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 ABSTRACT 

 
The utility of optical tomography as a static imaging modality is limited by its intrinsically low spatial resolution and 
quantitative accuracy.  When applied to dynamic measurements, however, optical imaging methods have the potential to 
assess tissue function as revealed by temporal variations in tissue optical properties.  These variations are a consequence of 
vascular hemodynamic processes, which are known to exhibit considerable spatiotemporal heterogeneity.  In this report we 
provide evidence, from simulation, that complex dynamic behavior in optical coefficients occurring in localized regions in 
highly scattering media can be accurately characterized by the method of dynamic optical tomography, even in the limiting 
case of spatiotemporally coincident behavior.  
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1. INTRODUCTION 
 
Assessment of tissue function by noninvasive methods is playing an increasingly important role in the detection and 
management of disease processes.  One measure of significance is the monitoring of hemoglobin states.  These can be studied 
continuously and noninvasively with near infrared (NIR) optical methods.  Many groups are attempting to apply these 
methods in a tomographic imaging mode for the purpose of studying large tissue structures.  Thus far, however, such efforts 
have met with limited success.  One concern is the spatial resolution, which most investigators report as being on the order of 
0.5 cm at best.  How much of this is due to fundamental limits attributable to scattering, and how much to limits in 
methodology, is unclear.  Regardless, given the resolution of alternative imaging methods, the practical utility of spatial maps 
having such resolution seem limited.  It is our view, however, that the real value of imaging large tissue structures with NIR 
light lies in having superior performance not in the spatial domain, but rather in the time domain.   

Measures that provide information regarding the temporal properties of hemoglobin states in tissue (i.e., blood volume, blood 
oxygenation) are commonly performed and have substantial value.  For thin structures (e.g., fingers), optical methods in the 
form of pulse oximetry and photoplethysmography are used to measure arterial oxygenation levels and blood volume 
changes, respectively.  For large tissues, the latter is often measured using pneumoplethysmographic methods in the form of 
pulse volume recording.  In each case, the methodology employed provides a spatially integrated, time–varying signal.   

A key value to performing repeated, rapid measurements using NIR optical methods is that one can isolate signals unique to 
the vascular compartment. Significantly, features of the vascular rhythms, which include the cardiac (~1 Hz – ~2 Hz), 
respiratory (~0.1 Hz – ~0.5 Hz) and vasomotor (~0.04 Hz – ~0.15 Hz) frequency ranges, are known to reflect critical 
physiological functions and often serve as markers for disease.  For instance, a reduced amplitude in the cardiac frequency 
band, when observed distal to areas having more normal values in pulse volume recordings, is a reliable indicator of arterial 
stenosis between the two measuring sites.  In situations of this type, we believe that the ability to localize such events on the 
basis of their temporal signatures, without the need for contrast agents, and with a spatial resolution of that currently 
achievable by optical tomography, could have substantial practical value.  In addition to pathologies associated with the 
principal arteries, it is likely that many other practical applications could be found from studies focused on the venous and 
microcirculatory branches of the vascular tree.  In fact, features attributable to the principal structures of the vascular tree are 
readily identifiable owing to their distinct temporal properties.  For instance, detection of a beat frequency in the periphery 
equal to the rate of ventricular contraction can be reliably taken as originating from arterial structures.  Similar associations 
are well known between the respiratory frequency and venous structures, and vasomotor frequencies and the microvessels.   



The existence of distinct frequency ranges in the vascular response, the deep penetrating power of NIR photons, and the 
relative homogeneity of chromophores that absorb light at these wavelengths in tissue is a most useful fortuitous 
combination.  Whereas the value of optical– or hemodynamic–parameter maps may be limited as a consequence of their 
modest spatial resolution, it is our view that similar maps that encode temporal signatures, which serve to define distinct 
functional properties of the vasculature and its interaction with the surrounding tissues, will likely have substantial value.  It 
is worth emphasizing that this information is obtainable without the use of contrast agents.  The contrast mechanism is the 
natural temporal variability of the hemoglobin signal itself. 

Recently we have begun to explore this promising territory.  Our approach comprises three principal efforts.  First, we 
recognize the need to have available a well–engineered, yet flexible, data collection platform suitable for examining the 
temporal variability of vasculature properties in large tissue structures.  The accompanying report by Schmitz et al.1 
summarizes our latest work in this area.  Second, we have sought to improve on the stability and speed of the numerical 
methods used for image reconstruction.  The report by Pei et al.2 describes a new algorithm we have developed that 
apparently is effective in minimizing inter–parameter cross–talk using DC measurement data.  Third, we have focused our 
attention on characterizing the accuracy with which temporal information attributable to dynamic processes can be identified 
in reconstructed spatial maps obtained using the experimental and numerical methods we have developed.3–6   

Motivating our design of these studies has been the considerable literature indicating that particular forms of temporal 
variability may have significant diagnostic and therapeutic implications.  Specifically, we are referring to dynamic states that 
governed by chaotic nonlinear processes.  This behavior is characterized by the property of “sensitive dependence on initial 
conditions,”7 and is occurrence in biology appears pervasive.  It is believed that this behavior confers an adaptive advantage, 
as it allows for large effects with the expenditure of only a small amount of energy.  This property, widely observed in natural 
systems, has become known as the “butterfly effect,” in keeping with the idea that the “flap of a butterfly’s wing in Brazil” 
could, at least in theory, “cause a tornado in Texas.”8   

The occurrence of chaotic phenomena in biology may also have important implications for therapy.  Some years ago, Glass 
and Mackey proposed that many diseases are characterized by abnormal temporal organization in the control of normal 
physiological processes, and they coined the term “dynamical diseases” to refer to conditions of this type.9 It has been 
suggested that such behaviors can have important implications for the approach taken in many pharmacological interventions.  
The idea here is that rather than basing drug administration regimens simply on the goal of achieving a target steady–state 
concentration, the time course of administration may also be critical.  For example, as pointed out by Griffith,8 the 
cardiovascular response of two patients to administration of a drug such as verapamil may be very different, and may even 
differ in the same patient depending the day it is administered. 

One model of dynamic behavior we have considered is the occurrence of spatiotemporally coincident behavior.  This refers to 
states wherein two or more time–varying processes are occurring at the same time and location.  Certainly, such behavior can 
be expected in tissue.  For instance, temporal fluctuations in tissue blood volume at any one site need not parallel that of 
blood oxygenation.  Similarly, the variability in the tissue optical absorption coefficient need not follow changes in light 
scattering. 

In this report we have explored our ability to accurately characterize complex dynamic behavior in dense scattering media as 
a model of tissue, in the limiting case in which two different processes are spatially and temporally coincident.  In particular, 
we have sought a further test of the fidelity with which the normalized–constraint method reported by Pei et al. (see 
accompanying report)2 can simultaneously distinguish perturbations in absorption and diffusion coefficients when both 
exhibit different complex temporally varying behaviors.  Our test model considered two included objects, each of which had 
two distinct complex time–varying functions assigned to it, one corresponding to its absorption coefficient and the other to its 
scattering coefficient.  Results obtained add to the accumulating evidence that the method of dynamic optical tomography is 
capable of accurately characterizing complex dynamic states in highly scattering media. 

2. METHODS 

2.1 Spatiotemporal properties of target medium 

The target medium, as shown in Figure 1, is a geometrically simple 2–D structure consisting of an 8–cm circle with two 
embedded 1–cm diameter inclusions.  The absorption (µa) and reduced scattering (µs�) coefficients of the light grey 
background in the Figure were static, while four time–varying functions — µa(l,t), µs�(l,t), µa(r,t), and µs�(r,t), where l and r 
respectively denote the left–hand (dark grey region in Figure 1) and right–hand (black region in Figure 1) — were assigned to 
the optical coefficients in the inclusions.  That is, four different aperiodic fluctuations were present in the medium 



simultaneously, with two of the four spatially coincident in each inclusion.  The 
static background values of µa and µs� are indicated in Figure 1, while the ranges of 
coefficient values and the types of temporal fluctuation modeled are specified in 
Table 1, and plots, rescaled to range from -1 to +1, showing the first two hundred 
points of the four time courses are shown in Figure 2. The ranges indicated for µa 
and µs′ in Table 1 represent 20% fluctuations about mean values of 0.12 cm-1 and 15 
cm-1, respectively.  The quasiperiodic time series for µa(l,t) was generated by adding 
two sinusoidal functions with incommensurate frequencies,10 then computing one 
thousand function values at regular spaced time intervals.  Chaotic time series were 
generated for µs�(l,t) and µa(r,t) by assigning randomly generated initial values to the 
Hénon equation11 and computing one thousand successive iterations.  While the 
same equation was used for both time series, by choosing different initial values the 
two chaotic time series generated are uncorrelated.  The stochastic time series was 
generated by drawing one thousand independent samples from a random variable 
uniformly distributed between -1 and +1. 
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0.096 – 0.144 Quasiperiodic Chaotic 12 – 18 Chaotic Stochastic 

2.2 Detector data generation 

Tomographic data for the simulated tissue models were acquired by using the finite element method to solve the diffusion 
equation with Dirichlet boundary conditions for a DC source.2,12 )RU D VSDWLDO GRPDLQ � ZLWK ERXQGDU\ ��� WKLV LV

represented by the expression 

( ) ( ) ( ) ( ) ( ), ,a sD φ µ φ δ ∇⋅ ∇ − = − − ∈ Λ r r r r r r r     (1) 

where φ(r ) is the photon intensity at position r , r s is the position of a DC point source, and D(r ) and µa(r ) are the position–
dependent diffusion and absorption coefficients, respectively.  Here the definition used for the diffusion coefficient was 
D(r ) = 1/{3[µa(r ) + µs�(r )]}, where µs�(r ) is the position–dependent reduced scattering coefficient.  (This same definition of D 
will subsequently be applied to the optical coefficients assigned to the target medium).  Forward–problem solutions were 
computed for each of six sources positioned about the target at 60° intervals, with each source located at a depth of 2 mm in 
from the extended boundary (i.e., within the strip lying between the physical and extended boundaries).12  Intensity values at 
eighteen locations, at the same depth as the sources but spaced at 20° intervals, were used as detector readings.  Imaging 
operators were computed, in the manner described in Ref. 13, for each of the resulting 108 source/detector pairs.  Sets of 
detector readings were computed for each of the one thousand values of the time–varying optical coefficients in the target’s 
inclusions.  A single set of imaging operators, computed for a 8–cm–diameter homogeneous medium whose properties are 
equal to those of the static region of the target, was used for all inverse problem computations. 

2.3 Image reconstruction procedures 

The optical inverse formulation was based on the normalized difference method,2 in which the equation that we solve has the 
form 

 

Table 1 Properties of temporal fluctuations assigned to inclusions’ 
optical coefficients 
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Legend Time series (rescaled to range from -1 to +1) assigned to the optical coefficients of the target medium’s 
inclusions. 
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where δx is the vector of differences between the optical properties (e.g., absorption and scattering coefficients) of a target 
(measured) and a “background” medium, Wr is the weight matrix describing the influence that each voxel or element has on 
the surface detectors for the selected reference medium, and δI r represents a normalized difference between detector readings 
obtained from the target in two distinct states.  The normalized difference is defined by 
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where I r is the computed detector readings corresponding to a selected reference medium, and I  and I0 represent two sets of 
measured data (e.g., background vs. target, or time–averaged mean vs. a specific time point, etc.). 

Two sets of image reconstructions were carried out on the detector data time series.  In one of these a conjugate gradient 
descent (CGD) algorithm was used to compute numerical solutions to the modified perturbation equation (Eq. (2)), without 
imposition of any constraints or weight–matrix scaling.  In the other, the CGD algorithm was employed along with the 
constraints–plus–scaling procedure that is more fully described in an accompanying report.2  For convenience, in this report 
we refer to these two variants as, respectively, the normalized difference and the normalized–constraint CGD methods. 

 2.4 Quantitative assessment of temporal accuracy and inter–parameter cross–talk 

An important feature we are interested in examining is the accuracy with which temporal variations in the optical coefficient 
values can be recovered in the limiting case of complex coincident behaviors.  Such activity can be expected to occur 
throughout tissue in vivo, for instance, as a consequence of the known spatiotemporal heterogeneity in the vascular response.  
In an accompanying report by Pei et al.,2 we describe a new method for image recovery that provides for improved separation 
of the absorption and scattering properties.  Given the many factors that can influence reconstruction results, simply 
identifying improved isolation of the recovered absorption and scattering properties does not imply that similar results can be 
obtained in recovering the true temporal behavior in the coefficient values.  For instance, should the amount of inter–



parameter cross–talk depend strongly on the ratio of the perturbations in the absorption and scattering coefficients, then 
apparently good qualitative isolation of the coefficients may be possible, but details of the associated temporal function could 
be severely corrupted. 

To test this, we have quantified the accuracy with which various measures of temporal behavior corresponding to that 
introduced into the test objects are recovered.  One convenient measure we have previously adopted is to generate a 
geometrical representation of the recovered time series corresponding to pixel data.4  This series is produced by plotting the 
variation in the recovered coefficient value in a selected pixel as a function of time, using the method of delays14 to produce a 
pseudo–state–space map.  In the parlance of nonlinear dynamics studies, such a map forms an  “attractor,” which often have 
shapes or forms that are “strange” in appearance, reflecting the presence of complex dynamic processes.  These measures, 
while providing a simple and useful means of detecting particular types of complex functions, do not reveal the quantitative 
similarity between a test and recovered function. 

Measures of correlation are frequently used to quantify the similarity of functions.  For our case we have assessed the degree 
to which the recovered parameters are temporally accurate by computing the correlation coefficient (U), for individual pixels, 
between reconstructed µa time series and the functions used as models of time–varying µa and D in the same location.  
Ideally, in any given pixel the correlation between the target and image µa time series would be unity, while that between the 
target D and image µa would be zero.  A finding of significant nonzero correlation in the latter case is indicative of inter–
parameter cross–talk. 

To assess the accuracy with which the recovered temporal behaviors coincide with the actual target locations, spatial maps of 
covariance (Vxy) values between the object functions and the recovered pixel time series were computed.  Covariance is the 
appropriate measure of the degree to which a recovered temporal behavior is spatially accurate because, unlike the 
correlation, the (absolute value of the) covariance between two time–varying functions is large only if both functions evolve 
similarly in time and they both have large–amplitude fluctuations.  For these computations, the ideal result would be that the 
reconstructed µa(t) in pixels lying within the left– and right–hand inclusions, and only these pixels, show significant 
covariance with µa(l,t) and µa(r,t), respectively.  At the same time, the reconstructed µa(t) should not significantly co–vary 
with either  D(l,t) or D(r,t), in any region of the reconstructed images. 

3. RESULTS 

The mean values of the one thousand reconstructed images of Pa and D are shown, for both reconstruction algorithm variants 
employed, in Figure 3.  In Figure 4 we further examine the qualitative reconstruction accuracy by showing 1–D sections 
through the twentieth (i.e., central) row of pixels, which bisects both inclusions, for the target medium (triangle symbols) and 
for the images of Pa reconstructed, from the 101st set of detector data, by both the normalized difference (circle symbols) and 
the normalized–constraint CGD methods (square symbols).  For ease of comparison, all curves have been rescaled to range 
from 0 to +1 in this Figure.  From these it is evident that normalized–constraint CGD method yields significantly better 
spatial resolution in the result, and comparison of the grey scales in Figure 3 suggests that it also is producing a quantitatively 
more accurate answer. 

As a demonstration of the applicability of correlation analysis to time series of optical coefficients, the correlation between 
the reconstructed and modeled µa time series was computed for a single pixel within each of the inclusions.  When applied to 
the images reconstructed by the normalized difference CGD method, the result was U(l) = 0.693, U(r) = 0.692.  From these 
we get 100U2(l) = 48.0%, 100U2(r) = 47.9%.  That is, only somewhat less than half of the variability in the reconstructed µa 
time series in these pixels are linearly attributable to the variability that actually was present in the absorption coefficient at 
the same locations in the target medium.  When the correlations between each pixel’s time series of reconstructed µa and the 
modeled D in the same location were computed, the result was U(l) = 0.722 (100U2(l) = 52.2%), U(r) = 0.718 
(100U2(r) = 51.6%).  These values imply that the apparent absorption coefficient reconstructed by the normalized difference 
method in reality essentially is a 50/50 mixture of the target medium’s µa and D.  This is the worst–case scenario for inter–
parameter cross–talk.  (If, hypothetically, we had obtained a µa(t)

image vs. µa(t)
target U2 of significantly less than 0.5 and a 

µa(t)
image vs. D(t)target U2 of significantly greater than 0.5, then for the purpose of analyzing the dynamic properties of the 

optical coefficients we could simply relabel the D images as µa, and vice versa.) 

The presence of maximal cross–talk is explicitly shown in Figure 5, where for each of the two pixels considered in this 
example the reconstructed µa(t) is plotted against the modeled µa(t) and D(t).  Each point in these scatter plots corresponds to 
one point in the time series.  In each case the points define a plane.  When both modeled parameters are taken into account 



simultaneously, the overall correlations are U(l) = 0.997 (100U2(l) = 99.5%), U(r) = 0.993 (100U2(r) = 98.6%).  This indicates 
that essentially all of the variability in the reconstructed µa(t)

image is attributable to a linear combination of µa(t)
target and 

D(t)target.  More extensive analysis shows that no significant increase in the overall correlation is achieved by including either 
nonlinear terms or the remaining two modeled optical coefficients as independent variables.  In each Panel of Figure 5, two 
of the edges of the planes on which the plotted points lie are highlighted.  The nearly equal contributions of modeled µa(t)

target 
and D(t)target to µa(t)

image is evidenced by the fact that both highlighted edges of these planes intersect the vertical coordinate 
planes at about the same height above the horizontal coordinate plane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The same correlation analyses were applied to the time series of µa images reconstructed by the normalized–constraint CGD 
algorithm.  In this case the computed µa(t)

image vs. µa(t)
target correlations were U(l) = 0.945, U(r) = 0.936 (100U2(l) = 89.4%, 

100U2(r) = 87.7%), while the µa
image vs. D(t)target correlations were U(l) = 0.327, U(r) = 0.354 (100U2(l) = 10.7%, 

100U2(r) = 12.5%).  This shift to an approximately 90/10 split indicates that the improved reconstruction method achieves 
significant reductions in inter–parameter cross–talk, in addition to the already–noted improved spatial resolution.  In Figure 6 
we show recovered µa(t) vs. modeled µa(t) vs. modeled D(t) scatterplots, for the same two pixels as in Figure 5, but using the 
results produced by the normalized–constraint CGD algorithm.  It is seen in Figure 6 that each set of points defines a plane, 
two edges of which are highlighted.  Note that, in contrast to the case for Figure 5, these edges intersect the vertical 
coordinate planes at significantly different heights above the horizontal coordinate plane.  In particular, the edges that run 
along the “Target D” axes rise more slowly than do the edges running along the “Target µa” axes.  This behavior is a 
significantly better approximation to the ideal result (i.e., µa(t)

image independent of D(t)target) than is that in Figure 5. 

The results shown in Figure 6 further demonstrate that the introduction of constraints and weight–matrix scaling does not 
introduce appreciable nonlinearity into the relation between the target and medium properties.  Neither do they produce any 
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Figure 3 

B

C D 

Legend Averages of 1000 reconstructed images of Pa (Panels A and C) and of D (Panels B 
and D) of the dynamic target medium sketched in Figure 1.  Results in Panels A and B were 
obtained when the normalized difference CGD method was used for reconstruction, while 
those in Panels C and D were obtained when the normalized–constraint CGD algorithm was 
used instead. 
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Figure 4 

Legend One–dimensional sections through µa images reconstructed from 101st set of detector
readings, by the CGD–only (circles) algorithm and constrained/rescaled CGD algorithm
(squares).  Also shown (triangles) is the corresponding section through the target medium.
Curves have been rescaled to range from 0 to +1. 
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Figure 5 

Legend  Plots of reconstructed µa vs. modeled µa and D, for a selected pixel in the left–hand (Panel A) and right-hand 
(Panel B) inclusions, CGD–only algorithm.  Each plotted point corresponds to a different time–point in the simulation 
time series.  The surface defined by each set of plotted points is nearly planar. 
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dependence of the reconstructed coefficients in either inclusion on the properties that were present, in the target medium, in 
the other inclusion. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Figures 7 we show, for the results reconstructed by the normalized difference method, maps of the covariance between 
µa(t)

image and each of the four modeled functions µa(l,t), D(l,t), µa(r,t), and D(r,t).  The results in Figures 7A and 7B indicate 
that both µa(l,t) and µa(r,t), reproduced in the image time series, are spatially accurate.  However, the data presented in 
Figures 7C and 7D show that µa(t)

image actually is a combination of µa(l,t) and D(l,t) throughout the area of the left–hand 
inclusion, and of  µa(r,t) and D(r,t) throughout the area of the right–hand inclusion.  Note that the ranges displayed on the 
grey scales of all four Panels are of the same size.  This indicates, as did the results of the correlation analysis applied to 
individual pixels, that both time–varying functions present in each inclusion make approximately equal contributions to 
µa(t)

image. 

Analogous covariance maps, computed from the µa(t) reconstructed by the normalized constraint CGD method, are shown in 
Figure 8.  Previously it was shown (see Figure 3) that this algorithm recovers the static properties of the target medium with 
greater spatial resolution than the CGD–only method does.  Here we see (Figures 8A and 8B) that normalized constraint 
method also recovers the dynamic properties of the inclusions’ absorption coefficients with better spatial accuracy.  The maps 
shown in Figures 8C and 8D indicate that inter–parameter cross–talk is not altogether eliminated by this algorithm.  
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Figure 6 

Legend  Plots of reconstructed µa vs. modeled µa and D, for a selected pixel in the left–hand (Panel A) and right-hand 
(Panel B) inclusions, constrained/rescaled CGD algorithm.  Each plotted point corresponds to a different time–point 
in the simulation time series.  The surface defined by each set of plotted points is nearly planar. 
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However, when the grey levels in Figure 8C(D) are contrasted with those in Figure 8A(B), it is apparent that the greatest (in 
absolute value) covariance between µa(t) and either D(l,t) or D(r,t) is significantly smaller than that between µa(t) and either 
µa(l,t) or µa(r,t).  This is a qualitatively better result than that of Figure 7, in which the µa(t)

image vs. D(t)target cross–talk 
covariance is of the same magnitude as the µa(t)

image vs. µa(t)
target.   
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Legend  Maps of covariance, in each pixel, between the Pa image time series reconstructed by the CGD–only 
algorithm and each of the four temporal fluctuations that were present in the target medium.  Plotted are 
covariances between reconstructed µa

image and: Panel A, Pa(l,t); Panel B, Pa(r,t); Panel C, D(l,t); Panel D, D(r,t). 
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A small degree of spatial cross–talk between the inclusions is evident in the results shown in figure 8.  This is not an 
artifact introduced by the reconstruction method.  Close examination of the corresponding results in Figure 7 show that the 
same phenomenon is present in the CGD–only results, but is distributed over a larger area.  This, and the greater variability in 
covariance vales found in the background region in the absence of constraints, renders the spatial cross–talk in the grey–scale 
images presented in Figure 7 less noticeable than that in Figure 8. 

The results presented in Figures 7 and 8 also indicate that the two pixels selected for the detailed correlation analysis 
presented above are representative, in terms of the temporal properties of their reconstructed Pa(t), of the two inclusions. 

Finally, while space limitations have led us to explicitly present results comparing only the reconstructed Pa(t) to the 
temporal properties of the target medium, the corresponding analyses involving the reconstructed D time series also have 
been performed.  The constrained/rescaled CGD algorithm yielded qualitatively superior D(t) reconstructions than the CGD–
only algorithm, of the same magnitude as those presented above for Pa(t), in terms of both spatial resolution and inter–
parameter cross–talk. 
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Legend  Maps of covariance, in each pixel, between the Pa image time series reconstructed by the 
constrained/rescaled CGD algorithm and each of the four temporal fluctuations that were present in the target 
medium.  Plotted are covariances between reconstructed Pa and: Panel A, Pa(l,t); Panel B, Pa(r,t); Panel C, 
D(l,t); Panel D, D(r,t). 

Figure 8 
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4. DISCUSSION AND CONCLUSIONS 

Delineation of contrast mechanisms is important to any imaging modality.  In optical tomography, naturally occurring 
contrast features include the spatially–varying absorption and scattering properties of tissue.  Whereas numerical 
reconstruction methods have been developed that are capable of simultaneously solving for both coefficients, inter–parameter 
cross–talk not infrequently occurs.  This refers to the situation wherein a perturbation in one coefficient (e.g.,  absorption) can 
influence the computed value of the other (e.g., scattering) and vice versa.  Results presented in this report add to the 
evidence presented in the accompanying study by Pei et al.,2 who described a new algorithm for minimizing parameter cross–
talk using DC imaging data.  Here we have considered the limiting case wherein the temporal variations in the optical 
properties of one parameter (e.g., absorption) are both spatially and temporally coincident with those of another (e.g., 
scattering).  Clearly demonstrated was the finding that the different test functions can be effectively isolated, irrespective of 
their functional form, or of the instantaneous value of the ratio of absorption to scatter.  These findings do not support the 
assertion by Arridge and Lionheart,15 who claim that such separation is not possible using DC imaging data. 

The current capabilities add to those enumerated in a series of accompanying reports wherein we describe instrumentation1 
and numerical methods16 that we have adopted for the collection and analysis of time–series image data.  These methods 
represent various components of a more inclusive methodology we seek to apply for the characterization of the 
spatiotemporal properties of vascular reactivity in large tissues using near infrared optical imaging methods.  It is our belief 
that such measures performed on tissue either at rest or in response to some homeostatic provocation, represents a large 
untapped reservoir for identifying new diagnostic measures of disease processes, as well as for monitoring the influence of a 
host of therapeutic regimens. 

Optical imaging methods hold the promise of enabling the visualization of a range of functional properties of tissue that are 
not detectable using other imaging technologies.  Its inherent sensitivity to hemoglobin, use of nonionizing energy sources, 
deep penetrating power in tissue, capacity to employ low–cost portable instrumentation, and recently, the added capability of 
monitoring dynamic states, all serve to underscore the expanding utility of this technology. 
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