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Abstract: A method, built around dynamic optical tomography techniques, for quantifying the degree to 
which image reconstruction algorithms correctly map the spatial locations of a medium’s optical coefficients 
into the image domain, is described. 
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1. Introduction/Methods 
In a set of recent reports, a number of image reconstruction methods [1,2] well suited to the integrated data 
collection and analysis system [3–5] we are developing for dynamic diffuse optical tomography (DYNOT) [6,7] 
were presented.  These particular algorithms, which are modifications of a standard linear perturbation approach to 
image recovery, were devised to address several distinct concerns: the requirement for producing a large number of 
images in a usefully short time, and the practical reality that the systems of equations that arise in diffuse optical 
tomography (DOT) usually are both underdetermined and highly ill–conditioned.  Here we present a recently 
developed technique for analyzing the action of the reconstruction methods. 

One of the factors that has made 
algorithm development difficult in the past 
has been the absence of a way to quantita–
tively characterize the “information spread 
function” (ISF) associated with a given 
image reconstruction method.  The term ISF 
here refers to the precise manner in which 
the optical coefficients that actually are 
present in a given location of a target 
medium are mapped into the spatial domain 
of the image.  Shown in Figure 1 is a cartoon 
illustrating several ways in which the spatial 
dependence of a medium’s properties can be 

inaccurately represented in the image 
domain. 

Figure 1 

Post–reconstruction Processing (?) 

1) Tomographic 
Measurement 

 
2) Image Recon–

struction 

In the absence of information regarding 
the ISF, there is no apparent way of 
systematizing the process of modifying a 
reconstruction algorithm in response to the 
observed quality of its performance.  The 
approach we have adopted for characterizing 
the ISF for a given combination of recon–
struction algorithm and reference medium is 
called frequency encoding of spatial infor–
mation (FESI).  It is similar in concept to the 
phase encoding of spatial information com–
monly used in magnetic resonance imaging.  
The steps involved in a FESI calculation are 
outlined in Figure 2. 

The present report is a preliminary 
demonstration of the utility of the FESI 
technique.  The method has been applied to 
two different image time series, both 
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1) Assign a modulation fre–
quency to each element’s ma 

2) Forward problem: compute N–time–point
measurement time series, with
N > 2max(fmod)/min(Dfmod) 

3) Inverse problem: reconstruct time series of
N tomographic images 

4) Post–processing: for every pixel, compute
temporal Fourier transform (FT) of the
reconstructed ma(t). 

5) Post–processing: create spatial map of FT
amplitude at each fmod. 
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obtained from the same sets of detector readings but employing different varieties of a reconstruction algorithm.  
Importantly, in principle the reconstruction methods should produce identical results; there is no self–evident a 
priori reason for choosing to use one rather than the other.  However, application of the FESI method indicates that 
one variety can produce spatially accurate images of perturbations at any location of the modeled medium, and the 
other can not do so.  Finally, it can be tentatively suggested that the computed ISF for either algorithm affords a way 
of applying a spatial deconvolution correction to a reconstructed image.  

2.  Results/Conclusions 
A regularly–shaped two–dimensional medium was chosen for the initial demonstration of concept.  As shown in 
Figure 3, the phantom is a homogeneous disk of 8 cm diameter, with optical coefficient values of µa = 0.06 cm-1, 

µs′ = 10 cm-1.  For more convenient solution of the forward and inverse 
problems, the mathematical boundary of the disk was extended 0.5 cm 
beyond that of the “physical” medium, as indicated in the Fig. 3; the 
coefficient values in the extended region are the same as those of the 
“physical” medium.  Sixteen equally spaced, unit–strength, homogeneous 
point sources were placed in the medium at the indicated positions on the 
physical boundary. 

The numbers of finite elements and nodes in the indicated mesh are 
1604 and 850, respectively, and the smallest and largest element areas are 
0.026 cm2 and 0.073 cm2 (mean ± standard deviation = 0.040 ± 0.006 cm2).  
Sinusoidal modulation was imposed on the absorption coefficient in each 
element.  A unique modulation frequency (fm) was assigned to each, while 
the amplitude was everywhere 0.006 cm-1 (i.e., 10% of the mean value).  
For this preliminary study, the elements’ scattering coefficients were not 
modulated in time. 

To ensure that the resolution bandwidth was smaller than the smallest 
difference between fms and the Nyquist frequency was greater than the 

largest fm, a time series of ten thousand sets of tomographic detector readings was computed, with ∆t = 0.01 s.  
Image reconstruction was carried out with two algorithms, both based on a singular–value decomposition (SVD) of 
the image operator matrix.  The first algorithm used was the previously described weight–transform SVD (SVDWT) 
method [8].  The second reconstruction method — SVDWTWRS — combined SVDWT with an additional matrix 
preconditioning operation, in which each equation was scaled so that all rows of the weight matrix had the same 
sum. 

Figure 3: Model medium. µa is modulated at a
different frequency in each finite element.
Black circle indicates “physical” boundary.
Black dots indicate source/detector locations. 

Two types of analysis were performed on the 1,604 FT amplitude maps produced in step five of the computation 
(see Fig. 2).  First, the global spatial correlation was computed between each amplitude map and the known spatial 
distribution of the corresponding frequency in the target medium (ideal result: correlation exactly equal to 1.0 at all 
frequencies).  Second, the coordinates of each map’s center–of–mass were computed, from which we easily 
determined its displacement from the geometric centroid of the finite element whose µa was modulated at the 
corresponding frequency (ideal result: displacement exactly equal to 0.0 at all frequencies).  These two quantities are 
plotted, as a function of fm (or, equivalently, location in the target medium), for the SVDWT algorithm in Figure 4, 
and for the SVDWTWRS algorithm in Figure 5.  The lighter–colored curve in each panel is derived from the 
unfiltered FT amplitude spatial distributions.  The darker curve is the result obtained when the calculations were 
repeated after we made the best–possible correction consistent with a particular theoretical model, according to 
which the amplitude maps derived from the reconstructed images are a simple linear transformation of the true 
spatial distributions present in the target medium. 

Casual inspection of Figs. 4 and 5 reveals that each plotted function exhibits a qualitative change in behavior 
after the 400th  fm.  The change is simply a consequence of the fact that the first 400 finite elements all were located 
in the zone (see Fig. 3) lying between the physical and extended boundaries, i.e., outside the ring of sources and 
detectors.  Closer inspection of Fig. 4 reveals that both spatial accuracy measures fall particularly far from their ideal 
values for those finite elements corresponding to roughly the 800th through 1100th fm.  These elements are the ones 
that lay in the central region of the target medium.  That is, the SVDWT algorithm reconstructed images that were 
strongly distorted spatially, with the absorption coefficient values of the central region significantly displaced 
toward the surface while those of the more peripheral region were recovered with considerably greater accuracy.  In 
contrast, the spatial correlation and centroid displacement are considerably more spatially uniform for the amplitude 
maps derived from the images reconstructed by the (preconditioned) SVDWTWRS algorithm.  This is a significant 



observation, as the two reconstruction variants theoretically should yield the same solution when both operate on a 
given set of detector data.  Finally, it is seen that in each panel of Fig. 4 and Fig. 5, most points on the dark 
(corrected images) curve lie closer to the ideal value than those on the light (uncorrected mages) curve.  This 
suggests the possibility that information in the ISF could be used to perform post–reconstruction enhancement of the 
images’ spatial accuracy. 

Fig. 5. Global spatial correlation (left) and distance of centroid from the correct location, for all spatial maps of FT amplitude derived 
from images reconstructed using the SVDWTWRS algorithm. 

Fig. 4. Global spatial correlation (left) and distance of centroid from the correct location, for all spatial maps of FT amplitude derived 
from images reconstructed using the SVDWT algorithm. 
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