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Abstract. We analyse the limits of the diffusion approximation to the time-independent
equation of radiative transfer for homogeneous and heterogeneous biological media. Analytical
calculations and finite-difference simulations based on diffusion theory are compared with
discrete-ordinate, finite-difference transport calculations. The influence of the ratio of absorption
and transport scattering coefficient (µa/µ

′
s ) on the accuracy of the diffusion approximation are

quantified and different definitions for the diffusion coefficient,D, are discussed. We also
address effects caused by void-like heterogeneities in which absorption and scattering are very
small compared with the surrounding medium. Based on results for simple homogeneous and
heterogeneous systems, we analyse diffusion and transport calculation of light propagation in
the human brain. For these simulations we convert density maps obtained from magnetic
resonance imaging (MRI) to optical-parameter maps (µa andµ′s ) of the brain. We show that
diffusion theory fails to describe accurately light propagation in highly absorbing regions, such
as haematoma, and void-like spaces, such as the ventricles and the subarachnoid space.

1. Introduction

The diffusion approximation to the transport equation is widely used to calculate photon
migration in biological tissues, especially for problems with large source and detector
separation (Chance and Alfano 1995). For simple geometries analytical solutions exist
(Arridge et al 1992), and more complex tissues are often modelled with finite-difference
(Koo et al 1994, Anvariet al 1994) or finite-element (Arridgeet al 1993, Arridge and
Schweiger 1995) discretization of the diffusion equation. Also, solutions for the inverse
problems of photon migration in biological tissue are almost exclusively based on the
diffusion theory approximations (Chance and Alfano 1995). While several studies tested
the validity of diffusion theory against Monte Carlo simulations and experiments for small
source–detector separation (Star 1989, Flocket al 1989, Yooet al 1990, Madsenet al 1992,
Hielscheret al 1995b, Okadaet al 1996, Firbanket al 1996), the accuracy of the diffusion
approximation, in large homogeneous and inhomogeneous media, such as the breast or
the brain, has yet to be proven. Comparisons with Monte Carlo simulations are virtually
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impossible in these practical cases. The computation times easily exceed several weeks or
months, in situations that involve, for example, 5–10 cm of breast tissue or 10–20 cm of
brain tissue.

A fast way of accurately calculating the light distribution in large heterogeneous
scattering media is given by the discrete-ordinate finite-difference formulation of the
transport equation. While this method for solving the transport equation for arbitrary
media was introduced as early as 1950 (Chandrasekhar 1950) and finds a wide range of
applications in various fields that deal with the transport equation, e.g. oceanography and
atmospheric science (Liou 1973, Vanbauceet al 1993, Jin and Stamnes 1994), astronomy
(Chick et al 1996), neutron physics (Badruzzaman and Chiaramonte 1985, Rhoades and
Childs 1991) and medicine (Matsumotoet al 1991), it has rarely been used to describe light
transport in tissues. The only exception is the work by Rastegaret al (1989) who used
a discrete-ordinate method that was developed by Houf and Incropera (1980) to calculate
the one-dimensional fluence rate distribution in a small, slab-like, homogeneous medium.
The calculated fluence rates were used as an input for another code, which determined the
one-dimensional temperature profiles in homogeneous tissue before onset of ablation caused
by laser irradiation.

To calculate three-dimensional fluence rates in large homogeneous and heterogeneous
biological tissues, we use in this study a time-independent, discrete-ordinate, finite-difference
transport code called DANTSYS that was developed by Alcouffe and co-workers at the
Los Alamos National Laboratory (Alcouffe 1977, 1990, 1993, Alcouffe and O’Dell 1987,
Alcouffe et al 1995). Other than Houf’s code, this algorithm makes use of the diffusion
synthetic acceleration (DSA) method for the iterative solution of the finite-difference
transport equation. As will be shown, the first iteration provides a finite-difference diffusion
solution, while the fully converged results equal the finite-difference transport solution.
Therefore, diffusion and transport results can be effectively compared, and the validity
of the diffusion approximation in large homogeneous and heterogeneous media can be
evaluated. For simple geometries, the results of the finite-difference transport and diffusion
calculations are also compared with analytical solutions of the diffusion equation.

First we examine homogeneous media. The influence of the ratio of absorption to
transport scattering coefficient (µa/µ′s) on the accuracy of the diffusion approximation is
quantified. This is followed by a discussion of various definitions of the diffusion coefficient,
D. Thereafter, heterogeneous media are investigated. We address in detail heterogeneities in
which the absorption is comparable with the scattering (e.g. blood vessels and haematoma),
and regions that are almost scattering and absorption free (e.g. ventricles in the brain).
Finally, we use the knowledge gained from these studies to analyse light transport in the
brain. Based on density maps generated by MRI scans, we identify different tissues, assign
optical properties and perform diffusion and transport simulations.

2. Theoretical background

2.1. Finite-difference transport code

The migrations of photons in biological tissues can be described by the time- and energy-
independent equation of radiative transport, also known as the Boltzmann transport equation:

Ω · ∇9(r,Ω)+ (µa(r)+ µs(r))9(r,Ω) = S(r,Ω)+ µs(r)
∫

4π
9(r,Ω′)p(Ω ·Ω′) dΩ′.

(1)
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Here r is the position vector andΩ a unit vector pointing in the direction of photon
propagation.9(r,Ω) is the energy radiance in units of W cm−2 sr−1. The source term
S(r,Ω) represents power injected into a solid angle centred onΩ in a unit volume atr.
The absorption and scattering coefficientsµa andµs are the inverse of the mean free path
(mfp) for absorption and scattering respectively. The phase functionp(Ω · Ω′) describes
the probability that during a scattering event a photon with directionΩ′ is scattered in the
directionΩ.

The goal of any algorithm that solves equation (1) is to determine9(r,Ω), or the
derived parameter

8(r) =
∫

4π
9(r,Ω) dΩ (2)

which is the energy fluence rate with units of W cm−2. In order to use finite-difference
methods for solving equation (1), the spatial variabler and the directional variableΩ need
to be discretized.

In this work we use a finite-difference discrete-ordinate radiative transport code called
DANTSYS (diffusion accelerated neutral particle transport code system) that was originally
developed to calculate neutron transport in nuclear materials. The spatial discretization
is performed by a diamond differencing scheme, also called the Crank–Nicolson method
(Alcouffe 1993, Presset al 1992). For the discretization of the direction or angle the
method of discrete ordinates is employed (Carlson and Lathrop 1968, Bell and Glasstone
1970). This method divides the radiation field into a number of discrete directions�m.
In this way the transport equation is transformed into a set of coupled integro-differential
equations. Each of these equations is further transformed into a linear differential equation
by expanding the phase function,p(ω = Ω ·Ω′), in a series of Legendre polynomialsPl(ω)

p(ω) =
L∑
l=0

2l + 1

4π
blPl(ω) (3)

and replacing the scattering integral by a quadrature formula. In this work a Gauss–Legendre
quadrature was used. The set of linear differential equations is commonly solved iteratively
(Alcouffe 1977, Morel 1982).

In nuclear physics the expansion coefficients,bl , in equation (3) are usually written as
bl = (µs,l/µs,0), whereµs,0 is referred to as the zeroth moment of the scattering coefficient,
and µs,l is the lth moment of the scattering coefficient. The zeroth moment equals the
scattering coefficient used in the biomedical-optics field (µs = µs,0). For bl = gl , whereg
is the anisotropy factor defined in equation (13), it can be shown that equation (3) equals
the well known Heney–Greenstein scattering phase function (Welch and van Gemert 1995,
pp 144–5).

Another major feature of DANTSYS is the use of the diffusion synthetic acceleration
(DSA) method for the iterative solution of the finite-difference transport equation (Alcouffe
1977, 1990, Larsen 1982, McCoy and Larsen 1982). This method employs a corrected
diffusion equation to accelerate the convergence of the transport iterations.

To illustrate the method of DSA, throughout this paper we assume isotropic scattering
and an isotropic sources for simplicity. However, the scheme also applies to the more
general anisotropic problem (see the excellent review on synthetic acceleration methods by
Morel (1982)). For thenth iteration the transport equation (equation (1)) is rewritten as

Ω · ∇9∗n(r,Ω)+ (µa(r)+ µs(r))9∗n(r,Ω) = S(r,Ω)+ µs(r)8n−1(r). (4)

The corrected diffusion equation at thenth iteration can be expressed as (Morel 1982)

−∇ ·D(r)∇8n(r)+ µa(r)8n(r) = S ′(r)− Rn(r). (5)
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HereD is the diffusion coefficient (see equation (14)), and the correction term is

Rn(r) = ∇ · J∗n (r)+∇ ·D(r)∇8∗n(r) (6)

with

8∗n(r) =
∫

4π
9∗n(r,Ω) dΩ (7a)

and

J∗n (r) =
∫

4π
Ω9∗n(r,Ω) dΩ. (7b)

It should be pointed out that no approximations are made to obtain equation (5).
Furthermore, note that we use the asterisk to indicate quantities calculated using the angular
flux 9∗n , while the scalar flux calculated from the corrected diffusion equation is without
the star.

The DSA scheme proceeds now as follows: using8n−1, known from the previous
iteration, we solve equation (4) for9∗n . This involves one sweep through the space-angle
mesh. Then the correction term,Rn, is calculated using equations (6) and (7). In turn,Rn
is used to calculate8n from equation (5), which completes one cycle of iteration. Note that
for n = 0, a logical first guess is obtained by settingRn=0 to zero and solving the diffusion
equation for80. Therefore, the first iteration provides the finite-difference diffusion solution.
With each successive iteration theR-corrected diffusion solution (equation (5)) becomes a
better approximation to the transport solution, so the method can be thought of as a diffusion
improvement method. It can be shown (Alcouffe 1977, Morel 1982) that when DSA is
carried to completion, the corrected diffusion equation solution (equation (5)) is the same as
the transport solution (equation (4)) within a specified convergence criterion. The DSA is
most effective in the case of isotropic scattering. For anisotropic scattering higher moments
in the Legendre expansions of the phase function are needed, which can slow down the
convergence of the transport iterations.

Other features of the code are the arbitrary spatial assignment of scattering coefficients,
absorption coefficients and phase function. Furthermore, the user has the choice of various
boundary conditions, spherical, cylindrical or rectangular coordinate systems, and the option
to solve problems in one, two or three dimensions.

The code is written in FORTRAN 77 and is available for various platforms (CRAY,
and Sun, IBM, HP and SGI workstations, see http://www-rsicc.ornl.gov/codes/ccc/ccc5/ccc-
547.html and http://www-rsicc.ornl.gov/SOFTWARE.html). The calculations done for this
study were performed on a CRAY Y-MP 8/128. Computation times range from several
seconds to 30 min depending on the size of the spatial mesh and the degree of angular
discretization. For the simulations in this study we typically used 84 angles in 2D
simulations and 168 angles in 3D simulations.

2.2. Diffusion theory

The diffusion approximation to the transport equation is obtained by expanding9 in
spherical harmonics and keeping only the first two terms of the expansion. It can be
shown (Case and Zweifel 1967) that the energy radiance may then be written as

9(r,Ω) = 1/4π8(r)+ 3/4πΩJ(r). (8)

Inserting equation (8) into equation (1) and evaluating the integral yields

[Ω · ∇ + µa(r)]8(r) = 4πS(r)− [Ω∇ + µa(r)+ (1− g)µs(r)]3ΩJ(r). (9)
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This equation is reduced to two equations in the two dependent variables8 andJ by once
integrating overΩ and another time multiplying withΩ and integrating overΩ

µa(r)8(r) = S(r)−∇J(r) (10)

∇8(r) = −3[µa(r)+ (1− g)µs(r)]J(r). (11)

Finally, inserting equation (11) into equation (10) yields the diffusion equation

−∇(3µa + 3µ′s)
−1∇8(r)+ µa8(r) = S(r). (12)

Notice that in equation (12) the scattering coefficientµs has been replaced by the
transport scattering coefficientµ′s , which is defined asµ′s = µs(1− g), whereg is the
average of the cosine of the scattering angle, also called the anisotropy factor, given by

g :=
∫

4π
Ω′ ·Ωp(Ω′ ·Ω) dΩ′. (13)

The inverse ofµ′s can be interpreted as the distance a photon has to travel before it loses
all information regarding its initial direction. This distance is also called the reduced or
transport mean free path (mfp′).

The diffusion coefficientD is defined as

D = (3µa + 3µ′s)
−1. (14)

Other definitions ofD have recently been proposed (D = (3µ′s)−1 by Furutsu and Yamada
(1994) andD = (µa+3µ′s)

−1 by Wang and Jacques (1995)). We will later (see section 4.3)
discuss the influence of these alternative definitions on the diffusion solution.

Solutions to the diffusion equation (12) are readily found. For an infinite medium that
contains an isotropic point source, with intensity ofI0(W), at r0 one gets

8(r, t) = I0

4πD

exp(−(µa/D)1/2|r − r0|)
|r − r0| . (15)

Hielscheret al (1994) and Boaset al (1994) gave analytical solutions for an infinite medium
that contains a spherical inhomogeneity. From these formulae one can derive solutions for
semi-infinite, slab-like and cube-like media by the method of images (Easonet al 1978,
Pattersonet al 1989).

2.3. Simulation geometry and boundary conditions

For the transport simulations and diffusion calculations we adapted the following geometry
(figure 1): unless otherwise defined, we assume a three-dimensional cube where a point light
source is placed on one side of the cube. Inhomogeneities such as spheres with various radii
and optical properties are usually centred in the cube. For the finite-difference transport
(FDT) and finite-difference diffusion (FDD) simulations this cube is divided into uniform,
orthogonal cells. Great care has to be taken to choose the correct grid spacing,hn, for the
finite-difference code. As a rule of thumb adjacent grid points should be separated by less
than one transport mean free path. However, in regions with steep changes in the flux, even
smaller steps may be appropriate. To avoid grid size effects, we repeated the simulations
with decreasing grid sizes until no changes in the results could be observed. Furthermore,
the angular discretization has to be fine enough. In this study we typically used 84 angles
in 2D simulations and 168 angles in 3D simulations. Larger numbers change the solutions
by less than 0.5%.

Vacuum boundary conditions were chosen for the FDT and FDD calculations. No
photon that leaves the cube will return to the medium. For the analytical solutions we
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Figure 1. Geometry of problems.

employed the method of images. That is, negative image sources were placed around the
cube to ensure the extrapolated boundary condition (Case and Zweifel 1967, Aronson 1995,
Hielscheret al 1995b).

For the studies on MRI-generated brain data, we assigned different optical properties
to grid points with different MRI density levels. In this way the MRI data are segmented
into six different areas (skin, skull, grey matter, white matter, cerebrospinal fluid (CSF) and
blood).

3. Results

3.1. Homogeneous media

3.1.1. Influence of the ratioµa/µ′s . It is well known that the diffusion approximation
requiresµa/µ′s � 1. In order to see when and how diffusion theory fails in the case when
µa/µ

′
s approaches 1, we performed a series of simulations and analytical calculations for

various values of the ratio. The results are shown in figure 2. In these simulations the
scattering coefficient wasµ′s = 5.0 cm−1 andg = 0. The absorption coefficient was varied
from µa = 0.05 cm−1 to 2.5 cm−1, to yield µa/µ′s ratios from 1/100 to 1. The mesh
spacing for the transport simulations was 0.1 cm, which is half of the scattering length,
1/µ′s = 0.2 cm.

It can be seen that forµa/µ′s = 1/100, diffusion theory and transport theory yield
almost the same result. Small differences near the source can be observed, which are
caused by the fact that the analytical solution for a point source has a singularity atr = 0,
while the finite-difference transport solution has not. Forµa/µ

′
s = 1/10 diffusion theory

underestimates the fluence rate at a distance of 5 cm (∼25 mfp′) by almost 35%. For an
absorption coefficient ofµa = 2.5 cm−1, µa/µ′s = 1/2, diffusion theory underestimates
the fluence rate at a distance of 25 mfp′ by over two orders of magnitude. To ensure that
differences between transport and diffusion theory are smaller than 10% at a distance of
25 mfp′, we found thatµa/µ′s has to be smaller than 1/25.

The curves in figure 2 show furthermore that with an increasing distance from the source
the error increases. This is of importance especially in larger organs, such as the brain or
the breast, whose sizes are hundreds of mfps. Even when diffusion theory seems to be a
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Figure 2. Influence of the ratioµa/µ′s on the accuracy of diffusion theory. The fluence rates for
transport theory were calculated with the finite-difference, discrete-ordinate code DANTSYS.
The fluence rates for diffusion theory were calculated analytically. The open squares were
obtained by using a finite-difference (FD) code to solve the diffusion equation (first DANTSYS
iteration).

good approximation because the absorption is smaller than the scattering, the error might
get large if measured far away from the source.

In general we can state that the absorption coefficient has to be significantly smaller
than the reduced scattering coefficient in order to satisfy the diffusion approximation for
large distances from the source. Otherwise, diffusion theory underestimates the fluence rate
in the medium, or in other words overestimates the absorption in the medium.

3.1.2. Diffusion coefficient. Recently, it was suggested that diffusion theory can be made
more accurate by choosing a different diffusion coefficient,D (Furutsu and Yamada 1994,
Yamada 1995, Wang and Jacques 1995). To test this hypothesis we compared finite-
difference transport calculations with analytical solutions of the diffusion equation using
different definitions ofD (D1 = (3µa + 3µ′s)

−1 (see equation (5)),D2 = (µa + 3µ′s)
−1,

D3 = (0.5µa + 3µ′s)
−1, D4 = (3µ′s)−1). For the comparison we chose two homogeneous

media withµ′s = 5 cm−1 andµa/µ′s = 1/25 andµa/µ′s = 1/2. The results are displayed
in figures 3(a) and (b).

In the case ofµa/µ′s = 1/25 (figure 3(a)) it appears thatD3 yields the best agreement
between diffusion and transport calculations. Diffusion coefficientsD1 andD2 yield fluence
rates which are increasingly too small as the source–detector separation is increased.D4

yields fluence rates which are too large.
In the case ofµa/µ′s = 1/2 (figure 3(b)) the calculation with the original diffusion

coefficient,D1, and the newly defined coefficients,D2 andD3, all agree with transport
theory at some distance from the source (∼3 mfp′, ∼20 mfp′ and∼50 mfp′). However,
for increasing distance from the source all three diffusion coefficients seem to increasingly
underestimate the fluence rate. Furutsu and Yamada’s suggestion,D4, overestimates the
fluence rate at all distances; however, the absolute error is smaller than withD1 at distances
larger than 5 mfp′. An advantage of choosingD4 seems to be that the result does not
depend as strongly on the distance from the source.
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Figure 3. Influence of various definitions ofD on the diffusion calculations. The diffusion
results were obtained from analytical calculations, while the transport results were determined
with DANTSYS. In (a) the ratioµa/µ′s = 1/25, in (b) the ratioµa/µ′s = 1/2, withµ′s = 5 cm−1

in both cases.

We found that given a ratioµa/µ′s and a distance between the source and the detector,
one can always define a D which gives the same result as the transport equation. However,
no general definition ofD can be given that fits all situations. Therefore, it appears most
prudent to avoid using diffusion theory when it is not valid.

3.2. Heterogeneous media

3.2.1. Influence ofµa/µ′s . Next we investigated the differences between diffusion theory
and transport theory in heterogeneous media. We first consider a situation that is commonly
encountered in blood vessels or haematoma. In the near-infrared wavelength region blood
has an absorption coefficient that is comparable with the reduced scattering coefficient
(Nilsson 1997, Liuet al 1995). Therefore, diffusion calculations are expected to disagree
with transport calculations. How light penetrates these heterogeneities is of great interest,
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Figure 4. Transport and analytical diffusion calculations of the fluence rates in heterogeneous
media with weak (µa = 1.0 cm−1) and strong (µa = 10.0 cm−1) spherical absorbers. Outside
the spherical heterogeneity the absorption coefficient isµa = 0.1 cm−1. The scattering
coefficient isµ′s = 10 cm−1 throughout the medium. The point source is located at Position= 0.
The open squares were obtained by using a finite-difference (FD) code to solve the diffusion
equation (first DANTSYS iteration).

Figure 5. Transport and analytical diffusion calculations of the fluence rates in a medium that
contains an almost scattering- and absorption-free sphere (µ′s = 0.1 cm−1, µa = 0.001 cm−1).
The optical properties of the surrounding medium are given byµ′s = 5.0 cm−1 and µa =
0.05 cm−1. The point source is located at Position= 0. The open squares were obtained by
using a finite-difference (FD) code to solve the diffusion equation (first DANTSYS iteration).
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Figure 6. Fluence rates on two-dimensional slices through almost absorption- and scattering-free
region: (a) analytical diffusion calculation and (b) finite-difference transport simulations.

for example, in areas where laser induced heating of blood vessels and tissue is used to treat
disease (Johnsonet al 1994, Welch and van Gemert 1995, Sturesson and Andersson-Engels
1996, Gilling et al 1996), or in the field of brain haematoma detection (Gophinathet al
1993, 1995, Robertsonet al 1995).

To mimic the influence of blood-filled heterogeneities, we calculated the fluence rate
for a 10× 10× 10 cm heterogeneous medium that contains a 2-cm-diameter sphere. In
figure 4 two kinds of situations are considered. First the spherical heterogeneity has a
ten times higher absorption coefficient,µa = 1.0 cm−1, than the background medium,
µa = 0.1 cm−1. The reduced scattering coefficient,µ′s = 10 cm−1, is the same throughout
the medium. As can be seen in figure 4, diffusion and transport theory agree well for this
case. However, ifµa is increased inside the sphere to equalµ′s , large differences between
diffusion and transport theory are observed. Diffusion theory overestimates the effect of the
heterogeneity by almost two orders of magnitude. On the other hand, the differences occur
only inside the sphere. Outside the sphere, the two theories agree rather well.

These results are in agreement with the findings for the homogeneous media. In areas
where the ratio ofµa/µ′s approaches 1, diffusion theory underestimates the fluence rate in
the medium, or in other words overestimates the absorption.
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Figure 7. Geometry of channelling problem. Shown is a two-dimensional slice through a three-
dimensional cube. In the 2 mm thick, void-like region, which surrounds the 76× 76× 76 mm
core, the optical properties areµ′s = 0.1 cm−1, µa = 0.001 cm−1. Everywhere else the optical
properties areµ′s = 5.0 cm−1 andµa = 0.05 cm−1.

3.2.2. Regions with lowµa and highµ′s . Of special interest are regions within the body
that are almost absorption and scattering free. These regions are for example encountered
in the ventricles of the brain, which are filled with cerebrospinal fluid (CSF) (Nolte 1993).
Furthermore, a layer of CSF forms a boundary between the skull and the brain. Due to the
convoluted nature of the brain, the thickness of the CSF layer varies between about 1 and
10 mm. The effect of such a layer, for example, on measurements of blood oxygenation in
the brain has been the subject of many discussions (Hielscheret al 1995a, 1996, Firbank
et al 1996). Other void-like inclusions are, for example, the sinus cavities that surround the
nasal cavity. How light propagation is influenced by these near void spaces is discussed
next.

Figure 5 shows the results for a medium that contains a spherical heterogeneity with
a diameter of 2 cm. The reduced scattering and absorption coefficients within the sphere
(µ′s = 0.1 cm−1 andµa = 0.001 cm−1) are much lower than in the surrounding medium
(µ′s = 5 cm−1 andµa = 0.05 cm−1). A continuously emitting light source is located 5 cm
from the centre of the inhomogeneity. The fluence rates were analytically calculated with
diffusion theory and simulated with the transport code.

Even though the diffusion approximation,µa/µ′s � 1, is valid locally everywhere in
the medium, differences between diffusion and transport calculations occur. In the region
with very low scattering and absorption the diffusion calculations predict an almost constant
fluence rate. Just before this region, diffusion theory predicts a fluence rate smaller than
transport theory, and just behind this region, diffusion theory predicts a fluence rate higher
than transport theory.

Figures 6(a) and (b) display contours of isofluence rate for a cross section through
the same 3D simulation as depicted in figure 5. The plane shown includes an area of
3 × 3 cm centred in the middle of the 2 cm diameter spherical inhomogeneity. The
diffusion calculations predict an almost constant fluence rate throughout the inhomogeneity
(figure 6(a)). In contrast, the transport simulation shows a spherical attenuation of the fluence
rate within the void (figure 6(b)). This spherical attenuation is expected and is caused by
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Figure 8. Fluence rates as calculated by the finite-difference diffusion (a) and transport (b)
methods for the two-dimensional slice shown in figure 7.

geometrical effects, similar to the spherical attenuation of the electromagnetic field generated
by a point source in free space. Although in our case there is not a point source within
the low-scattering, low-absorbing region, there is a point,Ph (x = 4 cm, y = 4 cm), that
is closest to the source and has the highest fluence rate. The spherical attenuation in the
void-like area originates from this point. Another indication that geometry effects play an
important role in light propagation in void-like media is the fact that differences between
transport theory and diffusion calculations are largest in 3D simulations and smaller in 2D
and 1D. It appears that diffusion theory does not accurately describe attenuations due to
geometrical effects.

The failure of diffusion theory to describe the light propagation in low-absorbing and
low-scattering media is even more apparent in the following example. As mentioned before,
the brain is embedded in an almost absorption- and scattering-free fluid called CSF. To mimic
this situation we performed simulations on a 10× 10× 10 cm cube withµ′s = 5 cm−1 and
µa = 0.05 cm−1. The void-like structure (µ′s = 0.1 cm−1 andµa = 0.001 cm−1) is this time
a 2 mm thick box, which surrounds a 76× 76× 76 mm inner cube (figure 7). Figures 8(a)
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Figure 9. Segmented MRI data for a human brain.

and 8(b) show results of finite-difference diffusion and transport simulations respectively
for a plane through the cube, which contains the source on the left. Big differences can
be observed, which are caused by a light-channelling effect within the almost clear layer
as predicted by diffusion theory. This result confirms the finding of Firbanket al (1996),
who showed that diffusion theory predicts erroneous backreflections from a turbid medium
when a clear subsurface layer is introduced.

3.3. Clinical example

As a final example we took an MRI scan of the brain and segmented it into different areas
with various optical properties. MRI imaging techniques allow us to distinguish between
fatty white matter, the more watery grey matter, the CSF filled ventricles, the skull, the
skin and the blood. These different tissues and fluids appear in an MRI scan with different
densities. From this one obtains an optical property map (µa, µ′s) by assigning different
optical properties to different density values. Figure 9 shows such a segmented scan for a
slice that was taken just above the eyebrows through a human head. For example, clearly
visible are the butterfly-like ventricles in the centre, which are filled with cerebrospinal fluid
(CSF). The optical properties chosen for the different tissues and fluids are representative
values for light in the near-infrared (600–900 nm). We chose for white matterµa = 0.1
andµ′s = 12 (Sevicket al 1991), grey matterµa = 0.15 andµ′s = 6 (Sevicket al 1991,
van der Zeeet al 1993, Bevilacquaet al 1995), CSFµa = 0.01 andµ′s = 0.1, skull
µa = 0.05 andµ′s = 16 cm−1 (Firbank et al 1993), skinµa = 0.2 andµ′s = 5 (Hielscher
et al 1996) and whole bloodµa = 3.0 cm−1 andµ′s = 18 cm−1 (Liu et al 1995, Nilsson
et al 1997).

The results of the two-dimensional, finite-difference transport and diffusion simulations
are shown in figures 10(a) and 10(b). The light source is placed on the forehead (x = 0.4 cm,
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Figure 10. Fluence rates as calculated by the finite-difference diffusion (a) and transport (b)
methods for a two-dimensional slice through human brain as shown in figure 9.

y = 12.8 cm) just above the haematoma. The different grey values represent different
fluence rate levels. The isofluence rate lines indicate a one order of magnitude drop in the
fluence rate between two lines.

Several observations can be made that are in agreement with the findings for the phantom
problems discussed previously. In the blood filled region of the haematoma (approximately
2.5 cm < x < 3.5 cm and 11 cm< y < 16.5 cm), the isofluence rate lines are much
denser in the diffusion case than in the transport calculations. This indicates a much steeper
decay of the fluence rate in this region when diffusion theory is used as compared with
transport theory. Becauseµa in the haematoma is not much smaller thanµ′s , diffusion
theory overestimates the absorption effect as discussed in sections 3.1.1 and 3.2.1 and
figures 2 and 4.

Differences can also be observed in the region of the ventricles (approximately 8.5 cm<

x < 12.5 cm and 8.5 cm< y < 12.5 cm). Diffusion theory predicts a decay of the fluence
rate within the ventricles of less than one order of magnitude and the butterfly-like structure
is clearly outlined in the 2D diffusion slice. Transport calculations show a decay of over
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Figure 11. Finite-difference diffusion and transport results of fluence-rate calculations for the
line through the human brain shown in figure 9. The line includes the source atx = 0.4,
y = 12.8 (see figure 10), and is parallel to thex-axis.

two orders of magnitude. Since this region is almost free of absorption and scattering, these
results agree with the findings in section 3.2.2.

Figure 11 shows the fluence rate on a line that contains the source and crosses through
the haematoma and one of the ventricles. Again, the different influences of the haematoma
and ventricles on diffusion and transport calculations are clearly visible.

Light channelling can be observed to some extent in the diffusion calculations of
the brain. In CSF filled regions, along 6 cm< x < 16 cm, y = 18 cm, and
7 cm< x < 10 cm,y = 4 cm, the diffusion simulations show an expansion of fluence rate
much more pronounced than do the transport calculations.

4. Summary

We used a finite-difference discrete-ordinate transport code to test the limits of diffusion
theory in large homogeneous and heterogeneous tissues. Diffusion theory results
were obtained by analytical solutions and finite-difference diffusion simulations. For
homogeneous media we found that when the diffusion approximation (µa/µ

′
s � 1) is

violated diffusion theory overestimates absorption effects. Diffusion calculations predict for
this case a much stronger decay of the fluence rate than do transport calculations. In large
media small differences between diffusion and transport theory accumulate and differences
can become significant far away from the source, even whenµa/µ

′
s = 1/10.

As in homogeneous media, diffusion theory overestimates the absorption effects of
heterogeneities that contain a material withµa ∼ µ′s . Furthermore, we found that
diffusion theory fails to accurately describe regions with very low scattering and absorption
coefficients, such as the void-like ventricles in the brain. If these almost scattering- and
absorption-free regions form a tunnel-like structure, diffusion theory predicts a channelling
of light, while transport theory suggests a decay even within these tunnels due to geometrical
light attenuation.

Diffusion and transport calculations also show a large difference if applied to light
transport in the human brain. In agreement with the simulations on less complex systems,
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diffusion calculations differ most strongly from transport results in highly absorbing regions,
such as haematoma, and void-like spaces, such as the ventricles and the subarachnoid space.

Acknowledgments

The authors would like to thank Professor Yao Wang from the Department of Electrical
Engineering at Polytechnic University, in Brooklyn, NY for help in handling the MRI
data and Dr Scott Walker from Los Alamos National Laboratory for the careful review of
the manuscript. This work was supported in part by an NIH grant CA66184-A02 and a
fellowship from the director’s office at Los Alamos National Laboratory.

References

Alcouffe R E 1977 Diffusion synthetic acceleration: method for the diamond difference discrete ordinates equation
Nucl. Sci. Eng.64 344–52

——1990 A diffusion acceleratedSN transport method for radiation transport on a quadrilateral meshNucl. Sci.
Eng. 105 191–7

——1993 An adaptive weighted diamond differencing method for three-dimensional xyz geometryTrans. Am.
Nucl. Soc.68 206–12

Alcouffe R E, Baker R S, Brinkley F W, Marr D R, O’Dell R D and Walters W F 1995 DANTSYS: a diffusion
accelerated neutral particle transport code systemLos Alamos National Laboratory ManualLA-12969-M

Alcouffe R E and O’Dell R D 1987 Transport calculation for nuclear analyses: theory and guidelines for effective
use of transport codesLos Alamos National Laboratory ReportLA-10983-MS

Anvari B, Rastegard S and Motamedi M 1994 Modeling of intraluminal heating of biological tissue: implications
for treatment of bening prostatic hyperplasiaIEEE Trans. Biomed. Eng.41 854–64

Aronson R 1995 Boundary conditions for diffusion of lightJ. Opt. Soc. Am.A 12 2532–9
Arridge S R, Cope M and Delpy D T 1992 The theoretical basis for the determination of optical pathlengths in

tissue: temporal and frequency analysisPhys. Med. Biol.37 1531–60
Arridge S R and Schweiger M 1995 Photon-measurement density-functions 2: finite-element-method calculation

Appl. Opt.34 8026–37
Arridge S R, Schweiger M, Hiraoka M and Delpy D T 1993 A finite-element approach for modeling photon

transport in tissueMed. Phys.20 299–309
Badruzzaman A and Chiaramonte J 1985 A comparison of Monte Carlo and discrete ordinates methods in a

3-dimensional well-logging problemTrans. Am. Nucl. Soc.50 265–7
Bell G I and Glasstone S 1970 Discrete ordinates and discreteSN methodsNuclear Reactor Theory(New York:

Van Nostrand Reinhold) pp 214–51
Bevilacqua F, Marquet P, Depeursinge C and de Haller E B 1995 Determination of reduced scattering and absorption

coefficients by a single charge-coupled-device array measurement, part II: measurements on biological tissue
Opt. Eng.34 2064–9

Boas D A, O’Leary M A, Chance B and Yodh A G 1994 Scattering of diffuse photon density waves by spherical
inhomogeneities within turbid media: analytical solution and applicationsProc. Natl Acad. Sci. USA91
4887–91

Carlson B G and Lathrop K D 1968 Transport theory—the method of discrete ordinatesComputational Methods
in Reactor Physicsed H Greenspan, C N Kelber and D Okrent (New York: Gordon and Breach) pp 171–270

Case K M and Zweifel P F 1967Linear Transport Theory(Reading, MA: Addison-Wesley)
Chance B and Alfano R R (ed) 1995 Optical tomography, photon migration, and spectroscopy of tissue and model

media: theory, human studies, and instrumentation, parts 1 and 2Proc. SPIE2389
Chandrasekhar S 1950Radiative Transfer(New York: Academic)
Chick K M, Pollack J B and Cassen P 1996 The transport of thermal radiation in a prostellar envelopeAstrophys. J.

461 956–71
Eason G, Nioka S, Nisbet R and Turnbull F 1978 The theory of the backscattering of light by bloodJ. Phys. D:

Appl. Phys.11 1463–79
Firbank M, Arridge S R, Schweiger M and Delpy D T 1996 An investigation of light transport through scattering

bodies with non-scattering regionsPhys. Med. Biol.41 767–83
Firbank M, Hiraoka M, Essenpreis M and Delpy D T 1993 Measurement of the optical properties of the skull in

the wavelength range 650–950 nmPhys. Med. Biol.38 503–10



Transport and diffusion calculation for tissues 1301

Flock S T, Patterson M S, Wilson B C and Wynman D R 1989a Monte Carlo modeling of light propagation in
highly scattering tissues I: model predictions and comparison with diffusion theoryIEEE Trans. Biomed. Eng.
36 1162–8

Furutsu K and Yamada Y 1994 Diffusion approximation for a dissipative random medium and the applications
Phys. Rev.E 50 3634–40

Gilling P J, Cass C B, Cresswell M D, Malcolm A R and Fraundorfer M R 1996 The use of Holmium laser in
the treatment of benign prostatic hyperplasiaJ. Endourol.10 459–61

Gopinath S P, Robertson C S, Contant C F, Narayan R K, Grossman R G and Chance B 1995 Early detection of
delayed traumatic intracranial hematomas using near-infrared spectroscopyJ. Neurosurg.83 438–44

Gopinath S P, Robertson C S, Grossman R G and Chance B 1993 Near-infrared spectroscopic localization of
intracranial hematomasJ. Neurosurg.79 43–7

Hebeda K M, Menovsky T, Beek J F, Wolbers J G and van Gemert M J C 1994 Light propagation in the brain
depends on nerve fiber orientationNeurosurgery35 720–2

Hielscher A H, Liu H, Chance B, Tittel F K and Jacques S L 1995a Phase resolved reflectance spectroscopy on
layered turbid mediaProc. SPIE2389248–56

——1995b The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance
spectroscopy of biological tissuePhys. Med. Biol.40 1957–75

——1996 Time-resolved photon emission from layered turbid mediaAppl. Opt.35 719–28
Hielscher A H, Tittel F K and Jacques S L 1994 Photon density wave diffraction tomographyOSA Proc. on

Advances in Optical Imaging and Photon Migration (OSA Proc. 21)ed R R Alfano (Washington, DC: Optical
Society of America) pp 78–82

Houf W G and Incropera E P 1980 An assessment of techniques for predicting radiation transfer in aqueous media
J. Quant. Spectrosc. Radiat. Transfer23 101–15

Jin Z H and Stamnes K 1994 Radiative transfer in nonuniformly refracting layered media: atmosphere ocean
systemAppl. Opt.33 431–42

Johnson D E, Cromeens D M and Price R E 1994 Interstitial laser prostatectomyLasers Surg. Med.14 299–305
Koo F C, Schlereth F H, Barbour R L and Graber H L 1994 Efficient numerical method for quantifying photon

distribution in the interior of thick scattering mediaOSA Proc. on Advances in Optical Imaging and Photon
Migration (OSA Proc. 21)ed R R Alfano (Washington, DC: Optical Society of America) pp 187–92

Larsen E Q 1982 Unconditionally stable diffusion-synthetic acceleration methods for the slab heometry discrete
ordinates equation. Part I: theoryNucl. Sci. Eng.82 47–63

Liou K N 1973 A numerical experiment on Chandrasekhar’s discrete-ordinate method for radiative transfer:
applications to cloudy and hazy atmospheresJ. Atmos. Sci.30 1303–26

Liu H, Hielscher A H, Chance B, Jacques S L and Tittel F K 1995 Influence of blood vessels on the measurements
of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopyMed. Phys. 22
1209–17

Madsen S J, Wilson B C, Patterson M S, Park Y D, Jacques S L and Hefetz Y 1992 Experimental tests of simple
diffusion model for the estimation of scattering and absorption-coefficients of turbid media from time-resolved
diffuse reflectance measurementsAppl. Opt.31 3509–17

Matsumoto T, Aoki M and Aizawa O 1991 Phantom experiment and calculation for invivo B-10 analysis by
prompt gamma-ray spectroscopyPhys. Med. Biol.36 329–38

McCoy D R and Larsen E W 1982 Unconditionally stable diffusion-synthetic acceleration methods for the slab
heometry discrete ordinates equation. Part I: numerical resultsNucl. Sci. Eng.82 64–70

Morel J E 1982 A synthetic acceleration method for discrete ordinates calculations with highly anisotropic scattering
Nucl. Sci. Eng.82 34–46

Nilsson A M, Lucassen G W, Verkruysse W, Andersson-Engels S and Van Gemert M J C 1997 Changes in optical
properties of human whole blood in vitro due to slow heatingPhotochem. Photobiol.65 366–73

Nolte J 1993The Human Brain(St Louis, MO: Mosby)
Okada E, Schweiger M, Arridge S R, Firbank M and Delpy D T 1996 Experimental validation of Monte-Carlo

and finite-element methods for the estimation of the optical path-length in inhomogeneous tissuesAppl. Opt.
35 3362–71

Patterson M S, Chance B and Wilson B C 1989 Time resolved reflectance and transmittance for the non-invasive
measurement of tissue optical propertiesAppl. Opt.28 2331–6

Press W H, Flannery B P, Teukolsky S A and Vetterling W T 1992Numerical Recipes in C(New York: Cambridge
University Press)

Rastegar S, Motamedi M, Welch A J and Hayes L J 1989 A theoretical study of the effect of optical properties in
laser ablation of tissueIEEE Trans. Biomed. Eng.36 1180–7

Rhoades W A and Childs R L 1991 A 3-dimensional discrete ordinates neutron photon transport codeNucl. Sci.
Eng. 107 397–8



1302 A H Hielscher et al

Robertson C S, Gophinath S P and Chance B 1995 A new application for near-infrared spectroscopy: detection
of delayed intracranial hematomas after head injuryJ. Neurotrauma12 591–600

Schweiger M, Arridge S R, Hiraoka M and Delpy D T 1995 The finite element method for the propagation of
light in scattering media: boundary and source conditionsMed. Phys.22 1779–92

Sevick E M and Chance B 1991 Photon migration in a model of the head measured using time- and frequency-
domain techniques: potential of spectroscopy and imagingProc. SPIE143184–96

Sevick E M, Chance B, Leigh J, Nioka S and Maris M 1991 Quantitation of time- and frequency-resolved optical
spectra for the determination of tissue oxygenationAnal. Biochem.195 330–51

Star W M 1989 Comparing the P3-approximation with diffusion theory and with Monte Carlo calculations of
light propagation in a slab geometrySPIE Institute Series 5: Dosimetry of Laser Radiation in Medicine and
Biology (Bellingham, WA: SPIE–The International Society for Optical Engineering) pp 146–54

Sturesson C and Andersson-Engels S 1996 Mathematical modeling of dynamic cooling and preheating, used to
increase the depth of selective damage to blood vessels in laser treatment of port-wine stainsPhys. Med.
Biol. 41 413–28

Vanbauce C, Buriez J C, Dubuisson P and Fouquart Y 1993 Determination of fog optical thickness over northern
France using AVHRR imageryAnn. Geophys. - Atmos. Hydrospheres Space Sci.11 160–72

van der Zee P, Essenpreis M and Delpy D T 1993 Optical properties of brain tissueProc. SPIE1888454–65
Wang L H and Jacques S L 1995 Use of a laser beam with an oblique angle of incidence to measure the reduced

scattering coefficient of a turbid mediumAppl. Opt.34 2362–6
Welch A J and van Gemert M J C 1995Optical-Thermal Response of Laser-Irradiated Tissue(New York: Plenum)
Yamada Y 1995 Diffusion coefficient in the photon diffusion equationProc. SPIE238987–97
Yoo K M, Liu F and Alfano R R 1990 When does the diffusion approximation fail to describe photon transport

in random media?Phys. Rev. Lett.64 2647


