giving slightly sharper images with fewer
boundary artifacts. The more noteworthy advantage of the
WTSVD method is its reduced computation time. In our
study, all the computations were done using a SUN Ultra
SPARCstation with 290 Mbytes of memory. The forward
part was implemented using Fortran. The CGD method was
integrated with the forward code in a single Fortran code,
while the WTSVD method was implemented using Matlab
4.2 platform. Table 2 summarizes the required computation
time for different parts of the reconstruction algorithm for
10x10 and 18x18 SD cases. It is clear that the WTSVD
method requires significantly shorter time in each iteration.
For example, with 18x18 SD pairs, the computation time for
each iteration (including both forward and inverse solutions)
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is 13 minute with the WTSVD, while the CGD method
requires 60 minutes. As described previously, the WTSVD
method takes a smaller number of iterations to converge than
the CGD method in the simulation results. Roughly, five
iterations are sufficient with the WTSVD method, whereas
ten or more iterations are needed for the CGD method. From
Table 2, in the 18x18 SD case, 5 iterations using WTSVD
will take 65 minutes, whereas 10 iterations using CGD would
take 600 minutes, a saving factor of 10. Note that the
computation time required by the WTSVD method is likely
to be reduced further once it is implemented outside the
Matlab environment.

Discussion

The proposed WTSVD algorithm has been shown to require
significantly shorter computation time than the previously
reported CGD method, while providing similar
reconstruction quality. It not only requires less time to solve
the perturbation equation in each iteration, but also requires
fewer iterations. The total saving factor is on the order of 10.
Note that the computational advantage of the WTSVD
method decreases when the number of SD pairs increases.
Specifically, using an analysis of the flops required by
different methods, we have found that the CGD algorithm
will become more efficient, when the number of SD pairs
exceeds 68x68.

The WTSVD method represents the unknown image
using a basis consisting of normalized, independent weight
functions. There may be other bases which can represent the
unknown image better. Although using the weight functions
enables one to attempt to recover the part of the image that
can be “seen” by the SD pairs, they are not good basis
functions in terms of their spatial-frequency support regions.
Fourier or Wavelet basis functions may be more efficient in
that with the same number of basis functions, these bases
may represent an image more accurately. As a future
research, we plan to investigate how to adapt standard

wavelet bases to fit with node distributions in the finite .

element mesh representation of an arbitrarily shaped medium
and explore the potential of using such bases for representing
the unknown image.

The focus of this work is to examine the effectiveness of
the WTSVD algorithm in solving a given perturbation
equation and how does it compare with the CGD method in
terms of accuracy, robustness, and computational
complexity. Therefore, we have only tested for a fixed type
of source and detector configuration and for the case when
the initial estimate is the same as the background medium.
When all such conditions are equal, we have indeed show
that the WTSVD method can provide significant
computation savings over the CGD method. It is not our
intention to examine the capability of the overall perturbation
approach in terms of minimally detectable target contrast and
size, and the influence of the SD configurations on the
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reconstruction performance. Nor did we try to investigate the
effect of the mismatch between the actual background
medium and the assumed one on the convergence behavior
of the overall reconstruction scheme. These issues will
depend not only on the inverse algorithm, but also the
forward algorithm. A thorough evaluation in this direction
requires further investigation.
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Table 1 Optical Properties of Test Media

Test Cases Background media Target geometry Target | Target 2

Radius ua(em™) us(cm')| Radius Separation| ua(cm’ h us(em™) ua(em™) us(cm'])
Case | 4 cm 0.02 5 0.75 cm 0.04 10 N/A N/A
Case II 4 cm 0.05 10 0.35cm| 1.5cm 0.1 20 0.1 20

Table 2 Computer Time (in minutes) Required by Different Methods

Methods One Iter. 5 Iter. | 10 Iter.
Forw. Inv. Total
CGDI10 (1000 iterations) 2.0 20.0 22 110 220
WTSVDI10 25 1.5 4 20 40
CGD18 (1000 iterations) 6.0 54.0 60 300 600
WTSVDI8 6.5 6.5 13 65 130
True Ap,/ AD : ; N20W18.3

Figure 1 Reconstruction results for Test Medium 1. Top row is for Ay, and bottom row for AD. From left to right
are: 1) the true image; 2) and 3) reconstructed using WTSVD from noise-free data of 10x10 and 18x18 SD pairs,
respectively; 4) and 5) reconstructed using CGD from noise-free data of 10x10 and 18x18 SD pairs, respectively; 6)

reconstructed using WTSVD from noise-added data of 18x18 SD pairs, noise level is 10% (SNR=20dB). The last
number in the label of each image indicates the number of iterations used.
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Figure 2 RMSEs of reconstructed images after successive iterations for Test Medium L.
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Figure 3 Reconstruction results for Test Medium II. Top row is for Ay, and bottom row for AD. From left to right
are: 1) the true image; 2) and 3) reconstructed using WTSVD from noise-free data of 18x18 SD pairs, after 1 and 7
(reaching convergence) iterations, respectively; 4) and 5) reconstructed using CGD from noise-free data of 18x18 SD

pairs, after 1 and 10 iterations respectively; 6) reconstructed using WTSVD from noise-added data of 18x18 SD pairs,
noise level is 3% (SNR=30dB).
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Figure 4 RMSEs of reconstructed images after successive iterations for Test Medium I



