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Abstract 
Representative results from simulated, laboratory and physiological studies are presented, demonstrating the ability to 
extract important features of dynamic behavior from dense scattering media.  These results were obtained by analyzing a 
time series of image data.  Investigations on the human forearm clearly reveal the ability to identify and correctly locate 
principal features of the vasculature.  Characterization of these features using linear and nonlinear time–series analysis 
methods can produce a wealth of information regarding the spatio–temporal features of the dynamics of vascular 
reactivity.   

 
Introduction 
The vascular system is responsible for maintaining adequate perfusion of tissue.  Perfusion states are modulated in 
response to local metabolic demands and central factors [1].  While various techniques have been developed to assess 
vascular perfusion, imaging methods increasingly are the preferred modality.  Often assessment of perfusion is based 
either on measures that are sensitive to flow (e.g., as determined by acoustic or optical Doppler measurements) or on 
anatomical evidence  (e.g., imaging studies that reveal the presence of stenosis).  Certainly such measures have proven 
useful in many clinical situations.  These, however, represent only a small faction of the information available regarding 
vascular dynamics.  For instance, it is clear that various vascular beat frequencies exist and that these are attributable to 
different structures of the vascular tree (e.g., a cardiac beat is restricted to the arteries, while a respiratory beat frequency 
occurs mainly in the microvessels).  Presently, it is not possible to differentiate these signatures in a cross–sectional 
spatial map.  Should this capability become available, it could prove especially useful for the early detection of disease 
processes that are known to compromise these responses (e.g., onset of peripheral neuropathy in diabetes).   
 
Other measures of vascular dynamics might also prove useful for diagnostic or monitoring purposes.  For instance, blood 
flow within the arterial or venous structures is basically unidirectional.  Within a selected cross section, it may be 
expected that the pulsatile activity of the vasculature at a given frequency should be in phase.  The presence of stenoses 
proximal to the measuring site could be indicated by either out–of–phase responses or significantly damped amplitudes.  
Spatial maps revealing temporal correlation or the amplitude of a selected beat frequency could serve to identify lesions 
associated with inadequate perfusion.   
 
Information at an even more fundamental level would be obtained if it were possible to identify the complexity of the 
time–varying response associated with vascular reactivity.  For example, many studies have shown that the time–varying 
behavior of the vasculature is probably chaotic.  Chaotic time signatures have been identified in a number of critical 
physiological functions.  For instance, it is known that heart rate variability is chaotic.  Significantly, loss of this 
signature, with the appearance of periodic oscillations, is among the strongest known predictors of sudden cardiac death 
[2].  Other studies have also shown that, generally speaking, chaotic time signatures is a sign of health, and their absence 
is a sign of disease.  For example, during epileptic seizures, brainwave activity switches from chaotic to periodic [3].  A 
similar phenomenology has been observed in infants who succumb to sudden infant death syndrome [4].  In this case the 
normally chaotic response in respiratory rates reverts to periodic behavior prior to the fatal incident.  Presently, measures 
of the complexity of the vascular response are limited to near–surface investigations involving laser Doppler 



measurements [5].  The capacity to identify such behavior in a cross–sectional view could prove invaluable in a broad 
range of diagnostic investigations and in various acute procedures. 
 
Recently, we have demonstrated the ability to characterize dynamic features of dense scattering media and display this 
information in a cross–sectional view, by analyzing a time series of image data obtained by optical tomography [6,7].  
These data were based on simulated hemodynamic models of the breast [6] and on laboratory studies of scattering media 
containing a dynamic phantom [6,7].  For this report we have extended these studies to include various measures of the 
dynamic response of the vasculature in the human forearm to simple physiological manipulation.  Results obtained 
confirm the ability to identify well–known features of vascular dynamics (e.g., the occurrence of cardiac and respiratory 
beat frequencies).  Examples illustrating how simple linear time–series analysis methods can be used to locate and 
identify specific features of the vasculature tree also are given.  Finally, evidence that the described methodology may be 
suitable for investigation of features associated with nonlinear dynamics in vascular reactivity is provided. 
 
Methods  
Target media:  Four different target media have been explored.  Two of these involved numerical studies while the others 
involved experimental studies on a laboratory phantom or a human forearm.  Each is described subsequently. 
 
i. Numerical Investigations.  In the first study reported on here we numerically modeled dynamic vascular behavior in a 
heterogeneous tissue background.  Our model was based on a segmented 2–D MRI image of the breast and included 
three different tissue types: adipose, parenchyma and a “tumor.”  The specific hemodynamic parameters (symbols: Vb = 
tissue blood volume, 

2OS  = blood oxygen saturation) assigned to the segmented tissue types are listed in Table 1.  The 

values assigned were not based on any specific knowledge of the properties of breast tissue but instead were intended 
simply to accord with well–established qualitative trends that are seen in the hemodynamic properties of various tissue 
types.  Thus, since it is known that white adipose tissue is relatively avascular and has a relatively low aerobic respiration 
rate [8], it was assigned the lowest Vb and highest 

2OS .  At the other extreme are the hemodynamic properties of the 

included tumor.  Because enhanced angiogenesis is frequently found in breast tumors [9] and flow through many tumor 
types is sluggish relative to that of normal tissue [10], we have assigned to this tissue the highest Vb and lowest 

2OS . 

 
Table 1 

 
fractional blood 

 volume (Vb) 

hemoglobin fractional 

oxygen saturation ( )
2OS  modulation frequency, Hz 

adipose tissue 0.025 1.0 0.12 

parenchymal tissue 0.035 0.9 0.40 

tumor 0.1 0.5 0.06 

 
The frequency of the indicated modulation was varied with tissue type.  The extent of this modulation was ±10% about 
the mean value.  The frequencies chosen were essentially arbitrary, but we did use values whose ratio closely matches 
the ratio of the cardiac to respiratory frequencies found at rest.  In an effort to simulate more realistic conditions, we also 
included in the model differences in tissue 

2OS  levels and in values of the scattering coefficient.  Fluctuations in Vb 

levels were modeled by assigning absorption coefficient values that correspond to two different illumination wavelengths 
(760 and 840 nm).  These values were derived from the spectrophotometric literature [11] and are listed in Table 2.  It 
should be noted that while the 

2OS  level and scattering coefficient values differed for the different tissues, their temporal 

properties were time–invariant.  Thus, our model simulated a dual–wavelength, time–varying tomographic measurement 
for which dynamic behavior was restricted to variations in Vb.  The external diameter of the breast phantom was 8 cm. 
 



Table 2 

Pa, cm-1  

760 nm 840 nm 

Ps, cm-1 

adipose tissue 0.0349 0.0605 7.0 

parenchymal 
tissue 

0.0580 0.0827 10.0 

tumor 0.2700 0.2140 15.0 

 
 
ii. Laboratory Phantom.  The second case studied was a vessel, 7.6 cm in diameter, filled with 2% (v/v) Intralipid and 
containing two small balloons each filled with dilute (50 µM) solutions of hemoglobin.  The balloons were made to beat 
at different frequencies (0.1 Hz and 0.24 Hz) by volumetric displacement using a piston pump.  As with the 
hemodynamic tissue model, the specific frequencies chosen were arbitrary but their ratio closely matched the cardiac–to–
respiratory beat frequency ratio at rest. 
 
iii. Forearm Studies.  The third case examined involved dynamic measures on the human forearm.  A range of responses 
have been explored, and include the influence of deep–breathing exercises, a cold shock, response to finger–flexing, and 
influence of varying levels of restricting pressure produced by inflating a pressure cuff proximal to the measuring site.  
As our purpose here is only to demonstrate the fidelity and type of information retrievable from the time–series image 
data, we report only selected portions of these studies.  Details of each of these will be reported at an upcoming 
conferences [12] and elsewhere [13]. 
 
iv. Imaging of Nonlinear Hemodynamic Function.  In the fourth case examined, we explored the ability to extract 
specific types of temporal variations in the Vb and 

2OS  of a simulated test medium.  The motivation for this is the 

expectation that in situ, and depending on the prevailing physiological/pathological state, these critical parameters can 
fluctuate over time in any of a number of different ways, ranging from periodic to chaotic to stochastic.  Our model 
consisted of two inclusions, each 1 cm in diameter, that were embedded in a larger medium having a diameter of 8 cm 
and with optical coefficients of µs = 10 cm-1, µa = 0.06 cm-1.  The two inclusions were positioned symmetrically about 
the center, and both were assigned the time–invariant scattering coefficient value µs = 15 cm-1.  For each inclusion we 
determined time–varying function for µa at both of the modeled illumination wavelengths in the following manner.  First, 
particular forms of time–varying behavior were assigned to each inclusion’s Vb and 

2OS .  Thus, the Vb within one 

inclusion rose and fell in a quasiperiodic manner, while the 
2OS  at the same location and at the same time was 

fluctuating chaotically, following a time course given by a particular solution to the Hénon equation [14].  The second 
inclusion was treated similarly, except that its Vb and 

2OS fluctuated according to chaotic and stochastic time series, 

respectively.  A quasiperiodic time course was calculated from the equation ( )sin sin 2,nq kn kn= +  with 5k π= .  

Hénon–map time courses were calculated from the formula ( )2
2 11 0.3 1.4 1.3,n n nh h h− −= + −  using numbers sampled from 

a random variable uniformly distributed between –1 and +1 as the two initial values.  Stochastic time courses were 
generated by repeatedly sampling the same uniform random variable. 
 
As with the above–described simulated MR model, computation of the hemodynamic parameters was accomplished by 
simulating a dual–wavelength, time series of measurements.  The principal difference between the two was that for the 



present case, more complex time–series functions were assigned to Vb and 
2OS , and the latter was made time–varying in 

the present case while it had been constant in the previous one.  The time series for Vb and 
2OS  were generated by 

applying ( ) ( )0.05 1 0.2 ,b n nV t x= +  ( ) ( )
2O 0.7 1 0.2 ,n nS t y= +  where xn and yn are any two of the preceding types of time 

courses, thereby modeling 20% modulation about mean values of 5% Vb, 70% 
2OS .  [We are aware that in the case of the 

Hénon map, the mean value is > zero when the extreme values are set equal to �1, as is the case here.  Therefore, our 
chaotic Vb and 

2OS  time series actually have mean values somewhat greater than 5% and 70%, respectively.  This 

numerical detail is completely inconsequential for our purposes here.]  According to the hemodynamic model described 
previously, the tissue absorption coefficients at the two measurement wavelengths must be 
 

( ) ( ) ( ) ( )
2Ored ox reda n b n a a a nt V t S tλ λ λλµ µ µ µ = + −  , 

 

where the superscript O is the wavelength of the illumination, and 
oxa
λµ  and 

oxa
λµ  are the absorption coefficients of 

hemoglobin at the average concentrations that they have in whole blood, in the oxygenated and reduced (i.e., 
deoxygenated) states, respectively. 
 
Collection of Time–Series Detector Data:  Tomographic data for the tissue model was acquired by using the finite 
element method to solve the diffusion equation with Dirichlet boundary conditions.  The source/detector configuration 
used match those adopted in the experimental studies.  In all cases, image formation was based on use of six source 
positions and eighteen detectors per source.  Each source sequentially illuminated the target, while data were collected in 
parallel.  Sources were positioned uniformly about the target at 60° intervals while detectors were positioned at 20° 
intervals.  The sampling rate (simulated or real) varied depending on the experiment but in most cases was 2–4 Hz.  In 
cases i–iii (as described above under Methods: Target Media), a total of 240–300 data points were collected for each 
time series, while for case iv the number was increased to 1000. 
 
Instrumentation:  Time–series detector data from experimental studies were collected using a recently described optical 
imager [7].  The instrument functions as a serial–source, multi–channel, parallel–detection device.  Figure 1 show a 
photograph of the iris imaging head used in these studies.  By adjusting the pass–through diameter, optical fibers can be 
brought into gentle contact with the target medium.  Depending on the study, measurements were performed at 2–4 Hz in 
either a single– (810 nm) or dual–wavelength (780 and 810 nm) mode. 
 
 

 
Figure 1.  Photograph of iris imaging head. 

 
Preimage Analysis and Reconstruction:  For each detector channel, optical data at each time point were normalized to a 
mean value of the recorded signal.  For most studies, the mean value was computed from the data points corresponding 
to the initial 30 s of measurement.  The normalized values were then used as the input data vectors for image recovery. 
Images were computed by simultaneously solving for the diffusion and absorption coefficients using a recently described 
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algorithm [15].  Computed solutions were limited to the first–order Born approximation using a CGD solver.  Also, 
while both coefficients were computed, reported results here are restricted to estimates of the absorption coefficient.   
 
Computation of images revealing simulated hemodynamic function. To derive an image series revealing hemodynamic 
function required an additional post–processing step to merge information obtained at the two simulated measuring 

wavelengths.  Accordingly, estimates of Vb and 
2OS  were calculated from the reconstructed values of 760

tisaµ  and 840

tisaµ  in 

each pixel and at each value of the time index, using the equations 
 

( ) ( )840 840 760 760 760 840

red ox tis red ox tis

840 760 760 840

red ox red ox

,
a a a a a a

b

a a a a

V
µ µ µ µ µ µ

µ µ µ µ

− − −
=

−
  ( ) ( )2

840 760 760 840

red tis red tis
O 840 840 760 760 760 840

red ox tis red ox tis

.a a a a

a a a a a a

S
µ µ µ µ

µ µ µ µ µ µ

−
=

− − −
 

 
These equations were used to derive the hemodynamic time series for both the MR–derived model and for the simulated 
nonlinear studies. 
 
Image analysis.   
i. Linear time–series analysis.  Where indicated, standard linear time–series analysis methods were employed to evaluate 
the image series [16].  For example, the frequency spectrum of the image time series was derived by computing the 
Fourier transform for each pixel.  Other measures involved computing inter–pixel and detector–to–pixel cross–spectral 
density and coherence functions.  
 
ii. Nonlinear time–series analysis.  Two forms of analysis were performed.  The first involved computing the (pseudo–) 
state–space attractor using the method of delays [17].  The second measure involved computing a map of the correlation 
dimension for each using the method of Grassberger and Proccacia [18].  The correlation dimension Q is a measure of the 
complexity of the system being investigated.  It is computed by analyzing the trajectory formed in an n–dimensional 
hyperspace plot.  This trajectory fills a subspace of the state space and is called the system’s attractor. In general, the 
larger the value of Q, the more complicated is the behavior of the system under investigation; additionally, a non–integer 
value of Q is potentially diagnostic of chaotic dynamics.  We are aware that the approaches adopted here to do not 
constitute a comprehensive characterization of the data, in particular with regard to the issue of distinguishing a truly 
nonlinear function from some other functional form.  Other parameters have been computed (e.g., the effect of replacing 
an original data set with one or more surrogates [19]), but results of these studies will be reported elsewhere.  Our 
purpose here is more demonstrational, so as to gain a sense of the distinguishability of  different time–varying functions, 
and the accuracy with which they can be recovered. 
 
Results 
Enhanced Image Contrast of Dynamic Features.  Improvement in image contrast and resolution is important for any 
imaging method.  Thus far, optical imaging methods have produced only images having relatively low contrast and 
resolution from tissue studies.  While refinements in data processing and instrument performance may improve this 
situation, at this point it would seem that these contrast and resolution levels might represent basic features of optical 
imaging.  Recently we have shown [6,7] that images that identify dynamic behavior in the optical coefficients (e.g., 
amplitude of time–harmonic oscillations in µa) can produce spatial maps that have greatly improved quality compared to 
images of the spatial contrast in the optical coefficients per se.  These can include amplitude and phase maps of the 
Fourier spectrum, and maps of temporal correlations and their frequency composition.  As an example, in Figure 2 we 
show an original image of a complex target medium (a), a reconstructed map of its time–averaged Vb levels (b), and a 
map of the computed coherence at a selected frequency (c) computed from the same data shown in (b) and derived from 
analysis of a time series. 
 
The original is a 2–D coronal section of a MR mammogram, for which various optical properties (0.04 < µa < 0.3, 5 < µs 
< 15 cm-1) were assigned to the different tissue types [adipose (dark), parenchyma (gray) and tumor (light)] (see legend 
for description).  Comparison shows the resolution and contrast of the time–averaged map is relatively low and the tumor 
is not evident.  In contrast, the tumor is clearly revealed in the coherence image.  Significantly, this result was obtained 
without any prior knowledge of the tumor’s presence, and instead is dependent solely on the tumor having a temporal 
response different from that of the surrounding tissue.  Clinically, such behavior may exist naturally [20], or it could be 
induced in response to a simple manipulation of the vascular perfusion state.  These findings thus demonstrate that high–



quality image data revealing the presence of dynamic behavior in a dense scattering medium can be derived from 
analysis of time series of images of a complex simulated phantom.  Next we show results demonstrating that images of 
similar quality can be obtained from a laboratory phantom exhibiting dynamic behavior. 

 
Spatio–Temporal Imaging of a Dynamic Phantom.  Figure 3 
shows a schematic of the apparatus used in the phantom 
study.  Illustrated are two balloons filled with a dilute 
solution of hemoglobin (50 µM) and attached to a support 
structure.  The balloons are made to beat at different 
frequencies by periodic volume displacement.  The apparatus 
was introduced into a vessel 7.6 cm in diameter containing 
500 mL of 2% (v/v) Intralipid. Time–series tomographic 
measurements were performed using the iris imaging head 
shown in Figure 1.  Figure 4 shows images derived by 
computing the Fourier transform of the image series at the 
two different beat frequencies.  Inspection reveals near 
complete spatio–temporal resolution of the added inclusions.  
 

 
 

    

Figure 2. Panel A, contrast map of simulated Vb 
levels in MR mammogram; panel B, reconstructed 
time–averaged image of Vb; panel C, computed 
coherence between indicated index pixel (‘x’) and 
image map.  Scale in panels A and B indicate 
fractional Vb in tissue.  Modeled Vb levels were: 
adipose tissue (black) – 2.5%, parenchymal tissue 
(dark gray) – 3.5%, tumor (light gray) – 10%; 

2OS  

levels were: adipose tissue – 100%, parenchymal 
tissue – 90%, tumor – 50%; modulation frequencies 
were: adipose tissue – 0.12 Hz, parenchymal tissue – 
0.40 Hz, tumor – 0.06 Hz.  The map shown in panel 
C is the 0.35 Hz component of the coherence 
function. 

Included 
tumor 

           C. Coherence Image 

Tumor 

x 

B. Reconstructed map of blood volume A. Target Medium 
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Figure 3.  Schematic of the dynamic phantom. 



 

Figure 4.  Reconstructed FT image of oscillating balloons. 
 
 
Imaging of Dynamic Behavior of Vascular Reactivity in the Human Forearm.  The natural occurrence of vascular 
frequencies due to respiratory and cardiac activity can be exploited to produce a spatial map revealing the presence of 
different components of the vascular tree.  Figure 5(A) shows a map of the logarithm of the ratio of the computed Fourier 
amplitudes at the cardiac and respiratory frequencies obtained from a time series measurement on the forearm.  Figure 
5(B) is a representative MR image in the same region of forearm.  An overlay of the two maps having the same 
orientation is shown in Figure 5(C).  Inspection reveals that in the vicinity of the radial (1), interosseous (3) and ulnar (5) 
arteries, the ratio of the Fourier amplitudes (cardiac to respiratory) is nearly ten times larger than it is in other regions.   

 
This response can be seen more clearly in Figure 6, which shows the cross–spectral density (CSD) between a surface 
detector and specific locations in the image.  The particular spectra shown were obtained from points in the image 
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Figure 5.  Panel A, map of ratio of FT 
amplitude.  Panel B, MR image of 
forearm, with identified anatomical 
structures: (1) radial artery, (2) radius, 
(3) interosseous artery, (4) ulna, (5) 
ulnar artery.  Panel C, overlay of 
images in 5(A) and 5(B). 
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corresponding to locations in the flexor digitorum superficialis  muscle, and points near the radial and interosseous 
arteries.  Inspection reveals that in muscle the dominant signal coincides with the frequency of respiration, while for the 
arteries the dominant signal is at the cardiac frequency. 

 
 
Finger–Flex study.  In this study we further explored the ability to measure dynamic behavior by examining an image 
time series derived from measurements obtained while the subject was conducting a finger–flex exercise.  Finger flexing 
involves the action of so–called antagonistic muscle groups that are located on opposite sides of the forearm, 
specifically, the flexor digitorum superficialis on the ventral side and the extensor digitorum on the dorsal side.  Results 
in Figure 7(A) show a map of the amplitude of the Fourier spectrum obtained at the finger–flex frequency (0.25 Hz).  
Figure 7(B) shows an overlay of this image onto an MR image of the same forearm in the same orientation.  Inspection 
reveals that positions of maximum amplitude for finger–flexing coincide well with the two involved muscle groups.  
Further evidence supporting the accuracy of this assignment is shown in Figure 8.  Shown are time series values for µa at 
points in the image coinciding with the involved muscles.  Noteworthy is the observation that the two signals are 
approximately 180° out of phase with each other, which is the expected response from the action of antagonistic muscle 
groups. 

 
Figure 7.  Panel A, map of amplitude, ×104, of FT at the finger–flex frequency.  Panel B, overlay image with identified 
anatomic structures: 1), radial artery, 2) radius, 3) interosseous artery, 4) ulna, 5) ulnar artery, 6) basilic vein, 7) cephalic 
vein, 8) flexor digitorum superficialis, 9) extensor digitorum, 10) flexor digitorum profundus.  Arrows indicate areas regions 
that overlay on involved muscle groups. 

 

0      0.75                  1.5 

R
el

a
tiv

e 
A

mp
lit

ud
e 

0 
  

  
  

  
  

  
0.

5 
  

1.
0 

0      0.75                  1.5 

R
el

a
tiv

e 
A

mp
lit

ud
e 

0 
  

  
  

  
  

  
0.

5 
  

1.
0 

0      0.75                  1.5

R
el

a
tiv

e 
A

mp
lit

ud
e 

0 
  

  
  

  
  

  0
.5

 
  

1.
0 

Respiratory   Cardiac 
 

Figure 6.  Panel A, CSD spectrum at position (19,12); 
panel B, CSD spectrum at position (11,13); panel C, CSD 
spectrum at position (18,27). 
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Figure 8.  Time variations in µa for pixel locations in involved muscle groups. 
 
 
Imaging of Nonlinear Hemodynamic Function.  Figure 9 shows the dependence of the computed pseudo–state–space 
attractor on the functional form of the time series introduced for the two measures of hemodynamic function.  Recall, 
that in this study Vb and 

2OS  fluctuated in time according to different mathematical functions at the same time and 

location.  In each panel we also show the time function derived from the computed image series (upper left) at a 
designated index pixel shown by ‘x’ in the figure in the upper right.  The latter is a representative image obtained from 
the time series.  Results in Panel A show the attractor computed for a quasiperiodic time function in Vb for the left–hand–
side inclusion.  Panel C shows the corresponding results, at the same site, for variations in 

2OS .  Here a chaotic (Hénon 

map) time series was introduced.  Similarly, results in Panel B shows the attractor computed according to chaotic time 
series in Vb for the right–hand–side inclusion.  Panel D shows the corresponding results, at the same site, for a stochastic 
time variability in 

2OS .  In each case inspection reveals markedly different forms of the attractor.  These results further 

demonstrate the remarkable accuracy with which the spatio–temporal features of vascular reactivity (simulated or real) 
can be recovered. 
 
Figure 9 

 
Finally, in Figure 10 we show results obtained from a physiological time series (a series of deep breathing exercises) for 
which we computed a spatial map of the correlation dimension at each pixel location.  Recall that the correlation 
dimension is a measure of the complexity of a time series.  Here we selected a frequency passband that included both the 
vasomotor and respiratory frequencies (0.05–0.5 Hz).  We are aware that such filtering colors the noise and can lead to 
spurious low correlation dimension values [21].  For this reason we also treated data obtained from a stochastic time  
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Figure 9.  Representative 3–D pseudo–state–space trajectories for temporal variations in hemodynamic properties of the two 
inclusions modeled in the nonlinear dynamics simulation study.  Panel A, Vb, pixel (13,21); panel B, Vb, pixel (27,21); panel 
C, 

2OS , pixel (13,21); panel D, 
2OS , pixel (27,21). 

 
series in a similar fashion (Panel B).  The control data set was obtained by computing an image time series from 
measurements performed on a solid plastic rod.  It is known that for this class of data, the value of the correlation 
dimension scales without bound with a quantity known as the embedding dimension [17].  We have confirmed that, 
unlike the physiological data, the value of correlation dimension indeed does not appear to approach a finite limiting 
value for embedding dimensions between 1 and 30.  In contrast, we observe limiting values for the correlation dimension 
between 2–4 for most areas in the cross section of the forearm.  These values were obtained using an embedding 
dimension of 20 and time delay value of one.  It is perhaps noteworthy that a similar range of values for the correlation 
dimension has been reported for studies involving isolated vessels [22] and in situ measures of vascular function using 
laser Doppler techniques [5]. 

 
Figure 10.  Correlation dimension (Q) maps derived from reconstructed µa time series.  Panel A, medium is the forearm of a 
volunteer human subject who conducted deep–breathing exercises while the detector data were being collected; Panel B, 
medium is a solid, homogeneous cylinder composed of Delrin´. 

 
Discussion 
A hallmark of vascular system is the rapidity and flexibility of its response to changing metabolic demands.  This is 
accomplished through the dynamic interaction of local metabolic and central neurological control mechanisms.  
Currently, our ability to investigate these interactions is primarily limited to discrete measures of flow in large deep 
vessels or small superficial vessels.  A comprehensive understanding of the integrated physiological response of vascular 
reactivity, the details of which will certainly vary with anatomical site and disease states, is presently lacking.  As has 
been abundantly demonstrated by electrocardiographic and electroencephalographic studies, much information about 
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physiological response and control can be gained by examination of time–varying processes.  We believe that insight 
regarding the control of vascular reactivity is attainable via optical tomography.  In this report we presented results 
documenting the ability to measure specific time–varying features in a range of target media.  Various features 
identifiable using linear and nonlinear time–series analysis methods were examined.  In particular, we have specifically 
investigated the capacity to identify complex time–varying activity, including nonlinear behavior, by analysis of image 
time series obtained from a simulated hemodynamic model.  The ability to detect temporal variations in optical 
properties defined by a chaotic time series, and to differentiate this form of behavior from quasiperiodic and stochastic 
responses, was demonstrated.  Finally, we presented preliminary findings from our physiological time–series 
measurements and determined that the values of the computed correlation dimension closely match those reported for 
vascular activity using alternative methods.  Extension of these capabilities to clinical studies could open new vistas in 
our understanding of the vascular response and allow for development of more rational protocols for disease intervention 
[23]. 
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