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1. INTRODUCTION

Most imaging schemes involve characterizing the interaction of an
electromagnetic wave with a target medium. This interaction can be generally
described by the wave equation:

1 9°
vy = C—z-a—} )

This equation relates the spatial variation (Laplacian) of the field to the
electrical permittivity, €, and magnetic permeability, t, of the medium. The latter
quantities account for the induced alignment of the electrical dipole (polarization) and
magnetic moment (magnetization) in the material by the propagating field, and they

determine c, the speed of light, which is equal to lf,/eu. For a time-harmonic source,
equation 1 reduces to the Helmholtz equation:

Viy + Ky =0, (2)
where £, the wave number, is equal to ®/c, and  is the wave frequency in radians-s'.

Measurement of the phase and amplitude of the electric field at a boundary is
typically accomplished with an antenna or similar device. As the scattering cross-section
of the material increases, the number of scattered fields combining with the incident
field at a point on the surface grows rapidly. Because these fields arrive from points at
different distances, their phase relationships with the incident field and with each other
are certain to be randomly distributed [1]. Inversion of the wave equation in these
circumstances is very difficult, if possible at all. It thus becomes necessary to employ an
alternative theoretical framework in which knowledge of the wave properties of a
scattered field is not necessary, but in which it may still be possible to acquire the
needed information for image recovery from measurements of only the energy of the
field. This alternative framework is provided by using the radiation transport equation
(RTE) instead of the wave equation for deducing the effect of a dense scattering medium
on an incident radiation field [1]. The RTE is formally identical to the Boltzmann
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equation used in neutron transport theory [2], and its use implies that radiation is being
treated as a particle phenomenon, with scattering being reinterpreted as the deflection of
light particles (photons) from their initial paths by collisions with structures in the
medium, rather than as diffraction of waves. To be consistent with this framework, the
energy of light, rather than the wave properties of its electromagnetic field, must be the
property that is measured.

Since our first suggestion in 1988 [3,4], our group has explored the application
of perturbation-based image recovery schemes derived from the RTE [5-9]. Our global
interest in this area originated from an appreciation that development of practical
schemes could serve to greatly extend the range of imaging applications. This follows
because such development would permit the use of energy sources previously considered
unsuitable and could allow for the examination of media to greater depths or having
greater thickness than were previously feasible.

2. MEASUREMENT SCHEMES

In many antenna applications, and other situations requiring measurement of
electromagnetic fields, plane wave illumination is frequently used [10,11]. This type of
illumination scheme, however, would not be the most advantageous when analyzing the
scattered field using approaches derived from the RTE. The reason for this is that as the
area of illumination increases, the photons received by a detector after passing through a
given point becomes a smaller fraction of the total number detected, thereby reducing
the sensitivity of the detector to localized inhomogeneities. What is required instead is
an illumination and detection scheme that maximizes the ability to discern localized
inhomogeneities. Exploration of this point is commonly referred to as the "forward
problem." A majority of reports published on use of optical methods have focused on
this issue for the purposes of detection, pattern recognition and patient monitoring (see
[12] for a review). The directions these attempts have followed fall naturally into three
general categories.

If the illumination strength at a fixed position and direction is constant in time,
the quantities that may be measured are the position and direction dependence of the
intensity of light at the surface. Measurement of the steady-state, or continuous wave
(CW), distribution of light is relatively easy. The disadvantage is that the potential for
spatial localization is reduced, as photons have the opportunity to propagate throughout
the medium for any length of time prior to being detected.

A major goal of methods that fall into the second category is reduction of the
variance of the distribution of paths of photon propagation through a medium to a
detector. The common feature of these time-resolved techniques is that the detected light
is studied as a function not only of position and (possibly) direction, but also of
propagation time. Typically, these methods involve illumination with ultra-short pulses
of light (fs-ps). The most valued component of the detected light is frequently, though
not always, that which reaches the detector in the earliest time [13-15]. This is the
fraction for which the variance of the propagation path distribution is smallest.
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The third general category of methods have the common feature that the
medium is illuminated with light whose intensity is a harmonic function in time. The
intensity of the light detected at any point at the surface will also vary with the same
frequency, but in general with a phase and ratio of AC amplitude to mean DC level
different from the source [16,17]. It has been shown that these differences are functions
of the optical cross-sections of the medium [18]. It is also possible, for simply structured
media [19], to infer the mean of the propagation path distribution for light entering a
detector from these measurements.

While our own work has extended to theoretical and experimental analyses of
data from all three measurement types to varying extents, most, and all the data to be
presented here, focuses on the first category. This emphasis follows from the premise
that successful imaging of very deep structures or very thick media will unavoidably
require making use of this type of information. This, in turn, is the conclusion drawn
from studies of the rate of increase in propagation path variance with increasing
propagation time [14], and of the decay of photon density waves with penetration
distance [17].

2.1 Numerical Methods

The essential elements of the Monte Carlo model used in our simulations are
sketched in Figure 1. Several well-known efficiency-enhancing techniques [20] are
employed, including treating each simulated particle as an ensemble of photons; Russian
roulette to terminate the histories of particles with low statistical weight; correlated
sampling to distinguish the true effect of a change in the medium's properties from
simple statistical variance; and extrapolating a photon's trajectory to the surface, and
estimating the probability of it escaping, so that (on average) half of the simulated
scattering events yield scoring events.
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Legend to Figure 1 Monte Carlo model for simulating detector responses. Panel A: source and
detector geometries, coordinate systems, and methods used to improve efficiency. All photons
enter medium along positive z-axis; surface lies in the x-y plane. Detector counts photons exiting
in a 1-mfp? (mfp = mean free path) area centered at point R, and whose exit directions lie in a
specified solid angle. Inclination of central axis from normal is angle ©. Inset: "bird's-eye" view of
surface, showing distance of R from source to detector, and azimuthal angles @, and @, that
complete the specification of the detector orientation. The distance a photon propagates between

two successive collisions is given by: d = mln[ I/(l - (l — e )Xl )] , where m is the mfp,

s, is the distance from the starting position to the boundary along the current line of propagation,
and X, is a random variable with uniform distribution between 0 and 1. The photon’s weighting

—5,/m

factor, initially 1, is reduced at each collision by w, = w, (1 — p )1 — ¢ ), where p_ is

the absorption probability X, /Z, . The change in direction due to scattering is determined by the

formulas:
B oos"((zg)"[‘ 8 - (1- )1+ sx, - ‘)])ZD’
o =n(2Xx, - 1),

where g, the anisotropy factor, is the mean value of cos , and X, and X, are random variables
identically distributed as X, . These angles are converted to the angles of the fixed reference
system by the formulas:

(S

(@, +@,),

cos ' (cos @, , cos® — sin®,_, sinBcos ),

(@, +D,)  + lan"[sincp/(cos dcos®,_ , + cot®sin®, )],

I

n=1

where #n is the number of collisions the photon has had in the medium, and Q,=m, (&, + B, =
0. If the distance from the photon to the illuminated surface decreases along the post-scattering
direction, its trajectory is extrapolated to the surface. The appropriate detector receives a score of

S=w, (1 - e7m ), where s, is the distance from the site of the n" collision to the detector;

this value is added to the sum of previous scores accumulated by the same detector. Panel B:
correlated sampling for detecting the effect of a localized heterogeneity. Each simulated photon in
the heterogeneous medium (right) follows exactly the same path as one in the corresponding
homogeneous reference (left) unless it is absorbed. Photon 1 in this sketch contributes a score to
the indicated detector in both media, while photon 2 scores only on the left and is absorbed on the
right.
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Simulation results have shown that selective probing of a turbid medium can be
performed, even in the limiting case of isotropic scattering [21,22]. The optimal source-
detector configuration (SDC) combines a pencil-beam source and a highly collimated
detector receiving light from only a very small area on the surface of the specimen.
Results shown in Figures 2 and 3 indicate the degree of selectivity achieved in this way.
The most important determinant of the region preferentially probed by the detected light
is the distance between the source and detector. This is a result that has also been
demonstrated with analyses that approximated photon migration as a random walk on a
three-dimensional lattice [23,24], and by diffusion theory [25]. The Monte Carlo
simulations further reveal that finer selectivity can be obtained by also varying the
orientation of the detector.
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Legend to Figure 2 Effect of R and © on detected angular intensity. Curves show R*/cos® vs. R
for the indicated values of ©. I is given in units of # photons detected/incident photon/mfp?/sr;
the 1/cos® factor compensates for reduction in detector aperture as its proceeds from normal to
grazing inclination. Detectors counted photons whose exit directions deviated no more than 10°
from the orientation of the central axis. The medium was homogeneous, with thickness 10 mfp
and £ = .01Z,. The plotted quantity appears to approach a constant value as R increases, as is
predicted by diffusion theory. However, the behavior at small R is highly dependent on detector
orientation.
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Legend to Figure 3 Effect of R and detector orientation on average maximum depth of detected
photons. The greatest depth, Z, attained by each photon was recorded, and the average value <Z>
for all photons counted by each detector was calculated after the simulation was completed. The
acceptance solid angle of each detector was a spherical sector with A® = 30° and Ad, = 90°. The
medium was homogeneous, with thickness 32 mfp and X, = 0. Plotted curves are polar plots of
<Z> vs. ©. Each curve shows data for a different R; <Z> is the distance from the pole to the
curve. (Reprinted from reference 5.)

3. IMPACT OF INTERNAL OPTICAL PROPERTIES ON ANGULAR
INTENSITY AT SURFACE

3.1 Weight Functions — Theory

Consider a medium divided into a set of N small, contiguous, non-overlapping
volume elements, or voxels. The voxel shapes are arbitrary, and they are sufficiently
small that the optical properties do not vary significantly within a voxel. If a property
affecting photon propagation is varied, the detected signal will also change; it is
reasonable to expect the change in detected signal is a sufficiently smooth function of
the voxels' properties that it may be expanded into a Taylor series:

TS S O I ) ) . SR PR PO

i=1 OX; i=1 j=1 OX;0X;

where y is the detected signal, x is the property being varied within the medium
(absorption cross-section, scattering cross-section, scattering anisotropy, total cross-
section, refractive index, erc.), the summations are performed over all voxels in the
medium, and the superscript 0 indicates the values that exist in the initial, or reference,
state. An expansion of the type in eq. 3 is also known as a perturbation series. The
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second term on the right-hand side describes the primary, or first-order, effect of
altering the property x. The third term describes second-order effects, with each second
partial derivative in the summation giving the strength of the interaction between a pair
of voxels (or the effect of a voxel on itself in the case of i=j). That is, the effect that
altering x in voxel / has on the light intensity at points within and in the immediate
vicinity of voxel j. Higher-order terms, likewise, describe interactions among larger
numbers of voxels.

It is useful to introduce a linearity assumption. The physical statement of this
assumption is that the combined effect of any number of voxels on a detected signal is
just the algebraic sum of the effects of the voxels taken individually. The mathematical
statement is that only the first-order derivatives in eq. 1 are non-zero. This will be

approximately valid if all the (x,- —x,”) are small, in which case it is appropriate to
truncate eq. 3 after the linear term, and rearrange it to obtain:

Y-y= i[-gy—j(x; -x?), or

i=1 i

Ay = w'Ax 4)

The vector w is referred to as a "weight function" for the optical property under
consideration. In other areas of physics, quantities analogous to w have been called
“contributons" or "importance functions" [26,27]. In our applications, the detected
quantity y is the intensity of the light exiting the surface of the medium. The optical
property x that has been the primary focus of our attention so far is X, the macroscopic
absorption cross-section.

3.2 Derivation and Calculation of Weight Functions

3.2.1 Weight Function for the CW Case

If the £, of a voxel is varied over a large range, and yet has no significant
impact on the intensity of detected light, there are two possible (not mutually exclusive)
explanations. One is that no appreciable fraction of the photons entering the medium
from the source propagate into the voxel containing the variable absorption. The second
is that no appreciable fraction of the photons that emerge from that voxel exit the
medium within the field of view of the detector. This indicates that the weight is
proportional to the product of two independent functions, one being the intensity of light
within a voxel due to a light source of unit strength at the surface, and the other being
the intensity of light at the detector due to a source of unit strength placed inside the
voxel. Let:
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y(7) = collision density at point 7 in the medium (collisions / unit volume / photon).
P;(F) = contribution to the angular intensity in detector j due to one photon emitted
isotropically at 7 per second (photons / unit area/ unit solid angle).
Z,(F) = macroscopic total cross-section at 7 (distance™ ).
AZ, (F) = macroscopic absorption cross- section difference at 7, between sample and
reference media (distance™ ).
Al; = decrease in intensity at detector j due to absorption.

If the assumption of linearity is valid, then y(F) andPJ.(F) are computed for the

reference medium, and Al; is equal to :
Al = 2250 o7 P.(7)dv 5
,-—J'*—i—"(?-—)‘lf(f) > (F)dv, 5

or, since the medium is taken to consist of discrete voxels with constant optical
properties within each voxel:

Eai
Al =Y . ViRV - (©6)

As written, eq. 5 and eq. 6 are strictly correct only for the case of isotropic
scattering. For almost all of the image reconstructions subsequently carried out, this was
the assumption made about the scattering property of the medium. These equations are

readily generalized to cases of anisotropic scattering: y and P; are functions of €2 as well
as of 7, and the products of the two in eq. 5 (6) must be replaced by an double integral

(summation) over all directions, with the integrand being the product of 'qJ(F,ﬁ),
P(F ,fl‘)‘ and f (fz,f)’), the differential cross-section for scattering from direction

into direction Q’,

The quantity y,V,, which is simply the absorption rate in voxel i, can readily be
computed by Monte Carlo. The calculation of F; is made tractable by employing a
reciprocity theorem that says:
where Rj is the location of detector j on the surface, Q ; is the direction of the light it
detects, and G(7; ,f!l;?‘z.flz) is the angular intensity at 7 in direction fll, per unit solid

angle, due to one photon emitted at 7, in direction flz. From this it follows that the

contribution of each collision in voxel i to P is just 1/4m times the total intensity at 7
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due to a single photon launched into the medium from detector j, i.e., in the reverse

direction from Q 4o

To rewrite eq. 4 in terms of quantities calculated by Monte Carlo simulations,
let:

F,; = number of collisions in V, due to a single photon launched from the source,
F; = number of collisions inV, due to a single photon launched from the detector.

So; = source strength (photons / second).
Then:
SUJF:JI = ll’lvl
F.} = 475&,-'2:5‘/5 .

So the change in intensity at the detector is:

Soj

. = —=F.F
J 4 - 2 0itij?
m

If the unknown quantity to be found in voxel i is Z_,, the weight is:
So;FoiF
or o L W 7
Wi T )

which is acceptable if Z, is known for each voxel. In the general case, the expression for
the weight would also contain terms describing the effect on detected intensity of a small
change in the scattering cross-section and in the cross-sections for any other processes
that occur to a significant extent. Eq. 7 is also the weight relating the intensity of
fluorescent light measured at detector j due to a fluorescent source of unit strength in
voxel i.

3.2.2 Absorption and Fluorescence Weight Functions, Time-Resolved Case

When a medium is illuminated by a brief pulse of light, the intensity in voxel i
is a function of time following the pulse. Likewise, the contribution to the signal
detected at detector j from light emitted by voxel i at a given instant is a function of
time. The weight function corresponding to a given source, detector, and voxel then is a
function of time as well. The generalization of eq. 7 to the time-resolved case can not be
proportional to a simple product of two collision densities as in the CW case. If ¢ denotes
the total time that passes between a photon entering a medium and its subsequent
detection, the weight function calculation must take account of all possible pairs of
source-to-voxel time and voxel-to-detector time that sum to ¢. If 1 is the time that passes
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between the photon entering the medium and having a collision in voxel i, the
absorption weight function for the time-resolved case is:

Sﬂj
4TV,

w,(t) = [ Foi(OF,; (t—)dx. ®)

The product in eq. 7 has been replaced here by a convolution integral. F, is zero for

values of T below a certain critical value, and F, ; 1s zero when 7 is larger than a second

critical value. It should be noted this means the lower and upper integration limits in eq.
8 may be replaced by -eo and oo, respectively, without changing the result.

The corresponding weight function can also be derived for measurements of
time-resolved fluorescence. There is an additional complication in the calculation of the
appropriate weight function, as the lifetime of the excited state of a fluorophore is also
variable. Typically, the probability density function for a fluorophore to emit a time ¢

after absorbing a photon is of the form e™“® /t,, where the mean lifetime 1, is
typically on the order of 10 ns. Then the weight function must take account of all
possible sets of source-to-absorption, absorption-to-emission, and emission-to-detector
times that sum to ¢. The extension of eq. 8 to this case is:

-7

§; —— ,
wij(,)=mjopm(t)ju e/ F, (t—t)dv'dr. )

3.2.3 Weight Function for the frequency-domain (fd) case

If a medium is illuminated by a source whose intensity varies sinusoidally about
its mean value (i.e., an AM signal), the change in the DC component, AC amplitude,

and AC phase at detector j caused by changing X, in voxel i can be calculated from the
CW and time-resolved weight functions. If the phase of the source is taken to be 0, then:

§ - oW
wy =wi + w;(o,)

w A2

we + ~—(fy(w)coswr — f;()sinwt), (10)
v

I

1]

where v is the speed of light in the medium, and f, (w) andf, (w) are, respectively, the
real and imaginary parts of the Fourier transform of the time-resolved weight function,
Because the limits of integration in eq. 7 and eq. 8 (outer integral in the latter case) can
be changed to -e= and o, the convolution rule for Fourier transforms may be used in the

calculation of f,(®) and f (®).
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3.3 Examples of Weight Function Calculations

The model used for the Monte Carlo calculations of collision density is
sketched in Figure 4. The scoring was simpler here than for the calculation of detector
responses sketched in Fig. 1, as here each voxel was a "detector” and kept a count of
how many collisions took place within its boundaries, irrespective of the directions of
motion of the photons (see Fig. 4A). When cylindrical media were modeled, each voxel,
as shown in Fig. 4B, was a sector of a circular annulus, proceeding in shape from a
circular disk at the center through shapes that approach rectangular parallelepipeds in
the limit as the distance from the cylinder axis increases without bound. Each of these
voxels has a volume of 7t/4 mfp3.
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Legend to Figure 4 Panel A: Monte Carlo model for calculating collision density distributions.
As in detector response simulations (see Fig. 1), photons are forced to remain within the
boundaries of the medium; the weighting factor w, initially 1.0, is reduced on each collision to
account for the probabilities of absorption and of loss through the boundary. When the n®
collision occurs in voxel i, the voxel's score (initially 0) is increased by w, . Collision density units
are # collisions/incident photon/mfp*. Panel B: voxel grid used collision density calculation in
cylindrical medium. Shown is a 2-D slice L cylinder axis; cylinder radius in this illustration is 10

mfp. Volume of each voxel is /4 mfp?.

Examples of weight functions calculated for slab-type media have been
described previously [6,7]. Examples of weight functions calculated for cylindrical
media are shown in Figure 5. All are for the CW case, and for sources and detectors
directed normally to the surface. The cases shown illustrate the effects of varying the
cylinder radius, the angle between the source and detector axes, and the refractive-index
mismatch between the cylinder and its surroundings. Also studied (data not shown) was
the effect of varying the anisotropy of the scattering.
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Legend to Figure 5 2-D sections through CW cylinder weight functions. In all examples shown
here, source and detector axes lay in the plane of section, L cylinder axis, and normal to the
surface. Panel A: cylinder radius is 10 equivalent isotropic step lengths, angle o. between source
and detector axes is 90°, refractive index is 1.0 inside and outside the cylinder. Panel B: cylinder
radius is 10 equivalent isotropic step lengths, angle o between source and detector axes is 180°,
refractive index is 1.0 inside and outside the cylinder . Panel C: cylinder radius is 10 equivalent
isotropic step lengths, angle o between source and detector axes is 90°, refractive index is 1.33
inside the cylinder, 1.0 outside. Panel D: cylinder radius is 20 equivalent isotropic step lengths,
angle o between source and detector axes is 90°, refractive index is 1.0 inside and outside the
cylinder.

4. IMAGE RECONSTRUCTION

4.1 Reconstruction as Solution of a Linear System

For the purpose of reconstructing images of absorption cross-section based on
intensity readings, eq. 4 becomes:

T
Al, = w;AY, ,
where the subscript j is an index defining the particular SDC under consideration, and w
is the weight function given by eq. 7 for a CW measurement of al or by (a discretized
version of) eq. 6 for a time-resolved measurement of al. If the number of independent
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measurements is equal to the number of voxels in the medium, then they combine to
give a fully-determined system of linear equations:

Al = WAZ, (11)

This validity of this linear system depends upon that of the assumption that the
properties of the medium under study are a sufficiently small perturbation of those of the
reference state. The meaning of "sufficiently small" is not yet well-established, however,
and the usefulness of eq. 11 is not as limited as it may at first appear (see Discussion).

The dependence of the detected intensity on a change in the X, of a given voxel
for any of the measurement types considered here, and the formulas for the
corresponding weight functions, are summarized in Table 1.

4.2 Solution of Perturbation Equation

In an accompanying paper [28], various approaches to solving equation 11 are
presented. Other efforts at imaging using perturbation approaches are described in
[29,30]. Here we describe results based on evaluation of detector readings that were
normalized (1 - I/I;), instead of their absolute differences (al). This substitution, while
yielding a different, although correlated, result, avoids the difficulties associated with
fluctvations in source strength and imperfect detector calibration. Essentially, we apply
an extension of the back-projection algorithm used in CT, where the matrix of spatial
weighting functions is substituted for line integrals. In each voxel the products of the
measured relative attenuation and the weight are calculated for all SDC's. After this is
done for all SDC's, the value assigned to a given voxel i is:

Zwu_(l—ff!u)j .

where j is the SDC index. This result needs to be modified to account for the gradient in
weight that is always present, w decreasing with increasing depth. The image intensity is
calculated by dividing the previous result by the sum, over all SDC's, of the weight in

voxel i, to give:
zwu(l—lﬂu)j/z,wq.
J J

This operation is known to yield a convolved image. An iterative correction
procedure was employed to yield an improved result. The mathematical formulation of
the algorithm is:
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st = s+ . ' . (12q)

Ewi'js:l

i =
zwﬂi
i

(12b)

with 221, and s =0 for all voxels, ¢} =0 for all SDC's. s is the estimate at iteration

n of the image intensity in voxel i, ¢} is the estimate at iteration n of the relative

attenuation at SDC j, and /; is the intensity reading at SDC j for the reference medium.

In practice, we usually impose a positivity constraint on s, for in the examples to be
presented it was known a priori that the absorption of the test medium was at no point
less than that of the reference medium. Convergence was assumed when the squared
differences between estimates of ¢ in successive iterations, summed over all j, fell below
a preset threshold.

4.3 Numerical Validation

In an accompanying paper [28] and other recent reports [7-9], the accuracy and
stability of the perturbation model has been examined using various test media by
considering only the backscattered field. These studies have shown the model is
relatively robust to a depth of at least 10 transport mean free paths (mfp) for small
targets, even under conditions where the problem is highly underdetermined and
seriously violates the assumption of a weak perturbation. In the following section we
describe results of preliminary experimental studies that demonstrate the ability to
image buried objects across the equivalent thickness of an uncompressed breast.

4.4 Experimental Validation

Experimental measurements were performed on a cylindrical phantom (see Fig.
4B) designed to approximate the degree of scattering and attenuation that would be
present in an uncompressed breast. The cylinder wall is translucent plastic, ~8.6 cm o.
d. and ~7.9 cm i. d., and it was filled to a height of ~35 cm with a suspension of
Intralipid® that was either 2%, 0.4%, or 0.08% lipid by volume. The absorber was a
hollow glass rod, 7 mm o. d. and 5 mm i. d., containing diluted india ink (1 mL ink to
7.5 mL H,0), and held with its axis parallel to that of the cylinder, either at the center of
the cylinder or at one of six positions ~2.25 cm from the center. Optical measurements
were accomplished using a custom built multi-wavelength optical CT scanner. A
Coherent 599 dye laser (1.5 mm beam dia.) was operated between 25-150 mW at 720
nm. Photon emission about the target was measured at 10° intervals by translating,
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under computer control, a Hamamatsu 3140C CCD camera in a 190° arc starting from
40° from backscatter to 50° beyond full transmission, (see Figure 6, and 4B).

180

% O 230
Iy O O

O O

40

Legend to Figure 6 Sketch of phantom used to model thickness and optical properties of an
uncompressed mammary. Left: lateral view (not to scale) of cylinder containing absorbing rod in
an off-center site. Source (arrow) is a narrow beam of laser light normally incident on cylinder at
about the midheight of the liquid column. CCD camera received light from a ~3.8 cm by ~3.2 cm
arca on the surface (see text for details on laser and camera). Only data from a 6 mm-high strip at
the center of the field of view were used in image reconstruction. Right: end view (not to scale) of
cylinder, showing seven possible locations of absorbing rod relative to cylinder axis and source
beam (arrow), and arc through which camera revolved, 10° steps, as data were collected.

Independent measurements of the transport mfp and absorption length of the
suspensions indicate the diameter of the cylinder was between 150 and 200 transport
mfp when the concentration was 2% [31]. As this most closely matches the dimensions
that are encountered using red or NIR light for imaging of breast, most of the examples
of reconstructed images shown in Figure 9 and Figure 10 were produced from the
measurements of the phantom containing this concentration of Intralipid®. The weight
functions used were derived from Monte Carlo simulations of cylindrical media with
absorption cross-section X, = .01Z. To test the sensitivity of the reconstruction
algorithm to errors in the estimate of the optical properties of the reference media,
reconstructions were carried out for four different assumed values of the diameter of the
cylinder: 10, 20, 40, and 100 transport mfp. In some cases, reconstructions also were
made with weight functions calculated for several different assumed values of the
refractive index mismatch, in the range (1-1.5):1, between the cylinder and its
surroundings.

The reconstructions shown in Figure 7 illustrate that highly accurate results are
obtained for all cases examined when the rod is in the center of the cylinder. In each
example shown, the weight function calculation was made with an assumption of
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isotropic scattering. The only condition in which the reconstructed "images" were
grossly inaccurate (not shown) was the use of weight functions calculated for a medium
with highly forward-directed scattering, in which case the gradient of weight from the
surface to the center of the cylinder was qualitatively different from that for the isotropic
scattering case. Note that this does not invalidate the results shown here, for although
individual scattering events in the suspension (and in breast tissue) are certainly
anisotropic, the voxel dimensions in these reconstructions are at least as large as the
equivalent-isotropic-step-size in these media.

The reconstructions shown in Figure 8 illustrate that results nearly as accurate
as those for the centered-rod case are obtained for the off-centered rod case. There is a
tendency for the region of greatest image intensity to be closer to the center than it
would be in a perfect reconstruction, although it is of the correct size and centered on
the radius at the correct angle relative to the direction of the illuminating beam.

IMAGE INTENSITY

10.64 4

6.93

IMAGE INTENSITY

3.21 4

Legend to Figure 8 Image reconstructions for case of 2% Intralipid® concentration, absorbing rod
at off-center site in cylinder. Surfaces are plots of image intensity vs. distance in x and y
directions; cylinder axis is at (0,0). In each case 10* iterations of a non-progressive reconstruction,
using eq.'s 12, were performed. A positivity constraint was applied to the image intensity values.
Correct location and size of absorbing rod are indicated by a region of negative image intensity.
Assumptions made in weight function calculation were isotropic scattering, no internal reflection
at boundary, £ = .01%. Panel A: assumed cylinder radius is 10 equivalent isotropic step lengths.
Panel B: assumed cylinder radius is 20 equivalent isotropic step lengths.
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The images in Figure 9 are an explicit demonstration of improvement in image
quality upon using a progressive (Fig. 9B) rather than a non-progressive (Fig. 9A)
reconstruction. In the former case, only data from SDC's with the smallest value of the
angle o between the source and detector axes (40°) were used in the reconstruction at
first. Data from SDC's with successively larger o. (10° steps) were added sequentially,
after a preset number of iterations each time. In this example, no attempt was made to
fix the values of image intensity in voxels near the surface following early stages of the
reconstruction.

IMAGE INTENSITY
&
2

5.0

(000 —-oleiy
10040

313 = 5.00
X =104

4.46+

2.914

IMAGE INTENSITY

1.354 5.00

0.00 484
10.00

£ -5.00
=104

Legend to Figure 9 Improved image reconstruction, case of 2% Intralipid® due to use of
progressive algorithm. Surfaces are plots of image intensity vs. distance in x and y directions;
cylinder axis is at (0,0). A positivity constraint was applied to the image intensity values.
Assumptions made in weight function calculation were isotropic scattering, no internal reflection
at boundary, ¥ = .01%,. Assumed cylinder radius is 5 equivalent isotropic step lengths. Panel A:
image after 10* iterations of non-progressive reconstruction. Panel B: image after 10 iterations
of progressive reconstruction.

5. DISCUSSION AND FUTURE DIRECTIONS

The images shown here were reconstructed from measurements of media with
high absorption contrast between the heterogeneity and the background. We chose this,
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in part, to assess the effects that large violations in the linearity assumption have on the
resultant image. The errors seen in the reconstructed images are, however, quantitative
not qualitative in nature. The only case in which clearly unsatisfactory results were
obtained occurred when the weight functions used had a qualitatively incorrect gradient,
with the weight larger in voxels near the center than in those near the surface. This
observation would suggest that estimates of weight functions having the correct
direction of gradient may be sufficient for locating objects buried deeply in a highly
scattering medium, at least for simply structured media.

As described above, we have derived here expressions for weighting functions
capable of evaluating data from amplitude modulated measurements and fluorescence
measurements performed in either the steady-state, time domain, or frequency domain.
In comparison to evaluation of absorption-scattering data, the fluorescence problem has
several features that appear especially attractive for an imaging scheme. First, the ability
to filter out scattered incident photons suggest that the sensitivity to a given point,
especially deep in the medium, could be greatly improved. Second, because emission is
induced by an external source, the strength of this signal will depend strongly on the
position of the fluorophore in relation to the source. Thus, unlike the nuclear medicine
problem, an additional degree of freedom exists from which to derive spatial
information. Third, in the time domain, it seems plausible to look for differences, along
the surface, in the time of arrival of fluorescence in response to a train of ultra-fast
pulses. Fourth, by linking appropriate fluorescent probes to antibodies or other
biomolecules, significant enhancement of specificity is plausible.

Finally, while we have emphasized here and elsewhere [7-9] the merits of
inversion schemes derived from particle transport models, recent reports by OLeary et
al. [32], demonstrating refractive behavior of photon density waves, may indicate that
direct evaluation of wave phenomena is possible. Rigorous analysis would be obtained
by using the Helmholtz equation. Recent reports by Klibanov er al. [33,34]
demonstrating that, under favorable circumstances, good quality images can be obtained
using a computationally efficient iterative scheme derived from the Helmholtz equation
are promising.
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