
Signal source separation and localization in the analysis of dynamic 
near–infrared optical tomographic time series 

 
Harry L. Graber∗a, Yaling Peib, Randall L. Barboura,b, 
David K. Johnstonc, Ying Zhengc, John E. Mayhewc 

aDepartment of Pathology, SUNY Downstate Medical Center, 
450 Clarkson Avenue, Brooklyn, NY, USA 11203 

bNIRx Medical Technologies LLC, 15 Cherry Lane, Glen Head, NY, USA 11545 
cDepartment of Psychology, University of Sheffield, Western Bank, Sheffield, UK S10 2TP 

 
 

ABSTRACT 
 

The emerging sub-field of dynamic medical optical tomography shows great potential for conferring significantly 
enhanced early diagnosis and treatment monitoring capabilities upon researchers and clinicians.  In previous reports we 
have showed that adoption of elementary time-series analysis techniques can bring about large improvements in 
localization and contrast in optical tomographic images.  Here we build upon the earlier work, and show that well-
known techniques for extraction and localization of signals embedded in a noisy background, and for deconvolution of 
signal mixtures, also can be successfully applied to the problem of interpreting dynamic optical tomography data sets.  A 
general linear model computation is used for the signal extraction/localization problem, while the deconvolution 
problem is addressed by means of a blind source separation technique extensively reported. 
Keywords:  Medical and biological imaging, pattern recognition and feature extraction, tomographic image processing, 
image analysis 
 
 

1. INTRODUCTION 
 
Practical realization of diffuse optical tomography (DOT) using visible or near-infrared tomographic (NIR) light – 
currently being developed as a diagnostic modality for noninvasive mapping of hemoglobin concentration and oxygen 
saturation in tissue – requires solution of several problems that do not arise for superficially similar modalities such as x-
ray CT imaging.  Chief among these and the first to be recognized [1,2] is that the net signal recorded in any source-
detector channel is a function of some weighted average of optical coefficients within a large volume of tissue that lacks 
well-defined boundaries.  This difficulty was surmounted by means of the image reconstruction techniques (many 
varieties derived from a few basic strategies) that have been developed and implemented during the past ~15 years [3-9].  
More recently it was recognized that the presence of prominent  1 Hz modulations in data from NIR spectroscopic 
(NIRS) tissue function measurements [10] implies that the optical coefficients of tissue fluctuate appreciably on short 
(seconds to minutes) time scales.  In that case it is important that the full set of data used to reconstruct each image be 
taken in a time period sufficiently short that the properties of the target tissue may be regarded as static [11].  
Performance of rapid measurements affords one the opportunity to acquire data for a large series of images in a 
reasonably short time period.  The resulting images then can be post-processed with the same sorts of time-series 
analysis techniques as are used in the interpretation of NIRS [12] or topographic image series [13]; the ability of such 
post-processing to yield temporal feature maps that have contrast and/or spatial resolution superior to those of the 
individual images in the series has been demonstrated [11,14-16].  More important, with regard to clinical applications 
of DOT, is that said temporal features may relate more directly to the health and functional state of the tissue than the 
optical coefficients do [11,14]. 

Among the clinically valuable abilities gained through performance of a rapid time-series measurement is that of 
separately specifying the contribution of each component of the vasculature (arteries, microvessels, veins) to the overall 
temporal fluctuation seen in a given image pixel or source-detector channel.  That is, the use of temporal information 
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allows one to distinguish among structures whose physical size and proximity may be smaller than the spatial resolution 
of a DOT image.  This ability stems from the fact that in the absence of exogenous lumiphores and contrast agents, 
hemoglobin, which ordinarily is present only within the vascular compartment of tissue, is the principal DOT contrast 
agent.  As it is well established that blood vessel diameters and/or flow rates vary with characteristic periods [17], it can 
be expected that the hemoglobin concentration and oxygen saturation also will exhibit fluctuations at these frequencies.  
Finally, the blood vessel types are associated with fluctuations in distinct frequency bands that have little or no overlap 
[18]. 

There is, however, an additional “dimension” for which the problem of resolution must be addressed if optical 
tomography is to achieve the degree of clinical utility that is held out for it.  Namely, any spatiotemporal feature or 
pattern that is revealed by time-series analysis, using either linear [11,14,19] or nonlinear [14,20] approaches, is likely to 
be a mixture of multiple underlying physiological rhythms that are not directly observable [21].  The problem of 
separating, or “unmixing,” detected or reconstructed patterns of fluctuation into their underlying physiological 
components has previously been the subject of significant research efforts in a number of biological and medical fields 
[22-26] (and in many other areas of science as well).  These efforts have resulted in the development of a large corpus of 
useful signal separation methods.  To our knowledge, however, until now there has been no demonstration of their 
applicability in DOT.  The current report supplies clear evidence that the strategies initially developed in other areas can 
be successfully adopted to analysis of DOT data, when the tomographic measurement is performed in a dynamic (i.e., 
time-series) mode; that their use can improve the contrast and spatial resolution of DOT data, while also in some cases 
dramatically reducing the overall computational effort that is required; and that it is reasonable to expect that their 
application can assist in the interpretation of DOT data, improving its clinical usefulness. 

For testing and demonstration purposes, the studies described below were conducted on simulations of DOT 
measurements.  By this means, the experimenters had complete control over the number, size and locations of inclusions 
(which represent blood-vessel cross sections or small pathologies), the form and amplitude of dynamic behavior 
assigned to the optical coefficients of each one, and the data noise-to-signal ratio.  Two analytic strategies, the 
mechanics of which are subsequently described, have been successfully applied to the detector and image data.  The first 
of these, an adaptation of an algorithm first described by Molgedey and Schuster (MSA) [27], is an example of a “data 
driven” analytic strategy.  It seeks to identify the underlying patterns of behavior of which the detected or reconstructed 
time series are mixtures, in the absence of a priori knowledge of them.  As such, it is a type of what have come to be 
called “blind source separation” (BSS) algorithms.  (It is perhaps unfortunate that the term BSS has become established 
in the literature, because no such approach is ever absolutely “blind,” or knowledge-free [28].)  The second, 
complementary, technique employed is an elementary form of General Linear Model (GLM) computation, which is used 
in the present study to identify those locations in the medium where the various modeled dynamic functions are found, 
under the assumption that a priori knowledge of these is available.  That is, GLM is an example of a “model based” 
analytic approach.  (It should be noted that the data-driven/model-based distinction is not absolute.  Intermediate forms 
of both MSA and GLM, in which “weak models” are used to guide the solution to which the methods converge, have 
been described by some of the authors of the current report [29].) 
 
 

2. METHODS 
 

2.1 Structure and Properties of Model Medium 
The target medium explored, shown in Figure 1, is a geometrically simple 2–D structure consisting of an 8–cm circle 
with eight embedded 0.6-cm diameter inclusions.  The absorption (µa) and reduced scattering (µs′) coefficients of the 
light gray background in the Figure were static, with numerical values of µa = 0.06 cm-1 and µs′ = 10 cm-1.  Four time-
varying functions — µa(t)Q, µa(t)C1, µa(t)C2, and µa(t)S — were assigned to the absorption coefficient of pairs of 
inclusions.  That is, four different non-periodic fluctuations were present in the medium simultaneously, with each 
present in two of the eight inclusions. 

The particular functions chosen were easily generated representations of the types of dynamics that are known to 
occur in tissue vascular structures – quasiperiodic (Q(t)), chaotic (C1(t), C2(t)), and stochastic (S(t)) fluctuations  [30].  
Q(t) was generated by adding two sinusoidal functions with incommensurate frequencies.  C1(t) and C2(t) were 
generated by assigning randomly generated initial values to the Hénon equation, xn = 1.0 - 1.4x2

n-1 + 0.3xn-2.  While the 
same equation was used for both cases, by choosing different initial values the two chaotic time series produced are 
uncorrelated.  S(t) was generated by drawing independent samples from a random variable uniformly distributed 
between -1 and +1.  A total of 1000 values were computed for each function.  The residual correlations between the 



finite-length model function pairs are: ρ(Q,C1) = -0.030, ρ(Q,C2) = 0.043, ρ(Q,S) = 0.016, ρ(C1,C2) = 0.101, 
ρ(C1,S) = -0.012, ρ(C2,S) = -0.063.  The range of each time-varying µa function amounted to a  20% fluctuation about 
the mean value of 0.06 cm-1.  Thus the absorptions assigned to the inclusions were computed from the formulas 
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where Q(t) is a quasiperiodic time series, C1(t) and C2(t) are chaotic time series and S(t) is a stochastic time series, and 
the range of each of these four functions includes all values from -1 to +1 (see Ref. [31] for function plots, and Figures 6 
and 8 in Results, below). 
 

Chaotic (Hénon 
attractor): C2 

 
Stochastic: S 

Chaotic (Hénon 
attractor): C1 

 
Quasiperiodic: Q 

0.6 cm 

8 cm 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.  Indicated dynamics were imposed on the inclusions’ µa, which ranged from 0.048 cm-1 to 0.072 cm-1 over 
time.  The remainder of the target had a constant µa of 0.06 cm-1, and the entire target had constant µs = 10 cm-1.  
Black dots denote source/detector locations. 

 
A significant feature of the functions C1(t) and C2(t) is that while their asymptotic (i.e., in the limit as their 

durations increase without bound) cross-correlation function is identically zero, their statistical distributions are exactly 
the same.  The latter fact is shown graphically in Figure 2, where eleven-bin histograms of the 1000-time-point model 
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Fig. 2.  (a) Value-frequency histogram of the temporal model function C1(t); (b) differences between histograms 
of C1(t) and of C2(t) (light gray bars), S(t) (dark gray), and Q(t) (black).  Histograms were generated by dividing 
the full (–1 to +1) range of possible values into eleven equal-sized bins and expressing the number of computed 
function values within each bin as a percentage of the total.  In (b), all 11 light gray bars lie within the band 
defined by the two horizontal dot-dash lines, while 7 of 11 dark gray and 7 of 11 black bars fall outside it. 

function C1(t) and of the frequency differences C2(t) – C1(t), S(t) – C1(t), and Q(t) – C1(t) are plotted.  Taking the C1(t) 
and C2(t) frequencies as the “expected” and “observed” scores, respectively, results in a value of 1.713 for the χ2 



statistic for the comparison between C1(t) and C2(t).  (Reversing the roles of C1(t) and C2(t) gives a slightly lower χ2 
value.)  On the other hand, taking the S(t) and Q(t) frequencies as the “observed” scores results in χ2 = 20.5 and 
χ2 = 48.5, respectively.  That is, the probability that C2(t) has the same distribution as C1(t) is >0.99, while the 
corresponding probabilities for S(t) and Q(t) [i.e., that they were drawn from the same distribution as was C1(t)] are 
~0.025 and <0.001, respectively.  The significance of the statistical close similarity between C1(t) and C2(t) is that this 
represents the very case in which it is most difficult for many of the BSS algorithms, such as independent component 
analysis (ICA) [28], that are commonly employed in attempts to separate distinct dynamic behaviors.  The nearly 
complete success, as shown subsequently, of the PCA-MSA approach at distinguishing them is a testament to that 
method’s power. 
 
2.2 Solution of Forward Problem 
Tomographic data for the simulated tissue models were acquired by using the finite element method to solve the 
diffusion equation with Dirichlet boundary conditions for a DC source [31-33].  For a spatial domain Λ with boundary 
∂Λ, this is represented by the expression 
 

( ) ( ) ( ) ( ) ( ) , ,a sD φ µ φ δ ∇⋅ ∇ − = − − ∈ Λ r r r r r r r                             (2) 
 
where φ(r) is the photon intensity at position r, rs is the position of a DC point source, and D(r) and µa(r) are the 
position-dependent diffusion and absorption coefficients, respectively.  Here the definition used for the diffusion 
coefficient was D(r) = 1/{3[µa(r) + µs′(r)]}, where µs′(r) is the position-dependent reduced scattering coefficient.  
Forward-problem solutions were computed for each of sixteen sources positioned about the target at 22.5° intervals (see 
Fig. 1), with each source located at a depth of 2 mm in from the extended boundary (i.e., within the strip lying between 
the physical and extended boundaries) [31-33].  Intensity values at the same locations were used as detector readings.  
Sets of detector readings were computed for each value of the time-varying optical coefficients in the target’s inclusions.  
These calculations were carried out on a fine, 1,488-element, 789-node, finite element mesh [34].  

Imaging operators were computed, in the manner described in Ref. [35], for each of the 256 source/detector 
channels.  A single set of imaging operators, computed for an 8-cm-diameter homogeneous medium whose properties 
are equal to the temporal mean values of the target, was used for all inverse problem computations.  The same algorithm 
as described in the preceding paragraph was used for the operator computations, but here the medium was discretized 
into a 950-element, 403-node mesh — the same one used for computing solutions to the inverse problem (see 
Subsection 2.4) — that is considerably coarser than that used for the detector readings computations. 

 
2.3 Detector Noise Model 
The robustness of our signal-separation and -localization algorithms to additive detector noise was studied by 
substituting ( ) ( ) (ˆ , ; , ; , ; )s d t s d t n s d tφ φ= + , where at each time point and for each source-detector channel n(s,d;t) is 
independently sampled from a Gaussian distribution with mean zero and a channel-dependent standard deviation, for 
φ(s,d;t) prior to all subsequent image reconstruction, PCA-MSA, or GLM computations.  The manner in which the 
standard deviation of the noise varies with the central angle between source and detector is shown in Figure 3.  

The premise that underlay this measurement noise model was that the noise-to signal ratio is primarily a function of 
source-detector distance (i.e., angle).  Accordingly, the noise-to-signal ratio, as a function of the central angle θ, was 
obtained from the formula N/S = K0 + (K180 – K0)(θ/180˚)β, where K0 is the noise-to-signal ratio at θ = 0˚ (source and 
detector co-located; backscattering), K180 is the noise-to-signal ratio at θ = 180˚ (source and detector on opposite sides of 
the medium; transmission), and β is the exponent that defines the functional form.  For the results presented below, the 
values of K0 and β were always 0.01 and 4, respectively, while K180 was varied over a range from 0.03 to 0.5.  (In Fig. 3, 
the boxed numbers associated with the curves are 100 times K180.) 
 
2.4 Solution of Inverse Problem 
The reconstruction algorithm that was used to generate the results presented below seeks to solve a modified 
perturbation equation whose form is 
 

,r rδ δ⋅W x = Ι                                                                                (3) 
 



 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.  Variation in noise-to-signal (N/S) ratio with central angle between source and detector locations, for cases 
in which (independent, Gaussian) noise was added to all detector readings prior to subsequent analyses.  Modeled 
N/S ratio increases with increasing angle (distance), in agreement with usual experimental or clinical experience. 

 
where δx is the vector of differences between the optical properties  (e.g.,  absorption  and  scattering  (diffusion)  
coefficients) of a target (measured) and a “background” medium, Wr is the weight matrix describing the influence that 
each voxel or element has on the surface detectors for the selected reference medium, and δIr represents a normalized 
difference between detector readings obtained from the target in two distinct states.  The difference between Eq. (3) and 
a standard linear perturbation equation lies in the structure of the right–hand side.  Here we used the previously 
described Normalized Difference Method (NDM) [32], in which the right–hand side of Eq. (3) is defined by 
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In Eq. (4), Ir is the computed detector readings corresponding to a selected reference medium, and I and I0 represent, in 
the examples considered here, the intensity at a specific time point and the time-averaged mean, respectively. 

A truncated singular value decomposition (TSVD) algorithm [33] was used to compute numerical solutions to Eq. 
(3).  The reconstructions were carried out on a finite-element mesh containing 950 elements and 403 nodes (for a total of 
806 unknowns); the same mesh was used at all time points.  The truncation parameter (i.e., number of singular vectors 
retained) was at most 110, while values of 100, 90 and 80 also were used.  The principal reason for adjusting the 
truncation parameter was to determine whether going to lower values could have a beneficial effect on image quality 
when the detector noise-to-signal ratio is high. 

Computations were performed on a Dell Inspiron 7500 laptop computer (Red Hat Linux v. 7.2 O/S).  A time period 
of less than one minute was required for computation of the weight matrix and the subsequent computation of its 
singular values and singular vectors; from the total elapsed time between successive image file writes, it can be deduced 
that after the preceding one-time-only steps were completed, no more than 100 milliseconds was required for each 
image reconstruction. 
 
2.5 General Linear Model 
It is frequently the case that the time courses of parameter fluctuations are known (in the present case because a defined 
medium is the test object; in experimental practice from simultaneous vital-sign measurements, or from simultaneous 
optical tomographic measurements performed at a different anatomical site) or suspected (e.g., the goal of the analysis is 
to determine the extent to which detected time series track the designed time courses of imposed provocations).  These 
ancillary functions are referred to as models, and the degree to which each is present in the time series at each image 
pixel can be quantified.  The mathematical framework within which said quantification is carried out is the general 
linear model (GLM) [36].  Let K be the number of model functions considered, L be the number of recovered absorption 
coefficient time series (i.e., number of detector channels or of image pixels), and N the number of time points.  Then 
according to the GLM, the model functions are related to the recovered time series via  µ = Aβ + ε, where the N×L 
matrix µ contains the L recovered N-point time series of µa values, A is the N×K matrix of model functions, β is a K×L 



matrix of fitting parameters, and ε is a N×L matrix of residual errors.  Solution of the model involves finding that β 
which minimizes ε. 

Any degree and type of interaction among models, and any variety of uni- or multivariate analysis of variance or 
covariance, can be incorporated into the GLM framework [36,37].  The specific GLM code used to generate the results 
presented here, however, performed only a straightforward multiple linear regression computation, finding the numerical 
values of the coefficients affording the best fit of the spatiotemporally varying reconstructed µa(x,y,t) to the previously 
described model functions: µa(x,y,t) = β0(x,y) + β1(x,y)µa(t)Q + β2(x,y)µa(t)C1 + β3(x,y)µa(t)C2 + β4(x,y)µa(t)S. 

At each position and for each coefficient, the t-statistic appropriate for testing the hypothesis that the observed 
coefficient value could be obtained purely by chance is estimated.  The formula employed for computation of the t-
statistic estimate, for the kth model function in the jth image pixel or detector channel is [38]: 

( )
T

1T T T
,k j N K

j j k k

N K t −−

−
≈c β

ε ε c Α Α c
         (5) 

where N – K is the number of degrees of freedom, βj is the jth column of β, εj is the jth column of ε, and ck is the kth 
column of C, a K-row matrix of contrasts [36]; for all computations reported on here, C was simply the K×K identity 
matrix, which is the default value (if ck has, for example, two elements equal to ±1, then GLM will test the significance 
of the sum of or difference between two model functions for µj).  The corresponding p-value, or probability that a value 
of t at least as large as that obtained from Eq. (5) could occur purely by chance, is subsequently computed via the 
formula [39]: 
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where Ix(a,b) is the incomplete beta function [39], the definition of which is Ix(a,b) ≡ 

( ) ( )
111 1

0 0
1 1

x ba at t dt t t−− −− −∫ ∫
1b dt− .  The in-house software package that performs the GLM computations also can 

generate spatial maps of t-values and/or the corresponding p-values. 
 
2.6 Principal Component Analysis – Molgedey-Schuster Algorithm 
As elsewhere described [19], the effect of PCA is to express the function µa(x,y,t) as a sum of products of purely spatial 
and purely temporal basis functions — i.e., ( ) ( ) ( ), , ,a m mm mx y t S x y T tµ α= ∑ , where the number of terms in the 

summation is at most equal to the smaller of N and L — that are mutually orthogonal (i.e., Sm⋅Sn = 0, Tm⋅Tn = 0, when 
m ≠ n) and that account for the largest possible percentage of the spatiotemporal variance in µa(x,y,t), for any 
decomposition of the indicated type and irrespective of the point at which the summation is truncated [36].  In practice, 
we perform PCA  by means of singular value decomposition on the N×L matrix µ: µ = UΣVT [40].  As N > L in our 
dynamic DOT detector and image sets, the dimensions of the factors on the right-hand side of the preceding equation are 
N×L for U and L×L for both Σ and V.  The main-diagonal elements of Σ are the non-zero singular values σl of µ, and are 
conventionally arranged so that σ1 ≥ σ2 ≥ … ≥ σL.  The columns of U and V are the normalized eigenvectors of µµT and 
µTµ, respectively, with all eigenvectors corresponding to σl = 0 excluded.  In practice, eigenvectors for which 
0 < σl << σ1 typically also are excluded.  Then the dimensions of U, Σ and V become N×L′, L′×L′ and L×L′, respectively, 
where L′ is at most equal to L and frequently L′ << L.  If each column of µ is mean-subtracted prior to the SVD 
computation, then it follows that the SVD result is equivalent to the previously reported procedure [41] of finding the 
eigenvectors of µ’s covariance matrix and then projecting the original set of time series onto each eigenvector in turn. 

An important caveat is that there is no guarantee that a one-to-one correspondence exists between a set of principal 
components and the set of physiological processes that gave rise to the observed spatiotemporal variability of µa(x,y,t).  
If, for example, two or more sources of variability have nearly the same variance, PCA cannot separate them [41], and 
the mathematical solution produced by the SVD computation could be any linear combination of the underlying 
functions.  In many biological contexts, however, there are substantive grounds for expecting that the physiological 
processes that ultimately generate the observed spatiotemporal variability are not only orthogonal, but are statistically 
independent [42].  Phenomenologically, independence means that knowledge of one process, no matter how perfect, 
gives one no information whatever about the others [28].  Mathematically, the cross-correlation of two independent 
functions (e.g., sinusoids of different frequencies) is equal to zero for all values of the time-lag parameter τ, while 



orthogonal functions (e.g., sint and cost) do not necessarily have zero cross-correlation for any time lag other than τ = 0 
[28].  Thus the two-part premise from which we proceed is: 1) U = PM, where U (N×L′) is the matrix of normalized 
time series that results from applying PCA to µ, P (N×L′) is the normalized underlying physiological temporal functions 
of interest, and M (L′×L′) is the mixing matrix, for which the element in row i, column j is the contribution of the ith 
function of interest to the jth principal component (PC); 2) the expectation value for the cross-correlation between any 
two columns of P is zero for all values of τ.  From the latter it follows that PTP = I(L′×L′), which further implies that M is 
an orthogonal matrix. 

Because M is unknown in practice, it is not possible to “unmix” the PCs by computing P = UMT (the inverse of an 
orthogonal matrix is equal to its transpose [40]).  Instead, we seek an orthogonal matrix W such that the columns of 
P′ = UW are uncorrelated at L′ distinct non-zero values of τ, and take P′ as our working estimate of P.  This procedure 
can be called extended temporal decorrelation (ETD) (by analogy with the extended spatial decorrelation technique 
described by Stetter et al. [41], who operated upon the spatial parts of the PCs of their data).  Several strategies for 
selecting appropriate time lags to use in an ETD computation have been proposed [43]; in generating the results 
presented in the current report, we have followed Zheng et al. [29] and used the earliest time at which each PC has a 
negative local minimum in its autocorrelation function. 

The τ = 0 cross-correlations between all pairs of columns of P′ are found by computing the matrix product P′TP′ 
(L′×L′), the ijth element of which is the correlation between the ith and jth time series.  The cross-correlations for a time 
lag of n time steps are the elements of P′TSnP′ = WT(UTSnU)W, where Sn (N×N) is the n-step shift matrix.  The 
definition for Sn is (Sn)ij = δi

j+n, 1 ≤ i,j ≤ N, where δi
j+n is the Kronecker delta function (Ref. [40], §5.10); it is a simple 

matter to show that Sn = (S1)n, and that S+n and S-n are a pseudoinverse pair [40].  The original formulation of the ETD 
concept presented by Molgedey and Schuster [27] made use of the symmetric shift matrix Sn

* = S+n + S-n, in which case 
WT(UTSn

*U)W is a diagonal matrix when n is one of the time-lag values for which the columns of P′ are uncorrelated.  
Then W can be found by solving the eigenvalue problem (UTSn

*U)W = WD; the preceding formula generalizes to the 
case of decorrelations at multiple simultaneous time lags, as it is evident that 

.   However, empirical studies performed at Sheffield have led 

to the conclusion that for the analysis of experimental data, which invariably contain noise, superior results are obtained 
when unsymmetric shift matrices are used.  In that case, 

( ) ( )T T T T∗ ∗  = = ∑ ∑ ∑i in ni i i
W U S U W W U S U W D D≡i

( )T T
ini

∗ 
 ∑W U S U W  is not a diagonal matrix, and a more 

computation-intensive iterative cost-function minimization procedure is required for finding W.  In generating the 
results presented below, we have used a constant power constraint [29], i.e., the solver attempted to find that W which 
minimized the cost function 

( ) ( ) ( )( )2

1 0
, ,

L L L

i j n
i j i n

C p t pρ τ
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= > =

= +∑∑∑W t              (7) 

where ρ(a,b)2 is the square of the correlation between a and b, and τn is the nth time-lag value, with τ0 = 0.  It is 
noteworthy that the minimization algorithm does not force orthogonality upon W, but that the W produced typically is 
nearly orthogonal nevertheless. 

It also should be noted that using an iterative procedure to solve for W allows us to incorporate a priori knowledge 
of the form of one or more time series in P′ into the computation, in a straightforward manner.  As discussed in 
Subsection 2.5 above, time-series optical tomographic studies frequently involve collection of such ancillary 
information.  Then a penalty term equal to one minus the square of the correlation between a model function and the 
first column of P′ can be added to the cost function in Eq. (7), and Ws corresponding to P′s whose first columns 
resemble the model function would be selected for.  (A different way of augmenting the cost function with a priori 
information is described in Ref. [29].)  However, no use was made of this capability in generating any of the results 
shown in the current report. 
 

3. RESULTS 
 
3.1 PCA-MSA Applied to Noise-free Data 
PCA was carried out on the 1000-point time series of absorption-coefficient images, µa(x,y,t), reconstructed from the 
noise-free sets of detector readings corresponding to the successive states of the target medium’s dynamic inclusions.  
As seen in Figure 4, the first four singular values are at least two orders of magnitude larger than all successive ones 
(Fig 4(a)), which  means that essentially  100% of all spatiotemporal variability in the µa(x,y,t)  time series resides in just 
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Table 1.  Percentage of Variability Attributable to the Temporal Model F
Factors of PCs Computed from Noise-Free Reconstructed 

 PC1 (Fig. 5(d)) PC2 (Fig. 5(e)) PC3 (Fig. 5(f)) 

µa(t)C1 47.2 10.8 0.534 

µa(t)S 12.9 86.3 0.149 

µa(t)C2 6.53 3.86 88.4 

µa(t)Q 34.1 1.84 5.33 

 
of the PC time series reveals suggestions of the model functions µa(t)S, µa(t)C2, a
respectively (see Figs. 6 and 7), but it is evident that PCA does not isolate them. 
Subsequently, ETD was performed by applying the MSA to the first four PCs of th
The resulting unmixed patterns of spatiotemporal dynamics are shown in Figure 6. 
spatial portions (Fig. 6(a)-(c), (g)) to Fig. 1 shows that each pair of dynamic inclu
and is almost completely isolated from the others.  The temporal parts (Fig. 6(d)-(f)
seen to reproduce the four isolated modeled dynamic functions (see Ref. [31] for ti
perfectly.  The preceding assertion is corroborated by the coefficients of determina
the model functions, which are given in Table 2. 

The preceding result, while nearly ideal, has two limitations.  The first is tha
performed until after the complete µa(x,y,t) time series was reconstructed.  Th
suggests, however, that it might be possible to obtain a result comparable to that in 
four images, thereby achieving a 99.6% data reduction.  (This lowering of computa
can be important.  For example, it could allow us to use reconstruction algorithms
(CGD) instead of SVD-based one used here, without having to give up the high d
SVD [34].  While the CGD strategy is more computation-intensive than SVD, it c
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. 5.  Spatial [(a)-(c), (g)] and temporal 
[(d)-(f), (h)] factors of the first four PCs 
(i.e., the components corresponding to 
the four largest singular values) of the 
image time series µa(x,y,t) reconstructed 
from noise-free computed detector data.  
For enhanced readability, only the first 
200 of the 1000 time points in the 
temporal factors are shown. 
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Table 2.  Percentage of Variability Attributable to the Temporal Model F
Factors of MS Components Computed from Noise-Free Reconst

 MSC1 (Fig. 6(d)) MSC2 (Fig. 6(e)) MSC3 (Fig. 6(f))

µa(t)C1 97.9 6.0×10-3 2.0 

µa(t)S 5.4×10-4 99.8 0.14 

µa(t)C2 0.14 5.9×10-2 99.7 

µa(t)Q 2.3×10-5 9.5×10-2 3.3×10-2 
  
other types of a priori knowledge more easily [33].)  Second and more fundamenta
of noise to the detector data produces the situation in which the noise var
function variance in many regions of the image, resulting in a singular value spectr
larger percentage of the spatiotemporal variability than one or more models.  In su
loses the classical “staircase” appearance seen in Fig. 4(a), it can be difficult to imp
which any of the model functions can be isolated. 

Both above-mentioned limitations were addressed, and resolved with differen
PCA-MSA operations directly to the detector readings and subsequently reconstru
PC time series.  Note that the PCA and image reconstruction operations are no
operation is a nontrivial consideration.  Therefore it is necessary to determine whet
the target medium can be recovered, when the data-reduction and BSS operations
same degree of accuracy as is seen in Fig. 6 above.  Accordingly, PCA was carried
noise-free sets of detector readings corresponding to the successive states of the 
The resulting spectrum of singular values is, as seen in Figure 7, qualitatively si
series of reconstructed images (Fig. 4).  Because it is clear from Fig. 7 that the firs
of the spatiotemporal variability in the data set, only they were selected for fu
“spatial” (row=source position index, column=detector position index) and tempora
Fig. 6.  Spatial [(a)-(c), (g)] and temporal 
[(d)-(f), (h)] factors of the MS 
components derived from the four PCs 
shown in Fig. 5.  Maps show the spatial 
distributions of the dynamic functions (a) 
µa(t)C1, (b) µa(t)S, (c) µa(t)C2, and (g) 
µa(t)Q; (d)-(f) and (h), respectively,  are 
the corresponding time series.  For 
enhanced readability, only the first 200 
of the 1000 time points in the temporal 
factors are shown. 
unctions, in Temporal 
ructed Images  
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Fig. 7.  (a) Singular value spectrum obtained by carrying out PCA on the time series of noise-free computed 
detector data; the σl are arranged in order of decreasing magnitude.  (b) Cumulative distribution of the singular 
values. 
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ponents, shown in Figure 8, demonstrate that each of the four model functions is present in the reduced data set, and that 
each  (Fig. 8(d)-(f), (h), and Table 3) has been completely isolated.  In the “spatial” maps (Fig. 8(a)-(c), (g)), each subset 
of pixels running parallel to the main diagonal corresponds to channels with a fixed angle between source and detector, 
while each row corresponds to a fixed source location and each column to a fixed detector location.  Then careful 
inspection of these maps also gives insight into the geometrical structure of target medium: the patterns seen in Fig. 8(a) 
and 8(g) suggest the presence of a dynamic structure lying near the center of the medium, while those in 8(b) and 8(c) 
each suggest the presence of localized structures lying near the surface, in the vicinity of one or more particular 
 

(a)                                                               (b)                                                           (c) 

0 
 
 
 
 
-0.3 
 
 
 
 
-0.6 

16

12

8

4

      4           8         12         16 

0.5 
 
 
 
0.3 
 
 
 
0.1 
 
0 

16 
 
 

12 
 
 

8 
 
 

4 

      4           8         12         16 

 

 
 
 
 
 
 
 
 
 

0.05 
 
 
 

0 
 
 
 

-0.05 
0                      100                    2000                      100                    200 

0.04 
 
 

0 
 
 
 
 

-0.06  

 
0.04

0

-0.06

 
 
 
 
 
 
 
 

 0                      100                    200
 (d)                                                             (e)                                                               (f)  



 

0

4

8

0 
 
 
 
 

4 
 
 
 
 

8 
0                 4                    8

 
0 
 
 
 
 
-0.002 
 
 
 
 
-0.004 

0                     100                    200

0.06 
 
 
 

0 
 
 
 

-0.06 

0 
 
 
 
 

4 
 
 
 
 

8 
0                    4                    8 

 
0.003 
 
 
0.002 
 
 
0.001 
 
 
0 

 
 
 
 

 

 

 

 

 
 

(g)                                                                    (h)

16 
 
 

12 
 
 

8 
 
 

4 

0 
 
 
-0.1 
 
 
-0.2 
 
 
-0.3 

      4           8         12         16 

 
 
 

 
 
 

source/detector positions.  Further, the pattern in 8(c) clearly suggests that the co
two widely separated near-surface locations.  (Another point worth noting is t
degeneracy in PCA-MSA computation results such as those in Fig. 8, because the a
temporal factors can be changed without affecting their product.  Consequently,
observation that the maps in Fig. 8(a), (c) and (g) have one background color and th
 

Table 3.  Percentage of Variability Attributable to the Temporal Model Funct
of MS Components Computed from Noise-Free Detector

 MSC1 (Fig. 8(d)) MSC2 (Fig. 8(e)) MSC3 (Fig. 8(f))

µa(t)C1 94.5 1.3×10-3 5.5 

µa(t)S 5.7×10-4 99.9 0.12 

µa(t)C2 1.8 8.1×10-2 98.1 

µa(t)Q 1.7×10-5 4.2×10-2 5.9×10-2 

Images were reconstructed using the spatial parts of the four MS components s
images obtained are shown in Figure 9.  Comparison of these maps to Fig. (1
inclusions is accurately located and sized, and is almost completely isolated from 
6(a)-(c) and (g) shows that the order of application of the PCA-MSA and image
noticeably affect the quality of the final result. 

 
3.2 PCA-MSA Applied to Noisy Data 
The addition of a small amount of noise (see curve labeled “3%” in Fig. 3) to th
value spectrum, qualitatively and quantitatively, to that shown in Figure 10.  Th
result and that in Fig. 7 are that the former has only three PCs containing spa
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Fig. 8.  Spatial [(a)-(c), (g)] and tem-
poral [(d)-(f), (h)] factors of the MS
components derived from the first four
PCs of the noise-free detector data time
series.  Maps show the spatial distri-
butions of the dynamic functions (a)
µa(t)C1, (b) µa(t)S, (c) µa(t)C2, and (g)
µa(t)Q; (d)-(f) and (h), respectively, are
the corresponding time series. 
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Fig. 9.  Images reconstructed from the “spatial” part of the four MS components 
shown in Fig. 8.  Maps show the spatial distributions of the dynamic functions (a) 
µa(t)C1, (b) µa(t)S, (c) µa(t)C2, and (d) µa(t)Q. 

(a)                                                                                              (b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10.  (a) Singular value spectrum obtained by carrying out PCA on the time series of computed detector data 
contaminated with a low level of additive Gaussian noise; the σl are arranged in order of decreasing magnitude.  
(b) Cumulative distribution of the singular values. 

primarily noise, and that, because of the added noise, these three components account for little more than half of all the 
variability in the data set.  Applying the MSA to the first three PCs of the noisy detector data produces the result shown 
in Figure 11.  The “spatial” maps (Fig. 11(a)-(c)) indicate that the first effect that noise has on the ability to separate the 
model functions is that the two associated with the deep inclusions become indistinguishable.  This is not surprising, 
because the temporal variations caused by the deep inclusions is distributed over all source/detector channels and so are 
more thoroughly disrupted by the additive noise than are patterns of variation that are seen by only a few channels, and 
because the amplitude of the detector variations that they create is small in all channels.  The correlations between the 
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Fig. 11.  Spatial [(a)-(c)] and temporal [(d)-(f)] factors of the MS components derived from the first three PCs of 
the noise-corrupted detector data time series.  Maps show the spatial distributions of the dynamic functions (a) 
µa(t)C1+µa(t)Q, (b) µa(t)S, and (c) µa(t)C2; (d)-(f) are the corresponding time series. 

The correlations between the four temporal model functions and the temporal parts of the MS components in Fig. 11(d)-
(f) are given in Table 4.  These confirm that two of the model functions are effectively isolated, while the remaining two 
are combined in a single component. 
 

Table 4. Percentage of Variability Attributable to the Temporal Model Functions, in Temporal 
Factors of MS Components Computed from 3% Noise-Added Detector Data 

 MSC1 (Fig. 11(d)) MSC2 (Fig. 11(e)) MSC3 (Fig. 11(f)) 

µa(t)C1 50.4 1.11 1.07 

µa(t)S 0.960 95.9 5.99×10-4 

µa(t)C2 0.228 1.98×10-2 94.7 

µa(t)Q 39.9 3.04×10-2 0.127 

0   

The images reconstructed from the data in Fig. 11(a)-(c) are shown in Figure 12, and again show that the addition 
of a small amount of noise to the detector data limits our ability to effect a separation of the model functions.  Other 
results not shown have led to the determination that when the degree of added noise is 10% or higher (see Fig. 3), then 
no accurate spatial or temporal information about the target medium can be extracted from the detector data when the 
maimally “blind” BSS method described here is used.  It can be expected that real experimental data will exhibit less 
sensitivity to noise than he model used here.  Because of the large degree of spectral overlap between the added noise 
and µa(t)C1, µa(t)C2, and µa(t)S, and because of the small number of samples per cycle (<10) in µa(t)Q, the noise sensitivity 
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ig. 12.  Images reconstructed from the “spatial” part of the three MS components shown in Fig. 11.  Maps show 
e spatial distributions of the dynamic functions (a) µa(t)C1+µa(t)Q, (b) µa(t)S, and (c) µa(t)C2. 



of these model functions is predictably high.  That sensitivity, however, makes them particularly useful test functions for 
algorithms that purport to make signal separation more robust. 

 
3.3 GLM; Impact of Detector Noise 
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Two basic strategies for decreasing the sensitivity to noise currently are available to us, both based upon incorporation 
of a priori knowledge regarding temporal patterns of fluctuations in the medium’s properties into the analysis.  (As 
discussed in Subsection 2.4 above, it can be expected that information of this type will typically be available in a 
dynamic optical tomographic measurement.)  One is to modify the MSA cost function so that components whose 
temporal parts resemble the model functions are selected for.  The other, which was used for the current report, is to 
reconstruct a complete time series of images, then use the GLM for image post-processing.  While the latter option is 
more computation-intensive, it has the advantage of producing useful statistical parameter maps that assist in evaluating 
the reliability of the images of temporal models’ spatial distributions.  An example of this is given in Figure 13, in which 
the result of applying GLM to the noise-free reconstructed µa(x,y,t) is shown.  Here the best-fit parameters 
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Fig. 13.  (a)-(c), (g): Maps of best-fit 
parameters βi(x,y), i = 1,2,3,4, obtained 
by carrying out a GLM analysis on the 
noise-free reconstructed µa(x,y,t).  (d)-
(f), (h): Maps of statistic ti(x,y), 
i = 1,2,3,4.  Correspondences between 
plotted data and model functions are (a) 
& (d), µa(t)Q; (b) & (e), µa(t)C1; (c) & (f), 
µa(t)C2; and (g) & (h), µa(t)S. 

(g)                                                             (h) 



βi(x,y), i = 1,2,3,4, are plotted in Fig. 13(a), (b), (c) and (g).  Corresponding maps of the statistical parameter ti(x,y), 
i = 1,2,3,4, computed from Eq. (5), are plotted in Fig. 13(d), (e), (f) and (h).  The latter are spatial maps of the t-statistic 
appropriate for testing the hypothesis that values of βi(x,y) at least as large as those seen in the former set of images 
could occur purely by chance.  While the information in Figs. 6 and 8 is of the same quality as that seen in the βi(x,y) 
maps of Fig. 13, the PCA-MSA computation does not produce estimates of ti(x,y).  The greater robustness of the GLM 
approach to noise is demonstrated by the data plotted in Figure 14, for which the GLM analysis was carried out on the 
µa(x,y,t) time series reconstructed from detector data corrupted with 3% (see Figure 3) additive white noise; this is the 
same level of noise that produced the results shown in Figs. 10-12.  GLM, it is seen, retains the ability to correctly locate 
and size the inclusions associated with each of the four model functions.  The third column in Fig. 14 contains the same 
information as the second, but in a different form; these are maps of pi(x,y), i = 1,2,3,4, the position-dependent 
probability that values of βi at least as large as those seen in the first row could occur purely by chance.  Comparison of 
Fig. 14 to Fig. 13 shows further that the effect of a low level of detector noise on the best-fit parameter maps is hardly 
noticeable.  Noise has a much larger effect on the t-statistic maps, but the values obtained still correspond to essentially 
zero probability of chance occurrence of βis at least as large as those in Fig. 14, within all eight dynamic inclusions. 
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ig. 14.  First column [(a), (d), (g), (j)] – maps of best-fit parameters βi(x,y), i = 1,2,3,4, obtained by carrying out a 
LM analysis on the 3%-noise-added reconstructed µa(x,y,t).  Second column [(b), (e), (h), (k)] – maps of statistic 

(x,y), i = 1,2,3,4.  Third column [(c), (f), (i), (l)] – maps of statistic pi(x,y), i = 1,2,3,4.  Reading from top to 
ottom, in any column, plotted data correspond to the model functions µa(t)Q, µa(t)C1, µa(t)C2, and µa(t)S, 
spectively. 

ogressively increasing the noise-to-signal ratio of the detector data, we have demonstrated that the GLM 
e have used is highly robust.  This can be seen by inspection of the results plotted in Figure 15, for which the 
me series was reconstructed from detector data corrupted with 50% (see Figure 3) additive white noise.  It is 
ven in this extreme case, while significant distortions occur in the spatial distribution of each model function, 
ce and general location of each one is correctly identified, with high statistical significance. 
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(j)                                                                (k)                                                              (l
ig. 15.  First column [(a), (d), (g), (j)] – maps of best-fit parameters βi(x,y), i = 1,2,3,4, obtained by carrying out a 
LM analysis on the 50%-noise-added reconstructed µa(x,y,t).  Second column [(b), (e), (h), (k)] – maps of 

tatistic ti(x,y), i = 1,2,3,4.  Third column [(c), (f), (i), (l)] – maps of statistic pi(x,y), i = 1,2,3,4.  Reading from left 
 right, in either row, plotted data correspond to the model functions µa(t)Q, µa(t)C1, µa(t)C2, and µa(t)S, 
spectively.  Small dotted circles in first column maps indicate actual locations and sizes of the inclusions. 

4. DISCUSSION 

thors of the current report have, in recent years, emphasized the use of dynamic optical tomography for 
 medical imaging [11,14-16,19,20,31-33].  This interest is based on: 1) knowledge of a number of disease 
 in which structural derangements of microvessels occur, but these are clinically “silent” until irreparable 
truction has already taken place; 2) the logical near-necessity that in the development of almost any disease 
ere is an incipient phase in which the behavior (i.e., dynamics) of cells or cell assemblies becomes abnormal 
e development of any macroscopic anatomical abnormality; 3) empirical observations of large, characteristic, 
table changes in the measured optical tomographic signal occurring in response to mild physiological 
n.  It is important to recognize that the indetectibility issue that arises in connection with the first two of  the 

 points  is a problem of technology, not of physics or biology.   All of the tools presently in clinical use for 
y, whether invasive or not, are either intrinsically insensitive to the relevant functional or microanatomical 
a, or do not possess spatial and/or temporal resolution high enough to enable their detection.  The third 
d point has led us to hypothesize that dynamic optical tomography may be the technology best suited to 
 these difficulties. 
etation of the detector and image data produced by dynamic optical tomography studies will, however, require 
pment of an analytic capability for partitioning the observed dynamics between vascular and nonvascular 
d for assigning the former to influences of the various humoral, autonomic, and local metabolic mechanisms 
bute to temporal fluctuations in blood volume and blood oxygenation.  Likewise, a capability for partitioning 
ed dynamics into factors coordinated with and independent of imposed provocations, and for accurately 



quantifying the former even when they account for only a small fraction of the total variability, is needed.  Remarkably 
similar problems are encountered in other areas of research on noninvasive physiological monitoring, such as 
interpretation of electroencephalographic (EEG) and functional magnetic resonance imaging (fMRI) data [22,24].  It is 
perhaps ironic that in these latter fields the vascular contributions to the total signal variability usually is part of the 
noise to be filtered out, leaving behind only the small effects of local neuronal activity [29,41].  Even so, the results 
presented above have demonstrated that the same mathematical tools frequently used for signal separation and 
identification in EEG and fMRI studies are potentially useful in analyzing the vascular responses measured via dynamic 
optical tomography as well. 

The examples, presented above, of results obtained when the Molgedey-Schuster algorithm was used to perform 
blind source separation show that the MSA can separate mixtures of independent temporal functions, provided that the 
signal-to-noise ratio of the data is sufficiently high.  This ability extends to the case of distinguishing two behaviors with 
identical histograms, which alternative BSS strategies such as ICA cannot accomplish.  While the threshold level for 
acceptable noise reported here might seem low (depending on the application, it is not, in fact, unrealistic), we reiterate 
that the specific functions that were used as temporal models in this study confer a predictably high degree of noise 
sensitivity on the computations.  It can be expected that the MSA will prove more robust to detector noise when the goal 
is to effect BSS of physiological rhythms that one would expect to find in real data. 

A more important point with regard to the impact of noise, however, is that it can be effectively countered through 
the incorporation into the MSA cost function of a priori information, also called weak models, derived from ancillary 
measurements or from the design time-course of experimental provocations, as explained in Subsection 2.6 above.  This 
we infer from the experience that some of the current report’s authors have amassed in using the algorithm to analyze 
topographic optical image data [29].  Significantly, these successes, and others obtained without use of weak models 
[41], have occurred notwithstanding the fact that the statistical independence of the dynamic behaviors whose mixtures 
we observe likely will not be absolute.  This further suggests that ETD-based algorithms not sensitive to small violations 
of their underlying theoretical assumptions.  Thus, while we certainly are mindful of the possibility that use of these 
techniques can produce time series just as thoroughly mixed as the original data if the unobservable behaviors do not 
possess the independence property, we are not overly concerned by it.   

The GLM computations reported on here essentially are a way of attempting to answer the questions: 1) “Where, and 
with what amplitude, are known temporal patterns present in the medium under study?” and 2) “How much confidence 
can we have in our answer to the first question?”  (The PCA-MSA method, by contrast, essentially is an attempt to 
answer the complementary question “What are the spatiotemporal patterns of behavior present in the medium?”)  The 
results presented here indicate that these two questions can be usefully answered even when the fraction of overall 
variability in the image time series that is associated with optical parameter fluctuations in the medium is comparable to 
the fraction that results from detector noise.  It can reasonably be projected that adoption of this technique as a standard 
component of data analysis for dynamic optical tomographic data will allow practitioners to achieve spatial resolution at 
least as good as that obtained with modalities such as functional MRI, while retaining the much higher temporal 
resolution that has previously been reported [14-16,19,20]. 
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