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1. ABSTRACT 

 
Vascular disease is a significant source of mortality and morbidity for many patient populations.  While substantial strides in 
surgical therapeutics have been made in the past decade, our limited understanding of the microvascular processes, which are 
invisible to conventional imaging modalities and beyond the scope of our current physiologic paradigms, has slowed the 
advancement of medical therapeutic interventions.  In this report we present data in support of an emerging body of work 
demonstrating that the method of dynamic optical tomography can yield critical insights into the underpinnings of 
microvascular pathophysiology in large tissue structures.  In a series of experiments designed to characterize specific 
properties of the peripheral vasculature, we provide first–time descriptions of spatially mapped time–varying vascular 
responses.  Specifically, properties delineated are (1) that inherent vascular rhythms can act as natural “contrast agents” that 
allow spatial discrimination of tissue components in cross–section, (2) that complex vascular responses can be decomposed 
into multiple spatially coincident time–evolving processes, and (3) that occult long–term “evolutionary–type” microvascular 
processes (e.g., chronic tobacco use) can be revealed.  Taken together, these capabilities contribute to a global understanding 
of the peripheral vascular response, affording new opportunities for improved diagnostic and therapeutic strategies. 

2. INTRODUCTION  

Clinical manifestations of disease states are the aggregate response of diverse tissue types to insult.  As is the case with all 
specialized tissues, the vasculature’s response to insult, or to other forms of stimulation, is constrained to a series of 
specialized responses commonly referred to as vascular reactivity.  It is convenient to consider these as occurring on both 
micro– and macrovascular scale.  Examples of microvascular responses are changes in gas and nutrient exchange, platelet 
aggregation, thrombus formation, luminal remodeling, and elaboration of autoregulatory mediators.1,2  On the macrovascular 
scale, vasodilatation, vasoconstriction, and shunting of blood via arteriovenous communications are typical responses.  
Because of the sensitive dependence of all tissues on their local vascular supply, the tissue–vascular interface is ultimately 
the focal point of any investigation of disease processes.  It follows that the specific characteristics of the tissue–vascular 
interaction can be a signature of disease processes.  While this principle is generally understood, detection of these signatures 
in large tissue structures using noninvasive methods has been elusive.   

By means of argument and experimental findings, in this report we present evidence that these interactions can be detected 
and characterized by measures of the temporal variability in hemoglobin states.  In the following section we review features 
of the vascular response that support both this assertion and our view that these signatures can be identified from the analysis 
of time–series image data collected using near infrared (NIR) tomographic imaging methods. 

2.1 Spatiotemporal Features of the Vascular Response   

While it is convenient to think of blood vessels as simple pipes or tubes conveying blood, it has long been apparent that the 
vasculature is a complete organ system.  Like other organ systems, the vasculature is capable of dynamically reacting to a 
multitude of intravascular and extravascular stimuli.  These stimuli induce vascular responses that are both spatially and 
temporally varying, and occur over a range of time scales.  The details of these responses are thought to reflect the dynamic 
interaction between the blood, vascular endothelium, and the specific end organ (i.e., the tissue–vascular interface). 

The vascular tree is anatomically and functionally spatially heterogeneous.  Anatomic heterogeneity arises from the existence 
of a spectrum of vessel types, vessel calibers, and large–scale architectural features.  This heterogeneity has evolved to 
provide an arborizing network of vessels to optimally perfuse distant tissue beds.  Structurally, this network is composed of 
three broad categories of vessels — arteries, microvessels, and veins — that all have distinct histologic and functional 
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characteristics.  Functionally, while large and medium–sized arteries and veins serve as conduits for blood flow, the 
microvessels constitute the interface where tissue–vascular coupling occurs. 

Accompanying this structural–functional heterogeneity is the occurrence of natural beat frequencies that are mediated by 
local and central control mechanisms.  The cardiac beat frequency is the result of a systolic/diastolic pressure wave initiated 
at the left ventricle.  It has its greatest amplitude in the proximal arterial tree.  The respiratory beat frequency is seen 
throughout the venous side of the circulation.  It is well appreciated that changes in intrathoracic pressure attributable to the 
respiratory cycle are transmitted to the periphery primarily as time–dependent variations in venous return.  This generates a 
respiratory beat frequency, observable in all post–capillary vessels, whose magnitude decreases with increasing distance from 
the chest.  Vasomotion is caused by local autoregulatory responses, and results in rhythmic small vessel vasodilatation or 
vasoconstriction.3,4  These natural beat frequencies found in flowing blood, result in subtle yet measurable fluctuations in 
tissue hemoglobin volume. 

In addition to the occurrence of these natural beat–to–beat rhythms, the vascular response occurs across multiple time scales.  
Here we categorize these into four time frames: beat–to–beat variations, immediate responses to provocation, short–term 
responses to provocation, and long–term evolutionary changes from chronic disease processes. 

The first order of time–scale is the aforementioned beat–to–beat variation.  These are generally phenomena that occur over a 
brief time period, often within the time span of a single cardiac cycle.  Careful examination of these rhythms has served to 
identify the existence of control mechanisms masked by the occurrence of chaotic or other complex behaviors.5  The next 
order of time scale is the immediate response to provocation.  Examples of these include the vascular response to nerve 
activation caused by evoked sensory, motor or cognitive stimuli,6 response to a fast–acting drug, or the response caused by 
alteration in blood flow produced by, for instance, a pneumatic tourniquet.  These responses typically occur over several 
seconds to minutes.  Examination of these can reveal sufficiency of tissue reserves or the adequacy of other functional 
processes associated with the mediating stimulus.  The next time scale is the short–term response that occurs over hours to 
days.  These can be produced in response to acute disease processes or reflect the prolonged influence of a pharmacological 
agent.  Last are time scales that reflect long–term “evolutionary type” changes spanning years to decades, as a consequence 
of chronic disease. 

2.2 Functional Imaging of the Vascular Response by Dynamic Optical Tomography 

While the above phenomenology is generally appreciated, at least by those who specialize in the clinical management of 
vascular disease, what is not evident is the nature of the information that can be derived by studying the temporal 
characteristics of the vascular response using continuous, fast NIR imaging methods.  From what we can currently see, the 
attainable information falls into three categories.  One type of information is a spatial map of particular components of the 
vascular tree.  An example of this is the results shown below, where major subsurface veins can be delineated within the 
cross section by the presence of a dominant respiratory beat frequency.  Another type of information is the mapping of 
functional responses to provocation.  By example, we have studied the vascular response of the forearm to arterial occlusion.  
It can be expected that global provocations of this sort will produce a complex vascular response whose details reflect a 
cascade of events occurring at the tissue–vascular interface.  Significantly, this information can be decomposed, seemingly 
for the first time, to allow assignment of functional responses to discrete anatomical sites.  In effect, the temporal evolution of 
the vascular response can be imaged.  Naturally, provocations can take on many forms, ranging from simple local 
manipulations (e.g., use of a pneumatic tourniquet) to complex systemic stimuli.  We are currently testing the feasibility of 
the detection of breast tumors by examining the vascular response to provocation.  An altered response can be expected, 
owing to the known ultrastructural and functional derangements that exist in tumor angiogenesis.  Similarly, other types of 
disease processes might be discernible by examining the response to provocation.  By example, we illustrate an attenuated 
vascular response caused by chronic tobacco use. 

The third type of information we believe can be defined comes from use of more sophisticated feature–extraction methods.  
Similar to the dynamics of other naturally occurring processes (e.g., heart–rate variability7), classification of specific 
functional forms of the temporal response (e.g., chaotic behavior) may serve to improve early disease detection and 
monitoring (see accompanying reports by Barbour et al.8 and Graber et al.9). 

While the ultimate clinical utility of the above measures is yet to be demonstrated, it deserves emphasis that all of the above 
information can be derived without the use of contrast agents.  In effect, our “contrast agent” is the naturally occurring or 
induced temporal properties of the vasculature itself. 



3. MATERIALS AND METHODS 

3.1 Experimental Design 

All subjects involved in this report were male volunteers aged 28 to 45 (mean 36.4).  All subjects were healthy non–smokers 
(with the exception of the experiment evaluating chronic tobacco use), without known diabetes mellitus, coronary artery 
disease, hypertension, or peripheral vascular disease.  All were found to have unremarkable physical exams.  Subjects placed 
either forearm into the circular fiber–optic limb–measuring head, and made contact directly with the co–located source and 
detector fibers, approximately 5–8 cm proximal to the wrist.  During each experiment, the subject was asked either to 
perform a series of respiratory maneuvers, or to undergo reduction or occlusion of brachial artery inflow, the details of which 
are described below. 

Subjects underwent simultaneous electrocardiography to objectively measure continuous changes in heart and respiratory 
rates.  The experimental protocol and informed consent were approved by the Institutional Review Board of the medical 
center.  All subjects gave informed consent prior to participation. 

3.1.1 Beat–to–beat variation in optical contrast from natural vascular rhythms.   

In this series of experiments, subjects were instructed to maximally inhale and exhale with each respiratory cycle.  A 
metronome was provided to encourage regular rhythmic breathing. 

3.1.2 Immediate Response to Provocation: Reactive Hyperemia 

In this series of experiments, subjects placed either arm into the limb–measuring head, and a pneumatic tourniquet was 
applied to the upper arm.  The protocol involved a period of basal measurement (1 minute), followed by application of 
occlusion pressure for approximately 4 minutes, with a 5–minute observation period following release of the tourniquet.  
During this period, full tomographic dynamic optical imaging measurements were performed at a framing rate of 3 Hz.  Also 
recorded were changes in the patient’s clinical exam  (e.g., visual onset of reactive hyperemia). 

3.1.3 Long–term System Evolution: Effect of Chronic Tobacco Use 

In this experiment, we compared the provoked vascular response, as measured by detector signal intensity, in a chronic heavy 
smoker and a non–smoker.  Both subjects had similar forearm geometries and body habitus.  Following a brief period of 
baseline measurement (~90 sec), 50 mmHg cuff pressure was applied to the brachial artery and maintained for  ~90 sec, then 
released. 

3.2 Data Collection 

Optical measurements were performed using instrumentation described in the accompanying report by Schmitz et al.10  Data 
were collected using a circular measuring head that made contact with the subject’s forearm.  Transmitting and receiving 
optical fibers were co–located, forming a “bull’s eye” geometry with the source fiber in the center.  These were uniformly 
spaced about the arm and included a 16–source by 16–detector measurement (256 source–detector pairs).  Dynamic 
measurements were performed at a framing rate of approximately 3 Hz, which corresponds to a source switching speed of 
~50 Hz.  For each source position, light intensity measurements were performed in parallel.  Depending on the experiment, 
the number of image frames (time points) collected varied between 750 and 1,800. 

2.3 Image reconstruction 

The optical inverse formulation was based on the normalized difference method,11,12 in which the equation that we solve has 
the form 

r rδ δW x = ÿ       (1) 

where δx is the vector of differences between the optical properties (e.g., absorption and scattering coefficients) of a target 
(measured) and a “background” medium, Wr is the weight matrix describing the influence that each voxel or element has on 
the surface detectors for the selected reference medium, and δI r represents a modified difference between detector readings 
obtained from the target in two distinct states.  The normalized difference is defined by 
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where I r is the computed detector readings corresponding to a selected reference medium, and I  and I 0 represent two sets of 
measured data (e.g., background vs. target, time–averaged mean vs. a specific time point, etc.). 

For both the simulation and experimental data, image reconstructions were carried out by using a conjugate gradient descent 
(CGD) algorithm to compute numerical solutions to the modified perturbation equation, without imposition of any constraints 
or weight–matrix scaling.  Quantities obtained from the “background medium” were computed using diffusion theory and 
employed the same source–detector geometry as that used for the target medium.  

2.3 Time Series Image Analysis  

To identify contrast features associated with temporal variability in optical coefficients, various standard numerical methods 
were used.  In one instance, a spatial map of the standard deviation of the reconstructed absorption coefficient value was 
obtained by computing this value for the time–series image data in each pixel.  In another case, a spatial map of the amplitude 
of the cross–spectral density (CSD) between a surface detector and the image series was computed. The CSD function Guv of 
the time–series pair u and v is the Fourier transform of their cross–correlation function.  A discrete Fourier transform 
computation — U(n), V(n), n=1,2,…,nd — is carried out for each record, and the cross–spectral density estimate is 
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with k′ = 0,1,…,N/(2nd) for N even; 0,1,…,(N-1)/(2nd) for N odd.  In still another case, we computed spatial maps that reveal 
the amplitude of the principal components of the pixel data using methods described subsequently. 

2.4 Principal component analysis 
For concreteness, suppose we are working with a time series of N reconstructed images of a medium’s absorption coefficient 
Pa, and that the medium under investigation is a section of a biological structure.  The entire series can be thought of as a 
single mathematical function with spatial and temporal independent variables: Pa(i,j,t), where i and j are the pixels’ row and 
column indices, respectively.  In other reports that have dealt with extraction of functional information through time–series 
analysis operations, such as the computation of (linear) power spectra13 or (nonlinear) correlation dimensions,14 we have 
implicitly assumed that Pa(i,j,t) should be decomposed into a sum of time–varying functions, each one corresponding to a 
given spatial location.  However, other representations, which are equally valid mathematically, may be preferable from an 
information–extraction perspective. 

On the basis of known physiology, our expectation is that there is some number M of physiological rhythms present in the 
target medium, each of which has the effect of producing temporal fluctuations in Pa.  We will further assume that the 
amplitudes of these rhythms are such that the relations between the physiological parameter variations and the associated Pa 
variations are effectively linear.  Each of these rhythms may have a different spatial distribution across the area of the image, 
and M may be significantly smaller than N.  If the spatial amplitude pattern of the mth physiological rhythm is denoted by 
Sm(i,j), and the corresponding temporal fluctuation by Tm(t), then the net spatiotemporal Pa variation in the medium will be 
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image–series analysis is to attempt to decompose the reconstructed Pa(i,j,t) into a set of spatial and temporal components that 
can be related to these underlying patterns of physiological activity.  That is, one post–reconstruction analysis goal should be 

to solve the system of equations ( ) ( ) ( )
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The just–described problem has infinitely many solutions, all of which mathematically are equally correct.  In general, then, 
it cannot be claimed with certainty that the functions that are the result of a particular decomposition computation accurately 
reflect the spatial or temporal physiological patterns that actually were present in the target medium.  It is necessary in 
practice to employ some means of selecting a particular solution from the set of all possible ones.  Among the ways in which 
this can be done are by specifying additional criteria that the solution must satisfy, or by making use of a priori knowledge 
about the spatial and/or temporal patterns that one expects to find in tissue.  The technique used in this report is known as 
principal component analysis (PCA), which is an example of the former approach.  The “additional criteria” that it imposes 
on the solution are: first, that the computed temporal functions be uncorrelated with each other; second, that each term in the 



resulting summation account for as large a fraction of the overall variance in Pa(i,j,t) as is possible without violating the zero–
correlation requirement. 

The input data for a PCA computation is a series of N reconstructed Pa images, each with I rows and J columns of pixels.  

The first step is to subtract from each image its mean value:( ) ( ) ( )* , , , , ,a a ai j t i j t tµ µ µ= −  where ( )a tµ  is the time–

dependent mean value of Pa over the full area of the image.  Each mean–subtracted image in the time series then is recast as a 
(I×J)×1 vector.  Here we use the symbol an to denote the vector corresponding to the nth image.  (The only requirement for 
this step is that the same method of mapping image pixel locations into vector elements be used for all images in the series.)  
Next, the N×N matrix C is computed, whose thn n′ ′′ element is the covariance between the thn′ and thn′′ mean–subtracted 
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that O1 > … > ON) and eigenvectors (u1, …, uN, with un the eigenvector corresponding to eigenvalue On; by convention, un is 
normalized such that ||un||

2 = 1) of C are then computed.  Each eigenvector has N elements, and so can be interpreted as a 
time series.  Finally, a set of “eigenimages” (b1, …, bN) is generated, each of which is an average of the original N images, 
weighted by the elements in one of the normalized eigenvectors and by the corresponding eigenvalue, according to 
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Each bn is converted into a I×J–pixel image, by applying the inverse of the same mapping that was used to generate the set of 
vectors {an}. 

The principal components essentially are a particular rearrangement of the image time series; each eigenvector is a different 
linear combination of the I×J individual–pixel time series, while each eigenimage is a different linear combination of the N 
reconstructed images.  Importantly, all the information that is present in ( )* , ,a i j tµ  is preserved in its principal components.  

To demonstrate this, we define A, B, and U as the matrices whose nth columns are the vectors an, bn and un, respectively, and 
� as the matrix whose thn n′ ′′ element is equal to n n nλ δ′ ′ ′′ .  From Eq. 4 it follows that B = �-1AU, and so A = �%8-1.  Then any 

particular element of A (i.e., any particular value from the spatiotemporal function ( )* , ,a i j tµ ) can be 
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As previously mentioned, the uns may be interpreted as time series.  These temporal functions are uncorrelated, as a 
consequence of a fundamental property of symmetric matrices: eigenvectors associated with distinct eigenvalues necessarily 
are orthogonal.15  While it is mathematically possible that two or more of the Ons that correspond to a particular ( )* , ,a i j tµ  

could be precisely equal, the probability of this occurring when experimental data sets are analyzed is vanishingly small.  
Each eigenvalue obtained in practice invariably is unique.  Then, as the covariance matrix C is necessarily symmetric 
(because ( ) ( )cov , cov ,n n n n′ ′′ ′′ ′=a a a a ), each un is orthogonal to (i.e., uncorrelated with) all the others. 

The previously mentioned variance–maximizing property of PCA can be restated as: the set of principal components for 
eigenvalues O1 through OM, with M < N, accounts for the largest percentage of the overall spatiotemporal variance in 

( )* , ,a i j tµ  that can possibly be contained in any M–term sum of products of purely spatial functions and purely temporal 

functions.  Proof of this property can be found in Ref. 16.  If we denote the sum of all eigenvalues as L, then the fraction of 
the total variance in ( )* , ,a i j tµ  that is accounted for by the nth principal component is equal to On/L.16  It frequently is found in 

practice that there is some number M << N such that 
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trivially small.  This fact has both physiological and mathematical significance.  Physiologically, we would expect that 
vascular response patterns that have large amplitude and are strongly coordinated over large volumes of tissue would give 
rise to principal components with large eigenvalues.  In contrast, responses that have small amplitudes, or are restricted to 
small regions of tissue, or that primarily are the result of local metabolic control and therefore occur in a globally 
uncoordinated manner, would correspond to principal components with smaller eigenvalues.  So too should any type of noise 
whose effects on the reconstructed images is spatially uncorrelated.  Therefore it is appropriate to compute only the first M 
eigenvectors and eigenimages.  Mathematically, the approximation to the matrix A of original (mean–subtracted) images that 
is obtained from the truncated PCA computation is M M M M

+=A � % 8 , where �M is the M×M diagonal matrix containing the 



first M eigenvalues on its main diagonal, BM consists of the first M columns of B, and M
+U  is the M×N pseudoinverse of UM: 
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−+ =U U U U ,15 where UM consists of the first M rows of U.  Because the first M principal components account for 

almost all of the variance in ( )* , ,a i j tµ , the difference between A and AM is slight.   

There is no guarantee that a one–to–one correspondence exists between a set of principal components and the set of 
physiological processes that gave rise to the observed spatiotemporal variability of ( )* , ,a i j tµ  (for example, there is no a 

priori  reason why the temporal patterns corresponding to the different physiological rhythms must be orthogonal).  Principal 
components nevertheless are informative in themselves17 and are useful as a starting point for many higher–order signal–
separation algorithms.18,19 

4. RESULTS 

4.1 Beat–to–beat variation in optical contrast from natural vascular rhythms 

In this study a subject was asked to regulate deep breathing by following a metronome to amplify the respiratory response.  
Data were collected by placing a ring of optical fibers in contact with the skin about the subject’s left forearm.  A total of 
1,500 tomographic scans were collected over a period lasting 500 seconds.  This period of time was selected into order to 
obtain a more representative assessment of the nature of the peripheral vascular response to deep breathing.  The resulting 
time series of reconstructed images were then analyzed to identify, in the cross section, the time–varying features of interest. 

One useful global measure of reactivity is a spatial map revealing the standard deviation of the temporal variations in the 
pixel data.  This is shown in Figure 1.  The map directly reveals the magnitude of temporal variability in the cross section and 
in particular shows that regions with the largest variability occur in the peripheral areas of the cross section.  For instance, by 
carefully noting the positioning of the optical fibers, we observed that the high–amplitude region at coordinates row 8, 
column 15 corresponds to a large subsurface vein.   

A more detailed examination of the temporal properties can be obtained by computing the frequency structure of the pixel 
data.  We have chosen to accomplish this by computing the cross–spectral density (CSD) between a surface detector and the 
image pixels.  This measure is similar to a power spectrum but involves two different time series.  Our rationale for 
considering this is the expectation that detector data contains the most reliable information available from the experiment 
about the target.  The images, on the other hand, which are derived from all detector data, almost certainly will contain some 
artifact originating from detector noise, modeling error, and numerical sources of various kinds.  Since each image frame is 
computed independently of all others, it is our contention that these should not introduce any specific bias into the temporal 
data, and it is unlikely that any such bias would coincide with a biological frequency.  Accordingly, a spatial map revealing 
the CSD amplitude at a chosen frequency serves to identify where in the cross section a particular frequency occurs.  Figure 2 
shows such a map at the frequency of regulated breathing (0.12 Hz).  Comparison of this to Figure 1 shows considerable 
overlap, 

 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
indicating that much of the observed variance in the pixel data coincides with enhanced respiratory activity.  Confirmation of 
the existence of enhanced dynamics in response to respiratory activity is shown by the frequency spectrum shown in Figure 
3.  This spectrum is typical of that found in the regions shown in Figure 2 having large CSD amplitudes.  In another report, 
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we have used similar methods to map regions in the forearm that have enhanced amplitudes at the cardiac frequency.14  An 
overlay of these maps with an MRI image of the same test site showed excellent spatial agreement with the radial, 
interosseous and ulnar arteries.   

4.2 Immediate Response to Provocation: Reactive Hyperemia 

Reactive hyperemia occurs in response to iatrogenically applied transient tissue ischemia.  The result is a marked 
erythematous response in the skin, vasodilatation, and shunting of blood to the peripheral soft tissues.  This procedure is 
commonly invoked in various clinical situations to open tissue outflow beds in order to improve angiographic images and 
facilitate measuring of post–arterial reconstruction pressure gradients.  Although the gross characteristics of this phenomenon 
are well known, the tissue–specific response to this maneuver has yet to be delineated. 

To initiate the reactive hyperemic response, we temporarily occluded the brachial artery by means of a pneumatic tourniquet.  
Data shown in Figure 4 illustrates a typical time course of the measured light intensity collected about the arm for a single 
illumination site.  The details of the measured response varied, depending on the chosen source location, but in all cases were 
grossly similar to that shown.  Inspection of the time course reveals four prominent features.  During the initial rest period 
(0–100 sec), low–frequency fluctuations due to vasomotion are apparent.  A frequency analysis of the time series revealed the 
other expected vascular rhythms – cardiac and respiratory frequencies (not shown).  Apart from these variations, the 
amplitude of the signal intensities is relatively constant.  Inflow occlusion is marked by a rapid decrease in measured light 
intensity followed by a more gradual decline.  These findings are consistent with venous congestion resulting from venous 
outflow occlusion, prior to the completion of arterial inflow occlusion.  We believe that the more gradual downtrend seen is 
evidence of a subtle redistribution of blood within soft tissues.  The latter is seen more clearly in time plots of other source 
locations, where for some detectors a change in the direction of the trend is seen during this period (results not shown). 

 

  

 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

A marked nadir in the detector tracings occurs at approximately 350 sec, and rapidly follows the release of the arterial inflow 
occlusion, but precedes full restoration of venous outflow, resulting in a transient venous hypercongestion.  This is followed 
by a rapid increase in signal intensity, indicating net reduction in tissue blood volume.  Also noted in the figure is the onset of 
clinical hyperemia.  Visual inspection showed that this continued for approximately 30 seconds, followed by a return to 
normal skin pallor.  The optical response to hyperemia should result in a reduction in signal intensity.  For some of the 
detector responses shown, a modest decline in signal levels is seen.  Inspection of time plots for other source positions 
revealed a more marked decline than shown here for certain detectors. 

To further explore the vascular response to the imposed manipulation, we have analyzed the resulting image time series using 
the method of principal component analysis.  This method is conceptually similar to a Fourier analysis, except that rather 
than decomposing a function into a linear combination of trigonometric functions of different frequencies, it instead 

Figure 4 

Reactive hyperemia: Detector data (single light source) demonstrating variations in signal intensity 
following obliteration and restoration of brachial arterial inflow.  Clinical observation of tissue hyperemia 
was noted at 435 seconds. 



decomposes a time series into a linear sum of other time series.  Within the framework of a linear system, the resultant 
decomposition represents the principal components of the time–varying behavior occurring, in our case, in all pixels.  A 
spatial map revealing the amplitude of the extracted time varying behavior can be generated for each principal component.  In 
this manner we are able to extract a complete series of time–varying behaviors that are spatially coincident.  It is worth noting 
the approach taken here is essentially the same as used by others17 for characterizing similar behaviors based on optical 
measurements from the surface of tissue.  In our case, however, we are using PCA to define spatially coincident behavior in 
cross section.  Results of this analysis are shown in Figure 5.  Panel A shows the cumulative percentage of variance for the 
first M principal component, with M = 1 through 10.  Inspection shows that the temporal variability described by the first 
component comprises nearly 60% of the total, the second ~25% and so forth.  Panels B–G show spatial maps whose contrast 
levels depict the amplitudes of the first six principal components.  Note that negative contrast values indicate a time series 
having an inverse relationship to that shown beneath each spatial map.  The illustrated time series represent the extracted 
temporal behavior occurring in each pixel according to the indicated amplitude.  Thus each spatial map identifies a particular 
time–evolving process of the vascular response that is defined by the indicated time series.  The magnitude of each in relation 
to the total variability is listed below the time series. 

Inspection of the first principal component reveals that upon inflation of the pressure cuff, the hemoglobin content in selected 
areas of the cross section of the arm declines, while other areas (dark regions), notably in the periphery, it increases.  We 
interpret this being associated with collapse of the arterial bed upon occlusion.  Following release of the cuff, arterial flow is 
restored, accompanied by a rapid rise in blood volume.  Note that regions with negative contrast values are presumably 
experiencing the opposite response, i.e., a rapid decrease in blood volume upon restoration of flow.  In all, we feel that the 
indicated phenomenology, and its temporal and spatial response, are entirely consistent with the expected effect of the 
induced provocation. 

Inspection of the maps of the other principal components reveals, in general, a complex temporal response.  Note that 
comparison of between the spatial maps indicates that temporal responses occurring in various regions that appear spatially 
coincident are notably different.  Two other observations deserve emphasis. 

The first observation is that even out to the sixth principal component, which comprises only a small percentage of the total 
spatiotemporal variance, the time series does not appear as random noise.  Thus far, we have not tested the statistical 
significance of these low–amplitude signals.  We have, however, performed similar comparisons with dynamic laboratory 
phantoms experiencing low–amplitude harmonic behaviors and confirmed that correct temporal information is present in 
components having approximately the same variance.  The point is that even though the amplitudes of the components are 
small, we do not automatically rule them out as having no useful information. 

The second observation relates to the time series identified in the fourth principal component.  Here we observe that upon 
inflation of the cuff, a rapid transient rise in hemoglobin levels occurs, followed by a more gradual decline back to baseline.  
Following this we observe a precipitous decline, followed by an equally precipitous recovery in tissue hemoglobin levels.  
This is the followed by a second transient rise and subsequent decline to baseline that are precisely coincident with the onset  
and dissipation, respectively, of reactive hyperemia.  In addition, we note with considerable interest that these events are 
occurring principally in the peripheral regions of the tissue.  Despite the apparently small contribution of this principal  
component to the total variance, we consider these findings entirely plausible.  For instance, upon initiation of cuff inflation, 
some level of venous congestion should occur and this should be most evident in the periphery, where it is found.  Next, the 
gradual return to baseline suggests a redistribution of blood volume, which we also believe likely occurs.  Next, the 
precipitous decline and recovery of tissue hemoglobin levels coincident with release of the cuff is precisely the response one 
would expect in vessels involved with venous return.  Initially upon release, engorged vessels will deflate, perhaps beyond 
 

 

 

 

 

 

 

 

Principal Component Analysis: Reactive 
Hyperemia.  Panel A indicates the cumulative 
percentage of spatiotemporal variance 
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steady–state levels, and will recover upon full restoration of flow.  Finally, as already noted, we observe a hyperemic 
response occurring in expected spatial regions with the correct temporal sequence. 
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Figure 6 

Long–term Response to Chronic Tobacco Use: Detector data (single source) demonstrating 
attenuation of the vascular response following release of transient arterial inflow reduction. 

4.3 Long–term System Evolution: Effect of Chronic Tobacco Use 

As another example of the value of employing time series studies, we have examined the vascular response to provocation in 
the forearm of an individual addicted to tobacco compared to a non–smoker.  Data in Figure 6 shows time plots of detector 
responses for a chosen source location.  Following an initial rest period lasting approximately 90 sec, 50 mm Hg of cuff 
pressure was applied to the upper arm, for a period of an additional 90 seconds followed by a recovery period.  Inspection 
shows that compared to the non–smoker, the magnitude of venous congestion is markedly reduced and no evidence of 
hyperemia is seen.  This contrasts the fall in signal levels seen in the non–smoker beginning at approximately time point 650.  
We interpret this blunted response as consistent with the clinical evidence20 that chronic tobacco use leads to impairment of 
the microvasculature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. DISCUSSION 

The physiologic mechanisms of many clinically observable vascular phenomena are understood only in the grossest ways 
(e.g. vasospastic disorders, reflex sympathetic dystrophy, and reperfusion injury).  The underlying global microvascular 
activities of most vascular phenomena have eluded description, principally due to the lack of appropriate investigational 
tools.  As a general tool, however, optical methods such as photoplethysmography, pulse oximetry, and laser Doppler have 
been successfully used in many applications to study the vascular response in tissue.21,22,23 This is possible because 
hemoglobin is restricted to the vascular compartment.  Use of optical methods in a continuous tomographic imaging mode, 
however, has only recently been considered.24 

5.1 Dynamic Behavior as a Natural Contrast Agent 

In the foregoing series of experiments, we have shown that the dynamic nature of the vascular system, when analyzed using 
optical methods, can serve as a means of spatial anatomic discrimination.  This spatial resolution is accomplished without the 
use of nephrotoxic intravenous contrast agents, or the use of ionizing radiation.  Given that the vascular response is spatially 
heterogeneous, that the frequency characteristics of the pulsatility of blood flow varies between components of the vascular 
tree, and that the responses to provocation are dependent on the tissue examined and their expression within the time scales 
of vascular response, a decomposed description of the individual vascular response in a discrete structure in cross section can 
be made.  Furthermore, a map of the aggregate responses can be generated, describing the global vascular response to a large 
tissue structure. 

 



5.2 Exploration of Elusive Vascular Pathophysiologic Phenomena 

The ability to derive image contrast from temporal features of the vasculature opens the door to exploring a broad range of 
functional responses that previously have resisted study.  For instance, the vascular response to various forms of 
iatrogenically applied provocation can be examined.  These could take the form of simple manipulations such as the use of a 
pneumatic tourniquet, or the application of vasoactive agents.  Here we have examined the phenomenon of reactive 
hyperemia.25,26  While the details of the spatial maps and temporal variations reported here require more thorough study, 
these demonstrations nevertheless provide evidence generally consistent with principal clinical observations.  More 
important, the findings presented provide a basis for developing testable hypothesis of a range of phenomena that have until 
now eluded detailed examination.  Similarly, we believe that by adopting the methods set forth in this report, the examination 
of non–iatrogenic provocations such as acute or chronic ischemia, trauma, sepsis, or the presence of tumors, all which serve 
to stimulate a pathologic vascular response, can provide insights that can lead to the development of improved disease 
detection and monitoring paradigms. 
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