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Abstract

Formulas for the response of a detector on the surface of a highly scattering random medium to a change in physical properties
within the medium were deduced from a transport—theory—based linear perturbation model. These expressions are called weight
Junctions. Position—dependent intensities and fluxes were computed for the interior of a twenty mean free pathlength diameter,
infinitely long, nonabsorbing, homogeneous cylindrical medium. Numerical values for the weight functions were calculated from
these data. Surface detector readings were computed for the homogeneous reference medium and for six target media, each of
which contained an array of twelve or thirteen thin, infinitely long rods embedded in the cylinder as a perturbation. The rods had
a positive absorption cross section and a smaller scattering cross section than the reference, such that the mean free pathlength
was constant throughout each medium. The directly computed detector readings perturbations were compared to those calculated
from the linear perturbation model; as expected, the agreement was very good for the weakest cross section perturbations and
became steadily poorer as the perturbations increased. Two iterative algebraic image reconstruction algorithms are described;
both were used to compute images of the six target media. One algorithm tends to correctly identify the location of the rods lying
closest to the surface, but places the deeper ones bunched too closely together near the cylinder axis. The other tends to place the
superficial rods too close to the surface. In addition, while it appears to identify heterogeneities on the cylinder axis correctly
after relatively few iterations, the estimated cross section perturbation along the axis gradually goes to zero as the number of
iterations increases. Still in all, the performance of these algorithms is probably as good as can be achieved using a first-order
Born reconstruction (i.e., no update of forward problem).

Background and Introduction

Methods currently available for functional medical imaging (e.g., PET, SPECT, functional MRI) exhibit significantly poorer
spatial and temporal resolution than that attainable with anatomical imaging devices (e.g., x-ray CT, '"H-MRI). For techniques
involving use of ionizing radiation, safety requirements place an upper limit on the employable doses. For those based on
magnetic resonance, the net measured signal arises from the very slight difference between the population fractions of nuclei in
different spin states; taken together with the very low absolute concentrations in biological tissues of all NMR~participating
isotopes other than 'H, the result is a very weak net source. As a consequence of these factors, functional imaging techniques
typically require long signal acquisition times, and this is an important reason for their limited resolution. Quite apart from this
sort of consideration, functional imaging devices are large, fixed installations with large energy requirements and are not suitable
for use in acute—care settings.

Functional imaging based on analysis of visible (Vis) and near infrared (NIR) light that has propagated through tissue is
a promising alternative. It has long been known that many endogenous chromophores have different absorption spectra
corresponding to their various chemical or electronic states [1], and that knowledge of the concentration distributions of these
states can be directly related to the physiological state of the tissue. A large number of exogenous probes, such as fluorophores,
whose optical behaviors are dependent on some feature of their physical or chemical environments, has also been developed.
(One well-known example is FURA-2, a [Ca’*]-dependent fluorophore.) In addition, the optical properties of many biological
tissues have now been measured and catalogued [2]. In most circumstances, the only way Vis/NIR light can damage tissue is
through heating it, so dose restrictions are not nearly as stringent as those on higher energy radiations. Also, the different
chemical or electronic states of the compounds being probed do not “cancel out” as the nuclei with opposite spins do in an NMR
measurement. Consequently, acquisition of optical imaging data could be done in much less time, and at much more frequent
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intervals, than is possible for the other techniques. It also is reasonable to suppose, due to advances in optical source and detector
technology, that the device ultimately developed for acquiring the data will be small, portable, inexpensive, and require little
energy and no great expertise to operate.

Elastic scattering is the dominant mode of interaction between most biological tissues and Vis/NIR radiation.
Development of algorithms for recovering images from multiply scattered light is a difficult but central aspect of the Vis/NIR
imaging project. It is generally accepted that, except in very special circumstances, the wave properties of light can be ignored
for these wavelengths and media [3]. Then the distribution of light energy in a medium with any given set of physical properties
and source condition can be found by solving the linear Boltzmann transport equation [4]. The physical properties of the medium
that principally affect the propagation of the light through it are the macroscopic absorption and scattering cross sections (i, 4),
the differential scattering cross section, and the refractive index. These are expected to vary with position and/or direction in the
medium; in this context, image reconstruction means computation of the values of one or more of these properties.

There is no known method for solving the general inverse problem of calculating the medium properties from a given set
of measured intensities or fluxes. We have previously developed a perturbation model in which the inverse problem reduces to
one of solving a system of linear equations,

AR = Wax, 1)

for a target medium that is discretized as a set of small, contiguous, non—overlapping voxels [5, and references therein]. This
formulation is based on the assumption that we can specify a reference medium from which the target represents a small
departure. It is a reasonable assumption, because the anatomical structure of the target and average “literature values” for the
various tissue types within it will usually be known. In Equation (1), Ax is a vector whose elements are the differences in the
individual voxels between the target and reference values of the physical properties under study, AR is a vector whose elements
are the differences between corresponding detector readings for the target and reference, and W is the appropriate weight matrix.
That is, the model asserts that each detector reading perturbation is some linear combination of the interior perturbations.
Accordingly, the x}"" elementof Wis w, = R /6 x, , evaluated at the reference medium value of x;.

A crucial test of an imaging algorithm is its ability to reconstruct media containing many regions in which the target and
reference properties differ. The reconstruction inaccuracy is expected to increase as the distances between these regions decrease
and/or |Ax| in the voxels within them increases, for under these conditions the true relation between ax and AR becomes
increasingly nonlinear [6]. We have demonstrated successful image reconstructions of simply structured media [5,7-11], by
which we mean the reference medium is homogeneous and the target differs from it in a finite number of regions with regular
convex geometries. These reconstructions made use of algorithms that solve Equation (1) or a variant thereof (see Theory: Image
Reconstruction; SART-type Algorithm). They have employed both computer-generated [5,7,8] and experimental [8-11]
detector readings, but in all cases in which qualitatively very accurate images were obtained, the target medium contained only a
small number (1-2) of heterogeneities. When there was a larger number (13) of more closely spaced heterogeneities, the quality
of the reconstructed images was substantially poorer [7,8]. However, precisely in order to determine how large a perturbation
algorithms based on solving Eq. (1) could handle, these were black—body absorbers (1, = ). For the work reported on here, the
black bodies were replaced by three different finite levels of 4, and z perturbations. Monte Carlo simulations were performed to
calculate detector readings for both the reference and target media. Next, the deepest-lying heterogeneity was removed, and an
additional set of detector readings was generated. Independent simulations were performed to compute the interior light intensity
and flux distributions of the reference medium; these data were subsequently used for calculation of weight functions. Time-
resolved detector readings and interior light intensity and flux distributions were computed, and subsequently integrated to obtain
the corresponding time—independent (CW) quantities. Two algorithm variants were used to reconstruct images from each of the
six sets of detector readings. The results of only the CW computations are presented and discussed in this report.

Theory

Perturbation Model; Weight Functions

In the following, we assume the physical properties that affect light propagation in the reference and target media are isotropic.
That is, the absorption and scattering cross sections are functions of position only, and the differential scattering cross section is a
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function of only position and of the angle between the directions of the incident and scattered photons. The appropriate CW
linear transport equation for such a medium is

s(nQ) + [ 4,(rnQ QKRN - Q-94(r,Q) - 4,(Hr,Q) = 0, @

where
Q = direction unit vector

dQ) = differential solid angle about the direction Q of photon motion,

#(r,Q) = angular intensity at position r in direction Q [photons / area / solid angle / time],

s(r,2) = angular source density at position r in direction Q [photons/ volume / solid angle / time],

,(r,Q'-Q) = macroscopic differential scattering cross section at position r from direction Q' into
direction Q [1/ length / solid angle],

u(r) = L #,(r,Q-Q")dQ' = macroscopic scattering cross section at position r [1/length], (by

assumption, the result is independent of Q).
#,(r) = macroscopic absorption cross section at position r [1/length],
#:(r) = p,(r) + p,(r) = macroscopic total cross section at position r [1/length].

The reciprocal of u(r) is the position-dependent mean free pathlength (mfp). We express all cross sections in units of
mfp’; area and volume in mfp’ and mfp’, respectively; time in mean free times (mft), where one mit is the time required for a
photon to travel a distance of one mfp; and solid angles in steradians (sr). The effect of a perturbation was determined by
replacing ur(r) with ur(r) + Auy(r) and #(r.Q) with g(r,.Q) + a¢(r,Q) in Equation (2), multiplying out and gathering sets of like
terms, and then truncating terms proportional to Aux(r) A§(r,Q2). The last step embodies our basic linearity assumption, which is
valid for sufficiently small Aur(r).

Let a detector that measures angular intensity be located at (rsQ,). In the linear regime, the net detector response

perturbation, AR, due to any number of localized y; perturbations is simply the sum of the effects of each one considered
separately. Therefore, the difference between corresponding detector responses for the reference and target media is

AR = [ w (F)ap, (r)dr = [ [w,(r)au,() + w,(F)a, (1)), (3a)

where w,(r), w(r), and wi(r) are the appropriate weight functions at r. When the medium is discretized into voxels sufficiently
small that it can be assumed the physical properties do not vary appreciably within a voxel, the form of Equation (3a) becomes
instead

J J
6R = D wr,ony, = (W00, + w,0u,) (3b)

J=l =l
Many detector readings combined give rise to a linear system, as indicated in Equation (1).
Phenomenologically, the AR produced by the Ay in any given voxel is proportional to the number of photons from the
source (per incident photon) that propagate through the voxel. It is also proportional to the number, per photon than leaves the

voxel, that are detected by the selected detector. Under the assumptions stated above, the corresponding mathematical expression
for AR is [12]

8R = [ [ [orQ)au,@) + [ 6,201, (1.0 ) | (rQ)d, )

where §'(r,Q2), the adjoint angular intensity, is the angular intensity at (r,,Q;) due to a unit—strength source at (r,2). Define:
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#(r) = [ #r.Q)dQ = intensity,
I() = [ Q¢r0pQ = flu,
#r) = Lgé'(r,Q)dn = adjoint intensity,
¥(r)=[ Q¢ (rQ)dQ = adjoint flux,
[ @)y ra )

&) = ,(r)

= anisotropy factor.

Note that g(r) = (cosé), where &is the angle between the initial and final directions of a scattered photon. Next, we expand the
angular intensity and adjoint angular intensity in Equation (4) in spherical harmonics, ¥y, and the differential scattering cross
section in Eq. (4) in partial waves, P;. Assuming the anisotropy of the angular intensities is sufficiently weak that the expansions
may be truncated after / = 1, and that g(r) is not affected by any perturbation in z(r), we obtain the expressions for weight
functions shown in Table 1 [12]. The transport cross section, u,(r), that appears in the Table is defined as u,(r) = u(r) +
[1 - g(r)]u(r); its reciprocal is the transport mfp. In practice, by using u;' rather than u;' as the distance unit, transport
problems in media with moderate degrees of scattering anisotropy can be recast as isotropic scattering problems on distance
scales > y7'. Note also that the appropriate expression for w,(r) depends on the choice of constraint; a complementary physical
property must be assumed to be fixed.

Table 1: Weight Function Formulas

]‘;Ohl;sl:g;nm?gfﬂy weight for absorption weight for complementary property
31 -
,(r) w,(0),., = o[-0 ) + -3 w00, = [4_5(”].1(r).m)
m®) ), = e [-A0 ) + 3503 0] w0, = 3 - :'(r)] 3(r)-3°(r)
#,(1) w,(0),,,, = - H0¢(0) W, (1), = oo 30 (1)

Legend to Table 1 Expressions for weight functions according to Equation (3). Discretized versions, for use in
Equation (1), are obtained by integrating &(r), #'(r), J(r), and J'(r) over the volume of each voxel. First column
entry in each row is a physical property that may be perturbed independently of absorption; second column entry is
the weight function for a absorption perturbation, subject to the constraint that the property specified in the first
column is fixed; third column entry is the weight function for the complementary property, subject to the constraint
that absorption is fixed. The third column entries in the first and second rows are necessarily identical, because
Aur(r) = Ap(r) when p,(r) is fixed. All three entries in the third column are the same when g(r) = 0 (i.e., differential
scattering cross section has a center of symmetry; isotropic scattering is a special case), because in that case u,(r) =
p(r); likewise for the second and third row entries in the second column. These weight function expressions are
specific for the case of CW illumination and detection.

Image Reconstruction; SART-type Algorithm
The SART (i.e., simultaneous algebraic reconstruction technique) was developed for imaging techniques involving forms of

energy that pass through the target along straight ray paths [13]. It has been found to be useful as well for analyzing multiply
scattered signals, but with much slower convergence [7]. The estimate of Ax is repeatedly updated according to the formula

222/ SPIE Vol. 2570




A‘qu-l - M: oy =1 s (5)

!
2%,

=1

where 7 is the number of detector readings and J is the number of pixels/voxels in the image. Ax]*' = Ax] when the second term

on the right-hand side of Equation (5) is zero; while it is conceivable that this could happen due to cancellation of positive and
negative terms in its numerator, it is very unlikely that a single set of Ax]s could be found that would do so simultaneously for all

i=1,2,....J. The only way the second term is likely to be zero for all i is if each term in its numerator equals zero separately, i.e.,
Ax” equals the true Ax. The original developers of SART found, and empirical tests in our laboratory confirm, that it converges
rapidly, often in a single iteration, when applied to straight-line tomography problems. Our (unpublished) studies showed that
the convergence is most rapid for linear systems in which the matrix has a special structure likely to be found in this type of
problem. This is a matrix in which all rows have the same sum (because all rays intersect about the same number of pixels) and
all columns have the same sum (because all pixels are intersected by about the same number of rays). As the matrix structure
deviates more and more from this idealized one, the rate of convergence falls, but the correct solution is eventually reached in
most cases.

A different practical problem that arises in the type of image reconstruction problem we have undertaken is that absolute
experimental quantification of AR is very difficult. This led us to attempt development of an image reconstruction algorithm
based on relative detector readings changes, (AR/R,);, where R, denotes the reference medium detector response. The calibration
requirements for accurate determination of AR/R, are far less stringent than those needed to accurately measure the absolute
values of either Ry or AR. (An additional advantage to the use of the relative changes is that simple inspection can yield
information useful for constraining the set of possible solutions that is not readily apparent from inspection of the absolute
changes. For example, both R, and AR ordinarily are greatest for those detectors closest to the source and fall rapidly as the
source/detector separation increases. However, AR/R, is minimal for detectors near the source unless there is a heterogeneity
lying close to the surface. That is, simple inspection provides information about the minimum depth at which a significant
heterogeneity may lie.)

The first algorithm we developed, on purely heuristic grounds, iteratively updates the image according to the formula

&t =+ ; 4 (6

Here, the symbol for the unknown has been changed, to indicate that the quantity (“image intensity™) being computed is not one
of the physical cross sections, and its quantitative value is not easily interpretable. The formal similarity between this algorithm
and SART was noted subsequently, and it was given the name “SART-type.” Tests of this algorithm on both computed [5,7] and
experimental [9-11] detector readings data for simply structured media give results whose qualitative structure is very accurate
and contain few artifacts. Formally, by setting the bracketed expression in Equation (6) to zero, it can be shown that the linear
system this algorithm is actually solving is

sR3w, /R,

j=1

AR:in;/RoJ

J=i

Way = @)
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Therefore, the relation between Ay and Ax is

Ay = W'QWax, ®

J
¥,
=l

where g, = Té"#, and assuming W has a well-defined inverse. That is, each element of Ay is some linear combination of

ol

all the elements of Ax; note that if all g;; are equal, then Ay is directly proportional to Ax.

Image Reconstruction; rSART Algorithm

J
Empirical studies show that in general all g; are not equal. There is a positive correlation between ZW!, and R,,, but for the
J=l
mode] media used in the work presented here the ratio is on the order of one for detectors closest to sources and on the order of
one hundred for those farthest from them. Therefore, the following modification of Equation (6) was proposed:

7 ()
p 5 (o) leyﬁx:
2" (E), TR,

A= A+ , (%a)

)
v,
=l

where the superscripts () and (c) indicate that the first parentheses contain an experimental quantity, the second a calculated one.
This algorithm was given the name “r'SART™; the initial letter serves to distinguish it from the original and to emphasize its use of
relative detector readings changes. If Equation (9a) converges, the solution will be the true cross section perturbation, Ax.
However, tests of Eq. (9a) showed that it typically diverges rapidly. It was found that this was the result of too large a correction
being computed in each iteration, and the problem was easily remedied by modifying the iteration formula to

=1

(<)

R,) R,

byt =y + ; -, (9b)

in]

J
ol {E
L

for some k < 1. The solution to which this algorithm converges is Ay = kax. As of this writing, procedures for finding an optimal
I i
value of k are still under study; for the results reported here, the value used was simply k = [ZZ»@/I] .

iml jml

Methods

Monte Carlo simulations were performed to compute the internal light distributions and the photon flux exiting 3-D cylindrical,
isotropically scattering media. In all cases, the cylinder was infinitely long, its diameter was 20 mfp, and the light source was a
monodirectional beam directed to a single point on the surface. The incident ray lay within a plane perpendicular to the axis; see
Figure 1. Each incident photon underwent repeated scattering until it either escaped or was absorbed.
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Legend to Figure 1 Longitudinal (A) and transaxial (B) sketches of reference medium used for intensity and flux
computations. Although the cylinder is infinitely long (i.e., photons escape only through curve surface), collision
events are scored in only ten layers of voxels to either side of the layer containing the source. At greater distances
the intensity and flux are low enough to be safely neglected. The positive directions of the three Cartesian
coordinate axes used for the flux computations are indicated. The angles & and 3 are approximately 22.02° and
38.68°, respectively. Non-normal source beam 2’ lies exactly 3.75 mfp from the normal source beam, ‘1°, in the y
direction; non—nlormal source ‘3’ lies exactly 6.25 mfp from ‘1’ in the y direction. The cross sections are Ha=10,
K= pr=1mifp".

The internal intensity and flux distributions were computed for a homogeneous reference medium. The average
collision density and it projections onto each of the three coordinate axes were computed in each of 8,400 voxels. These were
arranged in 21 1-mfp-thick layers perpendicular to the cylinder axis; each voxel’s volume was n/4 mfp® (i.e., T2h/400); see
Figure 2. The output was reported in units of collisions/unit volume/incident photon; intensity is the ratio of the collision density
to yr. The medium was nonabsorbing; each history was terminated when the photon escaped from the medium. There was no
internal reflection at the boundary, as in the case of an object immersed in a transparent index-matching fluid. A total of 3x10*
photons was launched into the medium from each of the three source locations indicated in Figure 1. The average number of
collisions per history varied from ~26 for the normally directed source down to ~22 for the most grazing source.

Figure 2
=
o227 . . : .
/éf¢?==§% Legend to Figure 2 Transaxial sketch of a cylinder, showing
Iéﬁé’fﬁ;%§§ the pattern of voxels in which the intensity and flux were
II Ié’/‘ffﬂQ\ computed. While the voxel shape is different in each shell a
i 'I Illlff%%’ constant distance from the axis, each voxel has the same
) l’l,l’l;rf/'\ volume. This pattern is convenient to work with because
l";/ '|fz!\‘® when a second copy is rotated through some angle and
| \‘\‘\\\‘\Q‘_ overlain on the original, as in calculating weight functions,
NONNS L2 each voxel in the one set overlaps with exactly one or two, and
NS =2
\\\§§§§s§7§ % // 7, in the same shell, of the other. The shaded voxels in the
\%%gsaﬁgggé/ sketch are those intercepted by one of the thirteen rods in the
N — target media.
§§§‘ 4.%4“%
\\-—‘
=

Detector readings were calculated in separate simulations from those that computed the collision densities; see Figure 3.
The cylinder’s surface was divided into twenty one bands by planes perpendicular to its axis, with the central band bisected by
the plane containing the source. The readings of detectors in only the central band were actually used by the reconstruction
algorithms. Each band was divided into thirty six congruent areas by lines parallel to the axis. Each of the resulting 756 patches
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had an area of 57/9 mfp’ (i.e., 22rh/36), and 2 separate count was kept of photons exiting through each one. That is, the detectors
modeled in these computations were cosine detectors at the surface, evenly spaced at 1(P intervals about the cylinder.

Figure 3

270°

TP

Legend to Figure 3 Longitudinal (A) and transaxial (B) sketches of cylinder, showing the partitioning of the surface
into patches each of which is the site of a cosine detector. A) Dark shaded area is one such patch, located in the
central band of detectors, i.e., the one bisected by the plane containing the source beam and perpendicular to the
cylinder axis. Also shown are one of the rods (light shading, not drawn to scale) used a heterogeneity in the target
media, and a possible path for a photon entering and exiting at the indicated points. For the particular
source/detector pair illustrated, this sort of path is much more likely than one that contains only a single scattering
event, or one in which the photon remains within the central layer of voxels. B) Each band contains thirty six
detectors, each subtending a 10° central angle.

Detector readings were computed for the homogeneous reference medium and for each of six distinct target media,
whose structures are shown in Figure 4. The heterogeneity consisted of twelve or thirteen, infinitely long, .5-mfp—diameter rods
in a fourfold symmetric cruciform array. Each rod was simultaneously more strongly absorbing and more weakly scattering than
the reference medium. These were balanced in every case, i.c., Als = -Alg, SO that yr was unperturbed. The three perturbation

magnitudes modeled were Az, = pr, Ay, = 0.10y7, and Ay, = 0.0147. Detector readings were computed for each of the three
source locations indicated in Figures 1 and 3.

A
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Legend to Figure 4 A) Sketches of transaxial sections through
the six target media modeled in the detector readings
simulations. Three (top row) contained thirteen thin rods (.25
mfp radius, infinitely long), while the rod lying on the cylinder
axis was absent from the other three (bottom row). Both z,
and y; were perturbed, but 4 was not. The three shadings
denote the three perturbation magnitudes, Ay, = -Ay, = 0.01u;
(left column), Ay, = -Ag; = 0.10xr (middle column), Ay, = -ag,
= yr (right column). B) Coordinates of rod axes are indicated
by tic marks on the y and z axes. Also shown are the y
coordinates of the source beams. Reconstruction algorithms
took full advantage of the targets’ symmetry, so the three
detector readings computations amount to four views, with five
source beam positions per view.

The number of photon histories simulated in the computations was 4x10® for the weakest of the perturbation magnitudes,
2x10°® for the others. A correlated sampling technique was employed to reduce the statistical errors associated with these
simulation results. Each photon in a target medium followed exactly the same trajectory as its counterpart in the reference
medium. If it had a collision inside one of the rods, it was always absorbed in the case of Az, = ur. In the cases of A, = 0.10yr,
and Ay, = 0.01 gy, a random variable uniformly distributed between zero and one was sampled, and on the basis of the sampled
number the photon was absorbed with a 10% or 1% probability, respectively. Each photon that was not absorbed in the interior
contributed equally to the response of a reference medium detector and the detector at the same location on the target medium.
This minimizes the effect of randomness on the difference between the readings of the paired detectors.

The weight function computations made use of a well-known reciprocity theorem: the detector response at (r;Q,) due
to a unit-strength source at (r,Q) is equal to the intensity at (r,-Q) due to a source r(r;-C,), where r(rs,-Q,) is the detector
response function [14]. Thus, the adjoint can be computed as the solution to a forward problem, just as the intensity is. In
calculating weight functions for the present work, we used the intensity and flux distributions generated for source ‘1’, rotated
through the appropriate central angles (see Figure 3B), for the adjoint intensity and flux. This introduced a systematic error into
the weight function calculation, because these were the appropriate adjoints for a single-point, monodirectional, normally
directed detector, while finite-area cosine detectors were modeled in the detector readings computations. For the particular
examples of image reconstructions in this report, we assumed a priori knowledge of the fact that Aur =0, computed the weight
functions w,]“r (see Table 1) and reconstructed images of only the absorption cross section perturbation.

Images were reconstructed of all six target media using both the SART-type and rSART algorithms. We assumed a
priori knowledge of the fact that Ay, > 0, and incorporated a positivity constraint into the algorithm implementations. They also
took full advantage of all symmetry elements, both longitudinal and transaxial, in the targets. Thus, it was not necessary either to
translate the source in the x direction or to use sources and detectors with different x coordinates. In addition, because the targets
have symmetry about both the y and z axes, the three source locations effectively become twenty, in four views with five source
locations per view, and thirty six detectors per source. Thus, there are 720 source/detector pairs altogether and 400 unknowns, so
the linear system is overdetermined if the rank of W is at least 400.

Results
Examples of the computed detector readings are shown in Figure 5. Detector locations are specified in terms of the central angle
between the detector and the point of incidence of the normally directed source. That is, a given value for the angle is to be
thought of as an absolute location in the angular coordinate of a fixed polar coordinate system, not as a relative angle between
source and detector. Note that the curves of AR and AR/R, vs. angle are not completely featureless, but exhibit peaks and

“shoulders™ at detector locations closest to the arms of the rod array.

A direct test of the linear perturbation model was carried out by directly computing, for each source/detector pairi, the
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quantity Zj..fjww”'“u , where f; =0, 1/16, 1/8, or 1/4 is the fractional volume of voxel j that is occupied by a rod. As

expected, the agreement between the ARs calculated from the model and those generated by the Monte Carlo simulations was
closest for the case of the weakest perturbation. The model and simulation results are compared in Figure 6, for the case of the
thirteen—rod target with A, = 0.017. The increasing departure of the simulation results from the predictions of the model with
increasing perturbation magnitude is shown in Figure 7, where the ratios AR(Ax=0.10u7)/AR(Au~0.01yr) and
AR(Ap=pr)/AR(A1,=0.10yr) are plotted against detector angle for each of the three distinct sources. If the linear perturbation
model were exactly correct, this ratio would be exactly 10.0 in both cases, for all sources and detectors. As can be seen in the

figure, the average values of the ratios actually observed are ~8.5 and ~3.5, respectively, and there is some systematic variation
with detector angle.

A hypothetical perfect reconstruction of a thirteen—rod target is shown in Figure 8. The twelve-rod ideal reconstruction
would differ only in that the central peak would be absent. Although the rods all have circular geometric cross sections, the same
absorption and scattering cross sections, and the same diameter, the image peaks corresponding to different rods have different
heights and shapes. The height of the central peak is 0.25 because a rod occupies exactly one fourth of the volume of the central
voxel in each layer. The difference in peak heights arises from the fact that only the rod on the cylinder axis lies entirely within a
single voxel in each layer, while the others lie partially within two or four voxels; see Figure 2. Inspection of the same Figure
likewise indicates the reason for the different peak shapes: the medium is discretized in a set of voxels that can accurately
represent a perfect circle only if it is centered at the cylinder axis.
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Figure 6
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Both the SART-type and rSART algorithms were used to reconstruct images based on the AR/R, data from each of the
six target media. The SART—-type results for the thirteen—rod and twelve—rod targets with Au, = yr are shown in Figure 9. Each
reconstruction was terminated after 2x10* iterations, in lieu of a convergence criterion. The corresponding results for the weaker
perturbations are qualitatively similar and are not shown. A feature typically seen in images reconstructed by this algorithm is
evident in these results: the most superficial peak on each “arm” of the array is very accurately located, while reconstructed
locations of deeper structures are increasingly inaccurate and skewed in the direction of the cylinder axis (see Discussion).
Because the five (four) deepest rods of the thirteen (twelve) are in reality quite closely packed, the result is that the corresponding
image peaks coalesce into a single mass near the center. Another feature commonly seen in SART-type images also is apparent
in these results: the nearly complete absence of artifacts in the regions between the arms of the array and at the surface. The
difference between the thirteen—rod and twelve-rod images also is shown in the Figure. From this it is seen that although the
twelve—rod image has positive image intensity at the center, where there ideally shouldn’t be any, it is significantly lower there
than in the thirteen-rod image. The distinctive biphasic appearance of the most superficial peaks in the image difference
indicates that they are shifted to a slightly greater depth in the twelve-rod image relative to the thirteen—rod image.

The rSART results for the thirteen—rod and twelve-rod targets with Ay, = yr are shown in Figure 10. In lieu of a
convergence criterion, each reconstruction was terminated after 1.2x10* iterations. The corresponding results for the two weaker

SPIE Vol. 2570/ 229



Figure 7
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perturbations are qualitatively similar and are not shown. This algorithm, as can be seen in these results, tends to produce images
in which the depth of the most superficial rods and the perturbation magnitude at the center both are underestimated. This
algorithm, like the SART—type, exhibits an encouraging tendency to suppress artifacts in the regions between arms of the array
and near the surface. In addition, while the image values are underestimated in the vicinity of the cylinder axis, the rfSART image
difference shows, as in the case of the SART-type image difference, that the greatest difference between the thirteen-rod and
twelve-rod images occurs, as it should, in that region.

Examination of the rSART images as a function of number of iterations (data not shown) revealed an interesting
behavior. For the thirteen—rod, Ay, = yr data, the image contained a peak on the cylinder axis that increased in magnitude for the
first ~1,000 iterations, and slowly decreased to zero thereafter. The corresponding data for the Az, = 0.10; and Aptg = 0.01pr
data gave also gave rise to a central peak, which reached its maximum value and then began to decrease after, respectively,
~3,000 and ~5,000 iterations. The corresponding twelve-rod data sets also gave rise to these transient peaks, but in every case it
never reached the same maximum value as in the thirteen—rod case, and began to decrease after an appreciably smaller number of
iterations.
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Figure 8

Legend to Figure 8 Ideal reconstruction
of a thirteen—rod target medium.
Although all rods have the same cross
sections, the peak heights are different
because some intercept four voxels in
each layer, others only two, and the rod
on the cylinder axis lies entirely within a
single voxel.

Figure 9

'3 Legend to Figure 9 Images reconstructed using the SART-
type algorithm, for the case of Ay, = yr. Reconstructions
employed a positivity constraint on the solution, took full
advantage of all symmetry elements in the target media, and
were terminated after 2x10* iterations. A) Result for thirteen—
rod target, B) result for twelve-rod target, C) difference
between results shown in Panels A and B.

SPIE Vol. 2570/ 231



Legend to Figure 10 Images reconstructed using the rSART
algorithm, for the case of Ay, = ur. Reconstructions
employed a positivity constraint on the solution, took full
advantage of all symmetry elements in the target media, and
were terminated after 1.2x10° iterations. A) Result for
thirteen—rod target, B) result for twelve-rod target, C)
difference between results shown in Panels A and B.

Discussion and Conclusions

Both algorithms used to produce results presented in this report reconstructed images containing several features that lead us to
conclude we have obtained positive results. This is so especially in light of the fact that we show here only images obtained on
the basis of CW detector readings; we anticipate improved image quality when time-resolved and frequency—domain methods are
employed. These features include the absence of any positive image values in the regions between the arms of the array of
heterogeneous rods, resolution of the positive image intensity along each arm into several distinct regions, and the apparent
suppression of artifacts in voxels near the surface. On the other hand, in detail, most regions containing positive image values are
not in the correct location and the heights of the various peaks are not in the correct ratios.

The SART-type algorithm exhibits a tendency to reconstruct the most superficial rod locations correctly, but to coalesce
the deeper rods into a single “multiplet” near the cylinder axis. The image value is maximum in the voxel lying on the cylinder
axis, as it ought to be, in the thirteen—rod reconstructions; unfortunately, it is maximum in the same voxel, as it ought not to be, in
the twelve-rod reconstructions. The difference between the thirteen— and twelve—rod images for the same perturbation
magnitude indicates, however, that the algorithm does correctly sense that the two targets differ most in the immediate vicinity of
the cylinder axis. Although we know the image intensity is positively correlated with the perturbation in , it is not clear just
how it should be physically interpreted (see Methods: Image Reconstruction; SART-type Algorithm). This situation may be
remedied if, as discussed below, future studies involving calculated ideal detector readings show just how the spatial distribution
of physical cross section perturbations is “transformed” by this algorithm.

The rSART algorithm exhibits a tendency to reconstruct the most superficial rod locations too close to the surface and to
underestimate the 4, perturbations in deeper voxels. The image value in any voxel should be equal to the absolute Au, there; in
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the case of the images shown in Figure 10, it is necessary to correct for the specific value of the parameter k that was used to
prevent divergence, and for the fact that the observed AR(Ay, = Ur)/AR(Ap, = 0.01y) is ~29.75 instead of 100. When these
corrections are made, the reconstructed Ay, in the most superficial peaks is ~0.136, very close to the theoretically expected value
of 0.125. As the distance of these peaks from the surface is underestimated in the reconstructions and there is a general tendency
for weight to decrease with increasing depth, the contributions of the most superficial rods to the total AR would be overestimated
for most source/detector pairs. It is reasonable to suppose that the rSART algorithm compensated for this by underestimating Az,
in deeper-lying voxels.

A possible explanation that comes readily to mind for the errors in detail in the reconstructed images is that a linear
perturbation model is inadequate for modeling the effect on detector responses of perturbations as extensive as those in the target
media considered here. According to this argument, use of weight functions calculated for the reference medium is analogous to
a first-order Born approximation; production of highly accurate reconstructed images ultimately entails resorting to an iterative
process in which each successive image is taken as a new reference medium estimate, a corresponding set of weight functions is
calculated for the new reference, and the image reconstruction problem is repeated. This is a very reasonable suggestion, and
certainly not one to be dismissed out of hand. However, we conclude that other sources of error are more important in explaining
the errors in the images reconstructed from the sets of detector readings perturbations for our six target media. The comparison
of the detector readings generated by Monte Carlo simulations to those computed directly from the model for the weakest
perturbation suggests that the model should be entirely adequate in this case. While inspection of Figure 6 does show that for
almost all source/detector pairs the AR computed by the simulation is less than that computed from the model, consistent with the
known tendency of shadowing of a heterogeneity by itself and by others in its vicinity to reduce AR below the expected value [6],
the nearly parallel behavior of each AR curve and the corresponding model curve is striking. Examination of the AR ratios for
different perturbation magnitudes shows that even though they are smaller than predicted by the model, they have very little
dependence on the location of either source or detector. This would suggest that a qualitatively accurate reconstruction should be
obtained even for the strongest perturbation, with the perturbation magnitude underestimated by about the same factor in each
voxel. However, it is apparent that the reconstruction results are more than just quantitatively inaccurate (Figures 8-10). In light
of the foregoing observations, this should not be primarily due to departures of the true relation between AR and Ax from
linearity.

Other issues that are always of great importance when using a numerical image reconstruction algorithm is the effects of
systematic and random errors in the data on the result, and the effect of such factors as limited numerical precision in the
computational platform used. These effects are frequently amplified as the number of iterations increases. Among the lines to be
pursued in future work will be substitution of “ideal” detector readings computed directly from the linear model for those
generated by simulations or experiment; these “data” will subsequently be corrupted by increasing degrees of systematic and/or
random error. It is hoped that an outcome of these studies may be the development of corrections to apply to results of
reconstructions such as those presented above. Other intended subjects for future studies are development of reconstruction
methods employing time—resolved and time-harmonic data, and simultaneous reconstruction of 4, and 1, (or uy) perturbations.
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