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INTRODUCTION
In diffuse optical tomography (DOT) applications, reconstructed images frequently exhibit undesirable features such as blurring and location bias.  At least two basic factors 
underlie these phenomena.  First, there must be an inherent limit on the image quality that is ultimately achievable [1].  Second, they may be consequences of steps that are taken 
to counter the effects of noise in detector data (e.g., regularization) or to ensure stability and/or accelerate convergence of the inverse problem (e.g., matrix scaling).  Distortion of 
spatial information and low spatial resolution thus can arise as difficult-to-avoid tradeoffs from operations that allow one to solve the inverse problem at all.  While for any 
particular problem it may be possible to find optimal control-variable values that will maximize the qualitative spatial accuracy and the quantitative accuracy of a recovered 
image, generally applicable and computationally tractable strategies for doing so have been lacking.  Here, it is shown that a technique first developed as a tool for directly 
assessing the action of image reconstruction algorithms [2] can, when suitably modified, serve as such a tool for enhancing the quality of reconstructed images.

The method described below grew out of our previously reported work on the topic of distinguishing absorption from scattering perturbations in media when conducting 
steady-state optical tomographic studies [3,4].  In cases where the test medium had spatially coincident absorption and scattering perturbations, the reconstruction algorithm’s 
ability to separate them was assessed by assigning a qualitatively different form of temporal fluctuation to each optical parameter.  These dynamics acted as tags by which inter-
parameter crosstalk was precisely quantified [5].  While that work was in progress, it was recognized that the tagging of optical parameters with temporal information 
immediately suggests a general mechanism for characterizing the action of DOT image reconstruction algorithms on their input data.  Namely, let a distinct mode of temporal 
fluctuation be assigned to each optical parameter of interest in every volume element of a medium, and let a time series of forward and corresponding inverse problem solutions 
be computed.  Then a map of magnitude vs. location for a given mode of fluctuation within the image space reveals precisely how the reconstruction algorithm distributes the 
corresponding optical parameter throughout that space.  An illustrative example of this is shown in Figure 1.  A mapping from object to image space obtained in this way is

METHODS (cont.)

or                  An equation having the form of Eq. (1) can be written for each of the Nt states of the medium.  If the modulation amplitudes in all medium 
pixels are not large, it is reasonable to further assume that F is the same in all of the Nt resulting equations.  Then they may be combined into a single linear 
system,

or                      which can be solved using standard linear algebraic methods [10] to compute the image correction filter F.
Subsequently, any image mr that is reconstructed using the same set of pixels and measurement geometry as used in the computation of F is corrected 

by calculating the matrix product Fmr.
Intuitively it might seem that Nt, the length of the time series used in the filter generation process, needn’t be any larger than Np.  In practice, it turns 

out (as shown subsequently in Fig. 12) that this approach performs best when Nt Np.  For the examples presented here, we had Np = 982 or 984, and Nt = 
16384 (i.e., 214).  That is to say, practical implementation of the deconvolution strategy requires an ability to reconstruct many images in a reasonably short 
time.

2. Three-dimensional Target Media
The target media used for the demonstrations that are reported here of the efficacy of the linear deconvolution approach are the 3D finite element meshes 
shown in Figure 5.  The hemispheric mesh shown in Fig. 5(a), which approximates the measurement geometry for DOT mammographic studies, contains 
4309 tetrahedral elements, with 982 nodes; the curved slab mesh (Fig. 5(b)), which approximates the measurement geometry for DOT brain imaging, 
contains 4274 tetrahedral elements, with 984 nodes.  The diameter of the hemisphere is 8.0 cm.

METHODS
1. Image Correction Algorithm (Spatial Deconvolution)
An important limitation of DOT is that is that first-order solutions to linear perturbation problems often produce less than ideal solutions, with image blurring evident.  A 
fundamental premise of this work is that, as shown schematically if Figure 2(a), the most important underlying factor is linear spatial convolution, or mixing of information from 
many target medium locations in any given image pixel or voxel.  Our goal was to derive a mathematical operator (or “filter”) that whose effect, as sketched in Fig. 2(b), is to 
reduce this mixing effect as much a possible, producing a final image that comes as close as possible to a one-to-one correspondence between object and image pixels.

The strategy we have developed was conceptually motivated by a consideration of the physical basis of image formation in MRI.  There, spatial discrimination is possible 
because the imposition of a magnetic field gradient creates a range of position-dependent resonance frequencies.  This same concept is applied here to the image formation 
problem of optical tomography.  It is implemented, as shown schematically in Figure 3, by tagging the absorption coefficient (µa) in every object pixel with a unique time-
varying function.  (While the reduced scattering coefficient (µ′s) may be simultaneously tagged in the same way, in order to assess the degree of inter-parameter crosstalk in the 
recovered images, to simplify the presentation only µa was modulated in the examples presented here.  In the implementation that was used to produce said results, the tagging 
functions used were simple sine waves with incommensurable frequencies.

CONCLUSIONS
1. Applying a linear spatial deconvolution operation to DOT images reconstructed by solving a first-
order perturbation equation (Born approximation) can yield marked enhancement of image quality.  
These corrected (filtered) images are quantitatively accurate in terms of target location, size and shape.  
In the 3D examples that were considered here, use of image-correcting filters produced obvious 
improvement in image quality, in terms of both location and µa of the inclusions.  The displacement 
between the true and recovered locations of an inclusion’s centroid location were as small as 1 mm, in 
a 8-cm-diameter medium with 1.5-cm-diameter inclusions, and the peak value of the recovered µa for 
the inclusions deviated from the true value by as little as 5% (see Figs. 7,9).  Multiple inclusions were 
present in all cases, and the spatial deconvolution strategy successfully resolved the inclusions while 
also accurately locating each one.

2. Corruption of the simulated detector data with multiplicative Gaussian noise (Figs. 9, 10) did not 
bring about reduction of spatial resolution or in the qualitative (centroid location) or quantitative (peak 
µa value) accuracy of the recovered inclusions.  Thus it is reasonable to progress from simulation 
studies to tests involving laboratory phantoms, to determine whether the approach presented here is 
likewise robust to all of the forms of noise that are present in experimental data.  The principal effect 
of the noise was the appearance of small, irregularly shaped regions of spurious absorption contrast.  
Notably, in the case where a back-reflection measurement was simulated (Fig. 9), the latter regions 
showed a pronounced depth dependence, decreasing in size and magnitude with increasing depth.  This 
pattern suggests that it would be profitable to implement depth-dependent regularization when 
computing solutions to the inverse problem.

3. The quality of the results actually obtained, particularly in the direct comparison of spatial 
deconvolution and a nonlinear LM reconstruction algorithm (Fig. 11) implies that the information-
spreading properties of the reconstruction algorithm are a primary cause of the low spatial resolution 
and depth bias commonly seen in DOT images.  It is recognized that 10 almost certainly is not the 
optimum number of LM iterations; employing the optimal number of iterations would improve the 
quality of the result in Fig. 11(a)-(c), and the algorithm itself could probably be optimized to yield a 
higher rate of convergence.  In any case, however, the post-measurement computational time and cost 
would invariably be many times greater for any approach of this type than for application of the image-
correcting filter, which requires only a matrix multiplication.

4. This work suggests several directions for further development and improvement of the image-
enhancement strategy.  For one, it appears highly probable that a simultaneously fast and accurate 
“hybrid” reconstruction algorithm can be synthesized by applying spatial deconvolution and a 
nonlinear updating scheme in an alternating fashion.  The resulting procedure should converge more 
rapidly than, say, the LM algorithm used to generate the results shown in Fig. 11, while also permitting 
recovery of media in which nonlinear effects of the optical coefficient perturbations are significant.  A 
second important modification is to tag both the absorption and scattering coefficients of a medium 
simultaneously.  The principal benefit of this is that the filter matrices thereby derived can be applied 
to the output of algorithms that provide simultaneous reconstruction of µa and µs.  At the same time, it 
would constitute a mechanism for quantifying the extent of inter-parameter crosstalk associated with a 
given reconstruction algorithm, and for reducing its impact where it does occur.  Such crosstalk can be 
regarded as another sort of information spread, one that occurs in optical-parameter space rather than 
in physical space.  Then the same general strategy that is used to correct for the effects of a 
reconstruction algorithm’s ISFs should also be able to reduce crosstalk artifacts.  A third objective will 
be to search for non-sinusoidal forms for the tagging functions used in generating filter matrices, that 
are optimal in the sense of minimizing the Nt that is needed in order to achieve successful spatial 
deconvolutions.
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Figure 1. (a) – spatial map of amplitude of one selected temporal model function, assigned to the 
absorption coefficient (µa) of a FEM mesh node located at the intersection of the horizontal and vertical 
black lines.  In this illustrative example, the mesh is a 2D disc with homogeneous µ′s; while each node’s 
µa has a time-dependence, the temporal average value of µa is spatially homogeneous.  (b) – spatial map 
of amplitude, in the time series of reconstructed µa images, of the same temporal frequency as that 
uniquely assigned to the indicated FEM mesh node in 1(a).
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conceptually analogous to a point spread function (PSF) 
[6],which characterizes the physical accuracy and resolution 
of an optical device.  In view of this analogy, the term 
information spread function (ISF) has been adopted as our 
descriptor for the type of object-space to image-space 
mapping described here.  The ISF formulation has an 
important implication that provides the main topic of the 
present report.  Namely, once the behavior of a 
reconstruction algorithm has been characterized under a 
given set of initial conditions (i.e., for a particular reference 
medium and arrangement of sources and detectors), its ISFs
can be used in deconvolution computations, to improve the 
spatial resolution and accuracy of reconstructed images.  
This application is entirely analogous to the established 
practice of using the PSFs of an optical measuring device as 
the basis for a calibration/correction procedures to reduce 
image blurring and/or aberrations [7,8].  Results presented 
below demonstrate that highly significant improvements in 
the quality of DOT image spatial information can be 
achieved in this way.  Also worth stressing is that the 
technique described here can be applied to media of arbitrary 
shape and internal composition, and arbitrary source-
detector geometries, in a computationally efficient manner.
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Figure 2. Panel A, schematic depicting the action of typical DOT image reconstruction algorithm, 
which yields blurred images because information from each object domain location is mapped to more 
than one position in the image domain.  Panel B, the action of an ideal image-correcting filter, which is 
to counteract the information spreading aspect of the reconstruction algorithm’s action.
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After the first three steps outlined in Fig. 3 are completed, ISFs such as that in Fig. 1 
can be produced by computing the correlations between the reconstructed image time series 
and each of the functions used as pixel tags.  Alternatively, by computing the power spectra 
of each pixel’s reconstructed µa time series, if the tagging functions are sinusoidal as they 
are here.  If each map of the type in Fig. 1(b) is rearranged as a 1D vector, using a 
consistent numbering scheme for the pixels, then the ISFs for all Np pixels (Np = 717 in the 
particular case illustrated here) can be displayed in a single 2D gray-scale map.  An 
example, for the medium in Fig. 1, is shown in Figure 4.  In the absence of spatial 
convolution effects, this map would have non-zero values only along the main diagonal.  
The finite width of the band of gray dots straddling the diagonal in Fig. 4 is a manifestation 
of blurring, while the absence of perfect symmetry about the diagonal shows that many 
medium pixels also have a location bias in the images, of the type seen in Fig. 1(b).

The procedure we use to correct these errors, outlined in the fourth step of Fig. 3, 
merits a more detailed mathematical description.  The hypothesis sketched in Fig. 2(a) is 
that the apparent value in each pixel of a reconstructed image is a linear combination of the 
information in all medium pixels.  If the numerical factors describing the contribution of 
every medium pixel to each image pixel were known, they could be arranged as a matrix 
that in principle could be inverted, allowing us to recover the true spatial distribution of 
medium µas by a straightforward matrix multiplication:
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Figure 5. 3D FEM meshes, and source-detector geometries, used for computing and testing 
image deconvolution operators (filters).  (a) – hemispheric mesh, containing 982 nodes and 4309 
tetrahedral elements.  (b) – curved-slab mesh, containing 984 nodes and 4274 tetrahedral elements.  
Source/detector locations are marked with small white circles.
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1) Assign a modulation frequency to each 
element’s µa.

2) Forward problem: compute Nt–time–point 
measurement time series, with 
Nt > 2max(fmod)/min(∆fmod)

3) Inverse problem: reconstruct time series of N
tomographic images [9]

4) Post–processing: from matrices of medium’s 
µa states and corresponding reconstructed 
images (Mm and Mr, respectively), compute 
image correction filter, F, by solving
Mm = FMr [10].

Figure 3.

For the hemispheric mesh, 29 detector 
locations were designated (only 14 are visible in 
Fig. 5(a)), and 25 of these also were used as 
sources, for a total of 725 source-detector channels.  
For the curved slab mesh, 24 source and detector 
locations were designated, as shown in Fig. 5(b), 
for a total of 576 source-detector channels.

The patterns of static spatially heterogeneity 
used are shown in Figure 6. In these test media the 
inclusions are approximately spherical, with 
average diameters of 1.5 cm for the hemispheres 
and 1.2 cm for the curved slabs.  The background 
regions of these media had uniform absorption, 
with µa = 0.06 cm-1, while the inclusions were 
more strongly absorbing, with µa = 0.12 cm-1 for 
the hemisphere and either 0.12 cm-1 or 0.3 cm-1 for 
the curved slab.
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Figure 4. 2D matrix representation of reconstructed 
amplitude spatial maps (see Fig. 1(b)), for all pixels in the 
medium shown in Fig. 1.  In this representation, each row 
corresponds to one pixel in the original medium, and each 
column to one pixel in the reconstructed image space.
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Figure 6. Heterogeneous test media used in demonstrations of the efficacy of deconvolution at improving 
reconstructed image accuracy.  (a)-(c) – hemisphere with three inclusions; (d)-(f) – curved slab with three 
inclusions.  First column (6(a),(d)) shows the x-y projection, second column (6(b),(e)) the x-z projection, and third 
column (6(c),(f)) the y-z projection of the 3D test media.  Numbers on colorbars give the quantitative value of the 
spatially varying µa, while µ′s is homogeneous.

RESULTS
The effectiveness of the linear deconvolution method presented here is shown for both the hemispheric (full tomographic measurement) and the curved-slab (limited view, back-reflection measurement) media.  The ideal, noise-free case 
is treated first, then we consider the effect on the deconvolved solution of corrupting the detector data with multiplicative Gaussian noise.  Then, because a basic premise of this work is that linear spatial convolution is a more important 
source of the errors in reconstructed DOT images than is the nonlinear relationships between a medium’s optical parameters and DOT measurement data, the performance of the image correcting filter and a nonlinear iterative 
reconstruction algorithm are directly compared.  Finally, we explore the dependence of the performance of a filter on the length Nt of its generating image time series.  This study demonstrates the validity of the condition given in 
Methods, that Nt Np for optimal filter performance.

The FEM meshes used for computation of detector readings were finer than those used for generation of the F matrices and for subsequent image reconstruction (hemisphere: 2212 nodes, 10305 elements; curved slab: 2062 nodes, 
8698 elements).  Thus there was no simple inverse crime committed in the preparation of these results.

(a) (b) (c)

(d) (f)(e)

Figure 7. Reconstructed image of three-inclusion hemispheric test medium (see Fig. 6(a)-(c)).  (a)-(c) –
uncorrected image, solution to linear perturbation equation; (d)-(f) – corrected image, obtained by applying spatial 
deconvolution filter to the result in 7(a)-(c).  First column (7(a),(d)) shows the x-y projection, second column 
(5(b),(e)) the x-z projection, and third column (5(c),(f)) the y-z projection of the 3D images.  Numbers on colorbars
give the quantitative value of the spatially varying µa.
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(d) (f)(e)

Figure 8. Reconstructed image of three-inclusion curved-slab test medium (see Fig. 6(d)-(fi)).  (a)-(c) –
uncorrected image; (d)-(f) – corrected image, obtained by applying spatial deconvolution filter to the result in 8(a)-
(c).

(a) (b) (c)

(d) (f)(e)

Figure 10. Reconstructed image of three-inclusion curved-slab test medium (see Fig. 6(d)-(f)), when detector 
data are corrupted with noise Gaussian noise, whose standard deviation for each detector channel is 1% of that 
channel’s noise-free light intensity level.  (a)-(c) – uncorrected image; (d)-(f) – corrected image, obtained by 
applying spatial deconvolution filter to the result in 10(a)-(c).

(a) (b) (c)

(d) (f)(e)
Figure 11. Comparison of performance of a nonlinear iterative image reconstruction algorithm and the spatial 
deconvolution approach.  Test medium is curved slab with three inclusions (see Fig.6(d)-(f)); detector data are 
noise-free.  (a)-(c) – image obtained after ten iterations (~90 min computation time) of a Levenberg-Marquardt 
nonlinear reconstruction algorithm [10]; (d)-(f) – corrected image, obtained by applying spatial deconvolution filter 
(~0.01 s computation time) to the result in 11(a)-(c).

Nt = 1000 Nt = 6000 Nt = 12000 Nt = 16000

Figure 12. Effect of applying deconvolution operator to reconstructed image (Fig. 7(a)-(c)) of three-inclusion 
hemispheric test medium, as a function of Nt.  From left to right, results for Nt = 103, 6×103, 1.2×104, and 
1.6×104.  Top row shows the x-y projection, middle row the x-z projection, and bottom row the y-z projection 
of the 3D images.
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Figure 9. Reconstructed image of three-inclusion hemispheric test medium (see Fig. 6(a)-(c)), when detector 
data are corrupted with Gaussian noise, whose standard deviation for each detector channel is 1% of that 
channel’s noise-free light intensity level.  (a)-(c) – uncorrected image; (d)-(f) – corrected image, obtained by 
applying spatial deconvolution filter to the result in 9(a)-(c).

I look to THE DIFFUSION OF LIGHT and education as the resource 
to be relied on for ameliorating the condition, promoting the virtue, and 
advancing the happiness of man.

— Thomas Jefferson (1822)


