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Abstract

In a paper by the first three authors a new algorithm for Optical Tomography (OT) in
the time domain was described and tested for the case of an uniform background medium
(see current proceedings). The goal of this paper is to test this method for the case where the
background medium is an anatomically accurate optical map of the breast tissue obtained
on the basis of a segmented Magnetic Resonance (MR) image. The key innovation of this
imaging algorithm lies in a new approach for a novel linearized problem (LP). Such an LP
is reduced to a boundary value problem for a coupled system of elliptic partial differential
equations, rather than a conventional form of an ill-posed integral equation. The solution of
this system in turn is done very rapidly. Thus, this is a fast imaging algorithm.
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1. Introduction

In the past several years many researchers have been working on numerical methods which
would solve the problem of optical imaging of small inclusions hidden in turbid media, such
as biological tissues, for example, c.f. [1-3,7]. This challenging problem inevitably leads to
a very difficult mathematical Inverse Scattering Problem (ISP) either for the transport or
diffusion equation. Generally, this field of study is called Diffusion Tomography, or Optical
Tomography (OT). One of most important medical applications of OT is for early diagnosis
of breast cancer.

In the majority of publications on this subject the resulting inverse problem is reduced
to an ill-posed integral equation, c.f. [1-3,8]. The solution of such an equation is a time
consuming procedure. In addition, these methods require the pre-computation of the Green’s
function, which is also time consuming. In [5] a novel imaging algorithm was presented. The
core of this numerical method consists in a novel approach for a new LP. Namely, a new LP
is derived and reduced to a well-posed boundary value problem for a system of elliptic partial
differential equations (PDEs). On the other hand, the classical theory of numerical methods
for PDEs implies that, unlike an integral equation, solution of a well posed boundary value
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problem for a partial differential equation amounts to the factorization of a well-conditioned,
sparse matrix (few non-zero entries). This in turn can be done very rapidly by conventional
methods [4]. Hence, a strong advantage of this technique is its speed.

In this paper we present results of tests of the method [5] for the case of an anatomically
accurate optical map of breast tissue obtained on the basis of a segmented MR image. We
consider the case of time dependent data. The ESM can be extended to other data collection
schemes [5,6], but corresponding numerical results have not yet been obtained.

As in [5], we consider the forward problem for the diffusion equation in the whole euclidian
space R", n = 2,3. This scenario reflects the suggestion of immersing the breast in a larger
balloon whose optical properties would be about the same as those of the breast tissue [2].
We will consider only a single location of the light source zo. In a practical scenario this
would lead to an essential reduction in the acquisition time, as compared with conventional
cases requiring many sources.

Suppose light is radiated by an ultrafast laser pulse and propagates in a turbid me-
dia. Photons propagating through such a media experience many random scattering events
and their propagation is governed by the diffusion equation. The forward problem for this
equation consists in determining the light intensity u(z,t) satisfying

uy = div (D(z)Vu)—a(z)u,z€ R*, n=2,3; t € (0,T), (1.1)
uli=o = §(z — zo)
Assuming isotropic scattering, let u, (z) and p, (z) be the scattering and absorption coef-
ficients respectively. We also assume that the media is low absorbing with e < s (such
as is the case for biological tissues, for example). Let ¢ be the speed of light in the media.
Then the diffusion coefficient D (z) and the absorption term a (z) are [7]

D(z) = and a(z) = cpq(z)

e
ps(z)
Cancerous tumors absorb light more than the surrounding tissues (i.e., the reference
medium). To find these tumors, one should find those regions where the values of the
absorption coefficient a(z) are different from those of the reference medium. In addition, the
optical properties of the reference medium are usually not known very accurately. Hence,
one should also “correct” the initial guess about the background medium. Thus, one should
solve an ISP for the equation (1.1). Let @ C R* (n = 2,3) be a bounded domain of interest
with a piecewise smooth boundary 9Q. Let {z;}1~, C 99 be a set of detectors placed around
9Q. If one is measuring the function u (z;,t) at these detectors, then one can interpolate
these readings over the entire boundary 9. Thus the inverse problem is stated as follows:
Inverse Problem. Let the function a(z) be given outside of Q, and be approzimated
by a(x) = ao (z) + h () inside of Q, where the function aq (z) is known everywhere (ao(x)
describes properties of the background medium), h(z) is a small unknown perturbation of
ao (z); and h(z) = 0 for z € R*\Q. Determine the function h (z) assuming that the intensity
@ (z,t) at the boundary is given,

u=yp(z,t), forz € 0N, t € (To,TF),
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where (To,TF) is a subinterval of the time interval (0,T) and Ty > 0.
As it was shown in [5], given the intensity ¢ (z,t), one can uniquely determine flux at

2 2 u i . .
the boundary, i.e. the function = lsax(1o,77) = ¥ (2,1), and vice versa. Here v is the unit

normal vector on dQ pointing outside of Q . Therefore, we will always assume below that
the following two functions ¢ (z,t) and ¥ (z,t) are given

u
U|sax(To.1r) = ¢ (2,1), 'a_y’laﬂx(Tu,Tp) = (z,t)

2. Outline Of The Elliptic Systems Method

In this section we briefly outline the ESM, referring details to [5]. Let the function u (=, ¢) be
the solution of the Cauchy problem (1.1) for the background medium, which is not necessarily
homogeneous,

uor = div (D () Vug) — ao (z) uo, uo(z,0) = & (z — o). (3.1)

Let v = u — uo. Linearizing the equation for the function v with respect to the perturbation
function A (z) = a (z) — ao (z), we obtain

vy = div (DVv) —ao(z)v — h(z)uo, v(z,0)=0. (3.2)

As the first step, we eliminate the function A (z) from (3.2). In doing this we use the
fact that 9/0t[h(z)] = 0. First, we isolate  (z) in (3.2) dividing both sides of this equation
by ug (z,t). Let

v u
H(z,t)= — = — —1. (3.3)

Ug Ug
Substituting v = uoH into (3.2) and using (3.1), we obtain

v
H; = div (D (z)VH)+2D () —FVH — h(z) (3.4)
0
Introduce the derivative p(z,t) = Hy(z,t) of the function H. Likewise, we can prove that
the initial condition for the function H is H(z,0) = 0. Differentiating the equation (3.4)
with respect to ¢, we eliminate k (z) and obtain a new integro-differential equation for the
function p(z,t),

= 8 Vug t
p: —div (D (z) Vp) — 2D3— u_o-/o Vp(z, ) d‘r] =0 (3.5)
In addition, (2.3) leads to
9p
Ploax(te,1r) = ¥1 (2, 1), ﬁiaoxm,n) = (,1), (3-6)
_ 0 (e _ 0¥ »ouw
where ¢ (z,t) = P (uo) and ¥, (2,t) = T [uo ~ 31/] (3.7)




Should the function p be computed, then the perturbation A (z) will be reconstructed as

1
To—TF

t
where H(z,t) = jr;p(:r,r)d'r

h(z)

T
N [div (D (z) VH) + 2D v H — Ht] dt,
o u

0

We take the average value in the integral for h because the integrand might depend on ¢ in
practical computations.

Therefore, the central point of further considerations should consist in the finding of the
function p(z,?). Let {ax(¢)};Z, be an orthonormal basis in the Hilbert space L, (To,TF),
such that all functions ax (¢) are real valued and analytic as functions of the real variable
t for t > 0. A good example is the system of Legendre polynomials. We assume that the
function p(x,t) can be represented as a finite generalized Fourier series with respect to t, as

N
p(x,t)% Za-‘c(t) Qk(x)! for (:B,t)e 2 x (O'JTF)'J
k=1

where N > 1 is an integer and the functions @y (z) are generalized Fourier coefficients of
the function p over the interval (7, TF),

Qr(2) = _/Z:Fp(x,t) ar (t) dt.

Now we want to obtain a coupled elliptic system with respect to the functions Q (z).
First, consider boundary conditions for these functions on 9.

Denote a (z) = (a1 (2), ..., an (2)), B(z) = (B1(z),.... Bn (z)) for z € 3N, where

Tp Tr
ax (2) :f% o1 (z,8) a (1) dt, Br(z) = fT %1 (z,t)ax (t)dt, for L< k< N. (3.8a)

o

Note that by (3.7) the functions o and B: can be computed as

Tr
ai (z) = uioak@g‘ - /T 0 u%a; (t) dt (3.8b)
0 Tr Oug| ,
Br@) = | £ - uia%] arlfy - [ L% = uig] aj (t) dt (3.8¢)

Formulas (3.8b,c)are more convenient for practical computations than (3.8a), since they do
not require the differentiation of the data ¢ & 1, which are given with noise. The derivatives
aj, (t) , on the other hand, are trivial to calculated explicitly.

Also, introduce the N-dimensional vector valued function Q (z) = (Q: (z),..., @~ (2)).
Multiply both sides of (3.5) by ax (¢) for £ = 1,..., N, and integrate with respect to ¢ over

(To,TF) . We obtain the following boundary value problem for a coupled elliptic system of
PDEs

A(Q): = div (DVQ)—iB,- (x)g%—cc; =0 (3.92)
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Qlon = a(2), 2lsa = B() (3.9b)

where the N x N matrices B; depend on the function uo, and elements of the N x N matrix
C are

Tr
Cks = . a‘.; (t) aj. (t)dt; k,S = ]..J...,N.
o]

Figure 1. Typical Matrix Structure In Inverse Solver

Because of the differential, rather than conventional integral form of the resulting system
(3.9), the solution of this system by the Finite Element Method (FEM) amounts to the
factorization of sparse, well-conditioned matrices with non-zero entries clustered along the
diagonal, c.f. [4]. A typical matrix structure for our inverse solver is displayed on Fig. 1.
Dots denote non-zero 2 x 2 submatrices. This should lead to very rapid solution times, which
1s the key advantage of this imaging algorithm. An approach to solving the boundary value
problem (3.9) through the solution of an associated self-adjoint 4th order elliptic system was
described in [5].

3. Numerical Tests

The resulting 4th order boundary value problem [5] was solved by the Finite Element Method
(FEM), using modifications of an existing FEM code FESOP (Finite Element Solution of
PDE’s) outlined in [7]. The use of the very convenient mesh generation software included
in this code enables one to put additional mesh in the regions where the inclusions are
“suspected” to be located. That is, one first uses a uniform mesh in the inverse solver
and locates the inclusions approximately. Next, one adds additional mesh in “suspected”
regions and repeats the use of the inverse solver. In our code functions ax(t) are Legendre
polynomials. So far we have found that the best choice of the number N of these polynomials
(=the number of equations in the elliptic system) is V < 3. Usually, the images degrade for
N > 4.



We have also introduced multiplicative Gaussian random noise in the data for all detec-
tors on 00 with a standard deviation of 0. Let £ be a Gaussian random variable with the
mathematical expectation 0 and standard deviation . Then with 95% probability |£| < 20.
Hence the noise level can be taken to be 20. In the tests below we use o = 0.01 Thus, noise
is at the 2% level. Since the flux on 9 can be determined as the solution of a boundary
value problem given the intensity on 9§ and vice versa, we introduced the noise in just one
of flux or intensity (also, see Remark in the end of section 2 of [5]). Next, we smoothed this
noise by the least square interpolation of noisy temporal profiles by Legendre polynomials
over a somewhat larger interval (7”,7"), where 0 < 7" < Ty, < Tp < T” and used formulas
(3.8b,c) to compute the boundary data for functions Qx(z) using smooth values of ¢/ uo.

Tests were conducted on a Silicon Graphics Indigo (SGI) with one processor. In all
of these tests the starting point of the ESM was the absorption coefficient ao(z) of the
background medium. Our images display the function h(z), the correction term. Our code
iterates the solution as follows. Given the vector valued function @Q,the code readily updates
ag as ao(z) := ao(z) + h(z). Next, it solves the Cauchy problem (1.1) with @ = ag and
updates the boundary conditions at the detectors.

We used an anatomically accurate optical map of a female breast, which was obtained
on the basis of segmented Magnetic Resonance Images (MRI) [2]. Fig. 2 displays the MRI
cross-section within the square Q of 192mm x 192mm. The size of the MRI cross-section
was 120mm x 72mm [2]. The rest of the plane outside of this cross-section was “filled”
with parenchyma and in the whole plane u; = 0.5mm™. This scenario reflects a well
known suggestion to immerse the breast into a scattering medium of a large size in order to
avoid imposing ambiguous boundary conditions on the breast’s surface. The total number
of detectors was 52. They were uniformly distributed over four sides of the square . The
unique light source was located in the middle of the left side of the square Q. The time
interval on which we analyzed the data was (Tp,Tr) = (1557, 2830)ps, and the data was
smoothed on the interval (7", T") = (1415, 3538)ps using 300 data points.

We also introduced two small “tumors” which are shown as accurate small disks on Fig.
2. Diameters of the tumors were 3.8mm. “The breast was segmented into two different tissue
types - fat and parenchyma [2]”. The bulk of the MRI cross-section is fat. We have imaged
the function p,(Z). We took ¢ = 0.225mm/ps; and the absorption coefficients were as in
[5]: pa(Z) = 0.01 mm™, y,(Z) = 0.03 mm™1, and p,(Z) = 0.06 mm™"! for parenchyma, fat,
and tumors respectively. Thus, the absorption contrast tumors/parenchyma (the bulk of the
medium) is 2:1, which is very low.

Test #1. In this test we introduced the above noise in the intensity readings. We took
N = 3 on the first iteration of the ESM, and we used N = 1 on two additional iterations
(3 iterations total). The first iteration of the ESM gave a pretty good guess about the
locations of “tumors” (not shown). The CPU time was: 1.3 minutes for the forward solver
and 12 seconds for the inverse solver with 1024 finite elements, which is almost real time.
Next, we added 300 additional finite elements (1324 total) in two spots were inclusions where
“suspected” to be located and repeated the inverse run again. This run took 40 seconds of
CPU time (for N = 3). Two additional iterations of the ESM were performed in order to
improve the locations of the inclusions and to eliminate artifacts (similarly to [5]). For these
additional runs we took the number of equations in the system (3.9) to be NV = 1 (1324 finite
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elements for the inverse solver). The CPU time for the inverse tun was 5 seconds on each of
these iterations. Figure 3 displays the resulting image obtained after three iterations of the
ESM in 4 minutes total CPU time with no pre-computations. The locations of the inclusions
where imaged accurately. The 3-Dimensional view of this image is shown on Figure 4.
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Figure 2. MRI cross-section with “tumors”
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Figure 3. The final image for test #1 after 3 iterations
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Figure 4. 3-Dimensional view of the image of Fig. 3
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Test #2. In this test we introduced the above noise in the flux readings. The rest of
the parameters were the same as in the first test. Figure 5 shows the image obtained on the
first iteration of the ESM in 1.3 minutes CPU time (virtually real time). The inclusions are
located accurately, and their separation is clear. Figure 6 displays the final image obtained
in 4 minutes total CPU time after 3 iterations of the ESM. Figure 7 shows the 3-Dimensional
view of this image. The locations of the inclusions are imaged more accurately than in the
first test.
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Figure 5. The image obtained on the first iteration for the test #2 in 1.3 minutes of CPU
time
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Figure 6. The final image for test #2 after 3 iterations
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Figure 7. 3 — D view of the image for Fig. 6

649



650

4. Conclusions

We have tested a novel numerical imaging algorithm [5] for diffusion/optical tomography in
the time domain for the case of an anatomically accurate optical map of a female breast.
The locations of small, low contrast “tumors” are imaged accurately. The accuracy of images
is better in the case when the noise is introduced in the flux readings. This suggests that
collimated detectors might be more advantageous than uncollimated ones.

This novel numerical method is very fast: it gives a good guess about abnormalities in
almost real time, and the final image can be obtained in 4 minutes of CPU time total, with
no pre-computations. This is orders of magnitude faster than in existing techniques, c.f.
[1-3,8].

It is also important to note that the ESM can be applied to measurement schemes other
than the time domain, such as AC and DC measurements [6]. This, as well as the high speed
and accuracy of the ESM lead us to believe that this approach has the potential to become
a practically valuable imaging algorithm, or adjunct.
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