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A theoretical model of photon propagation in a scattering medium is presented, from which algebraic formulas
for the detector-reading perturbations (DR) produced by one or two localized perturbations in the macroscopic
absorption cross section (Dma) are derived. Examination of these shows that when Dma is titrated from very
small to large magnitudes in one voxel, the curve traced by the corresponding DR values is a rectangular hy-
perbola. Furthermore, while DR` [ limDma→` DR is dependent on the location of the detector with respect to
the source and the voxel, the ratio DR/DR` is independent of the detector location. We also find that when
Dma is varied in two voxels simultaneously, the quantity DR(Dma,1 ` Dma,2) is a bilinear rational function of
the Dmas. These results apply not only in the case of steady-state illumination and detection but to time-
harmonic measurements as well. The validity of the theoretical formulas is demonstrated by applying them
to the results of selected numerical diffusion computations. Potential applications of the derived expressions
to image-reconstruction problems are discussed. © 1998 Optical Society of America
[S0740-3232(98)01503-8]
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1. INTRODUCTION

The primary approach we and others have taken in at-
tempting to make the image-recovery problem of photon
migration imaging more tractable1–8 is to recast it as a
discrete linear perturbation problem. These methods re-
quire specification of a reference medium whose proper-
ties are believed to differ as little as possible from those of
the target medium. Measurements of both the target
and the reference are performed (or estimates thereof are
computed), and the differences between corresponding de-
tector readings for the two are the input for the image-
recovery algorithm. The media are treated mathemati-
cally as sets of discrete voxels. In the linear
approximation, each detector reading difference is taken
to be a linear combination of the perturbations of the mac-
roscopic absorption and scattering cross sections in all
voxels. That is,

DRi 5 (
j

wijDm j , (1.1)

where DRi is the change in the ith detector reading, j is
0740-3232/98/040834-15$15.00 ©
an index representing both the voxel and the type of in-
teraction, and the Dm j’s are the macroscopic cross-section
perturbations. The weight wij is defined as wij
5 2]Ri /]m j , where the derivative is evaluated in the
absence of the perturbation. As a starting point, for this
report we have restricted our attention to effects of per-
turbations in only the absorption cross section ma on the
detector readings. In this case, j becomes strictly a voxel
index.

When only ma is perturbed, Eq. (1.1) can be written in
matrix form as DR 5 WDma . When the reference and
target media are too dissimilar, then W21DR, no matter
how accurately computed, is a poor estimate of Dma .
The reason for this is that nonlinear effects, which come
physically from what reactor physicists call ‘‘flux depres-
sion,’’ enter: the intensity, and thus the absorption rate,
is decreased in the vicinity of an absorber. This affects
the absorption rate both in the voxel with the increased
ma and in nearby voxels as well. One can also think of
this as a shadowing effect.

A standard approach for dealing with errors of this
type is to iteratively update the reference state using
Newton-type methods. While this may be effective, the
1998 Optical Society of America
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procedure typically is computation intensive and can be
sensitive to noise.9 Here we have engaged in an effort to
consider practical alternative approaches.

We have previously published some numerical studies
that indicate that, to a good approximation, nonlinear ef-
fects can be taken into account rather simply up to sizable
perturbations.10 This paper presents some theoretical
justification of the earlier results, along with further nu-
merical data. The theoretical model for effects of absorp-
tion perturbations is given in Section 2, and in Section 3
we use the model to derive formulas for the detector read-
ing perturbation produced either by one or by two local-
ized absorption cross-section perturbations. In Section 4
we compare results of numerical computations to the pre-
dictions of the formulas. In Section 5 we discuss the ana-
lytical results, and propose two protocols for possibly in-
corporating corrections for the nonlinear effects into
image-reconstruction algorithms.

2. THEORETICAL MODEL
2.A. Steady-State Illumination, Isotropic Scattering
For conceptual simplicity, we restrict our attention at
first to the problem of determining the steady-state inten-
sity in a finite medium that may be structurally hetero-
geneous but in which the differential scattering cross sec-
tion is everywhere isotropic. Generalization of the model
to the frequency domain and to anisotropic scattering will
be made later.

Let the medium be subdivided into some number I of
voxels. We assume no interactions other than absorption
and elastic scattering occur and that a scattered photon
may either escape across a boundary of the medium with-
out having another collision or have a subsequent colli-
sion in any one of the I voxels. Let Pij be the intensity of
light having its first collision in voxel i after being born
isotropically and with unit intensity in voxel j. Typi-
cally, Pij rapidly decreases as the optical distance be-
tween i and j increases. Let w i and f i be, respectively,
the unscattered and steady-state intensities in voxel i.
Also let P be the matrix whose ijth element is Pij , and w
and f be the vectors whose ith elements respectively are
w i and f i . Then we have

f 5 (
n50

`

Pnw, (2.A.1)

where by definition P0 5 I. The necessary and sufficient
condition for convergence is that the absolute value of the
largest eigenvalue of P be less than unity.11 In the case
under consideration, every element of P is real and non-
negative, which guarantees that the largest eigenvalue is
real and positive.11 P also has the property that each col-
umn sum is strictly less than unity (even if there is no ab-
sorption, since any real medium is finite so some photons
escape). These properties together are sufficient (but not
necessary) to guarantee that the largest eigenvalue is less
than unity.12,13 Thus the series converges, and

f 5 ~I 2 P!21w [ Tw. (2.A.2)

In an alternative algebraic approach that does not
make use of a collision expansion, we begin by simply de-
fining P and T as, respectively, the single-collision and
steady-state transfer operators. By definition, in a
steady state one additional collision produces no change
in the intensity. Thus P and T must satisfy the relation
T 5 I 1 PT, from which Eq. (2.A.2) follows directly.
Under the conditions posited, a unique inverse of I 2 P
exists.

2.B. Extension to Time-Harmonic Illumination
The formulas derived above hold not only in a steady
state but also in the frequency domain, so they apply to
photon density waves as well. Let the medium be illumi-
nated by a time-dependent source, and define Pij(t),
Tij(t), and w j(t) as rates. Thus Pij(t), for instance, is the
intensity per unit time of light having its first collision at
time t in voxel i after being born isotropically and with
unit intensity in voxel j. We further define Pij

n (t) as the
intensity per unit time of light having its nth collision at
time t in voxel i after being born isotropically and with
unit intensity in voxel j. From these definitions it fol-
lows that Pij

n (t) is a convolution in time and a sum over all
voxels in which the previous collision could have taken
place:

Pij
n ~t ! 5 (

k51

I F E
0

t

Pik~t8!Pkj
n21~t 2 t8!dt8G . (2.B.1)

Note that P can be recast as a product P 5 QS, where
the time-of-flight dependence resides only in Q, while S is
a diagonal matrix involving only the cross sections, which
are time independent. Thus S is independent of fre-
quency [put another way, S(t) is a d -function in time,
since an absorption is essentially instantaneous], so
P(v) 5 Q(v)S. Then all the equations we derive explic-
itly in the steady-state case continue to hold in the fre-
quency domain. Thus, in the frequency domain Eq.
(2.B.1) becomes a product relation, which when written in
matrix form is

Pn~v! 5 P~v!Pn21~v!. (2.B.2)

Since by definition P0(v) 5 I, Pn(v) 5 @P(v)#n.
Let tij be the time it takes for a photon to get from some

point in voxel j to some point in voxel i without collision.
Then P(t) 5 Pd(t 2 tij), where P is the steady-state ma-
trix, so the Fourier transform of P(t) is

P~v! 5 E
2`

`

P~t !exp~2ivt !dt 5 P exp~2ivtij!.

(2.B.3)

The uncertainty in the phase is quite small with the
voxels we consider, whose dimensions are on the order of
one transport mean free pathlength. This is ;1 mm for
near-infrared radiation in tissue, so if we take the uncer-
tainty in path length to be 1 mm, the corresponding un-
certainty in time for a speed of 2 3 108 m-s21 is Dt 5 5
3 10212 s. At a modulation frequency of 200 MHz,
vDt 5 2p 3 1023 radians, or about 1/3 of a degree,
which for practical purposes is negligible.

2.C. Anisotropic Scattering and Flux Computations
When the scattering is anisotropic, there is a correlation
between the direction in which a photon enters a scatter-
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ing interaction and the direction in which it leaves. It is
therefore necessary to discretize the medium in direction
as well as in position. Thus the elements of the corre-
sponding P matrix would be indexed by both voxel and di-
rection numbers. With this modification, the above for-
malism remains valid.

Indexing in direction as well as position would lead to a
T matrix from which we could compute photon fluxes as
well as intensities. Thus it could be worthwhile to per-
form the direction discretization even in the isotropic-
scattering case.

3. ABSORPTION-CROSS-SECTION
PERTURBATIONS
3.A. General Formalism
The formalism we will start from in our analyses of the
effects of localized absorption perturbations on the colli-
sion rate is well known in scattering theory, and it has
been used in some theoretical work on optical
tomography.14,15 Consider the P and T matrices for
some medium, let P0 and T0 be the corresponding matri-
ces for a different medium, which we will think of as the
background, and let DP 5 P 2 P0 . If T0 5 (I 2 P0)21

and T 5 (I 2 P)21, we have (I 2 P0)(T 2 T0)(I 2 P)
5 (I 2 P0)2(I 2 P) 5 DP, so that T 2 T0 5 T0DPT.
Left-multiplying by DP and reassociating terms gives
DPT 5 DPT0 1 DPT0DPT, from which it follows that
DPT 5 (I 2 DPT0)21DPT0 . Thus, finally,

T 5 T0 1 T0~I 2 DPT0!21DPT0 . (3.A.1)

This formula is totally general, i.e., no assumptions
were made about the form of DP. In Subsections 3.B–
3.D, we will make an approximation in which T is of the
form T 5 (I 2 P0X)21, where X is a diagonal matrix.
Defining Y 5 I 2 X and substituting 2P0Y for DP gives

T 5 T0 2 T0~I 1 P0YT0!21P0YT0

5 T0 2 T0P0Y~I 1 T0P0Y!21T0 . (3.A.2)

The third form follows from the second, since a(I 1 ba)
5 a 1 aba 5 (I 1 ab)a ⇒ (I 1 ab)21a 5 a(I 1 ba)21.
We will show below that detector-reading perturbations
are functions of the matrix T0 2 XT, which according to
Eq. (3.A.2) is

T0 2 XT 5 YT0 1 ~I 2 Y!T0P0Y~I 1 T0P0Y!21T0 .
(3.A.3)

3.B. Detector Readings: Lattice versus Continuum
Models
A detector reading is of the form

R 5 (
i51

I

rif i 5 rTf, (3.B.1)

where ri is the response of the detector to the last-time-
scattered intensity in voxel i. Now consider this relation
for both a perturbed and an unperturbed system. For
the unperturbed system we will put a subscript or super-
script 0 on the relevant vectors and matrices; the per-
turbed system will be referred to without sub/
superscripts. The perturbations considered will be
changes Dma,k in the absorption cross sections in some set
of voxels.

A basic assumption we make is that the perturbation in
ma,k does not have any effect on any of the elements of the
unscattered intensity vector w. This would be exactly
true if, for example, a line source were used and the per-
turbed voxels did not lie on the source line; it would be
significantly violated only if some perturbed voxels lay at
or near the site where the source was incident on the me-
dium. In the same spirit, we assume that the perturba-
tion in ma,k does not have any effect on any of the ele-
ments of r. The model used to generate the illustrative
data presented in this paper satisfies these assumptions,
but in the end their validity must be tested numerically
and experimentally.

For the unperturbed system, we have detector reading

R0 5 r0
TT0w0, (3.B.2)

where, as developed above in Section 2, T0 5 (I
2 P0)21. For the perturbed system, we draw a distinc-
tion between two cases, lattice models and continuum
models of photon transport.

In a lattice model, such as the one we used to generate
our illustrative data, transitions occur only between adja-
cent lattice points. The matrix element Pij has in it a
factor ms, j /m t, j , the scattering probability in voxel j. If
we change the absorption cross section in voxel j, with
ma, j → ma, j 1 Dma, j , we have

ms, j

m t, j
5

ms, j

m t, j
0

m t, j
0

m t, j
5

ms, j

m t, j
0

m t, j
0

m t, j
0 1 Dma, j

[
ms, j

m t, j
0 xj .

(3.B.3)

Let us define the matrix X with elements Xij 5 xjd ij .
Also, unlike a continuous medium, where there is an un-
ambiguous, natural definition for intensity, in a lattice
model there is an unavoidable element of arbitrariness in
the definition. Here we define w in terms of the number
of photons entering the lattice cells. Then P 5 P0X (it
would be XP0 if we had defined w in terms of the number
of photons leaving the lattice cells), and

R 5 rTXTw 5 rTX~I 2 P0X!21w. (3.B.4)

The X to the left of the T in Eq. (3.B.4) arises from the fact
that photons arriving at the detector have one more colli-
sion in the last voxel.

In the continuum case, the ratios of scattering to total
cross sections do not appear explicitly as multiplicative
factors in P. Rather, there is additional attenuation in
each affected voxel. An additional basic assumption that
we make here, which does not arise in the lattice case
(where all free paths are between nearest neighbors), is
that Pij is affected by a perturbation in either ma, j or ma,i
but that the effect on Pij of perturbations in voxels that a
photon must cross in getting from voxel j to voxel i may
be safely ignored. We believe the results derived under
this assumption are qualitatively correct, because (A)
given a perturbation in voxel k, only a small fraction of
voxel pairs in the medium have voxel k on the direct path
between them; (B) given the typically rapid decrease in
Pij with increasing distance between voxels i and j, few of
the affected elements of P are significantly greater than
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zero in any case; (C) both voxels in every pair that does sit
astride the perturbed voxel receive the bulk of their total
intensity from other, unperturbed voxels.

Perhaps the most reasonable expression for the addi-
tional attenuation factor in voxel k is

xk 5 exp~2Dma,kl k!, (3.B.5)

where l k is a distance taken to be on the order of the lin-
ear dimension of the voxel. Although arguments can be
advanced for making l k either smaller than or larger
than the voxel dimension, that certainly is approximately
correct. Although we will continue, for reasons of nota-
tional convenience, to define P as P0X, the quantity that
should replace P0 in the expression for R is

P8 5 X1/2P0X1/2, (3.B.6)

where (X1/2) ij 5 Axjd ij . The rationale for this is that on
average a photon is attenuated by an extra factor
exp(2Dma,il i/2) if there is a perturbation in voxel i and by
exp(2Dma,jl j/2) if there is a perturbation in voxel j. This
rationale should hold irrespective of the choice we ulti-
mately make for the form of xk .

The detector-reading perturbation DR 5 R0 2 R will
be a rational function of the Dma’s in a lattice model. In
a continuum model, one can replace Eq. (3.B.5) by a ra-
tional function that goes to the same limits when Dma
goes to either zero or infinity, and that has the same de-
rivative as Dma goes to zero. The simplest such expres-
sion is

xk '
1

1 1 Dma,kl k
. (3.B.7)

However, none of the subsequent discussion depends on
making this approximation.

With the definitions we are using, two other changes
must be made in a continuum model vis-à-vis a lattice
model when the absorption cross section is perturbed.
First, w must be replaced by X1/2w because on the average
an unscattered photon penetrates halfway into the first-
collision voxel before having the first collision. Second, f
must be replaced by X1/2f because on the average a pho-
ton must travel halfway through the last-collision voxel
after the last collision before it reaches the detector at the
surface. Thus we replace Eq. (3.B.4) with

R 5 rTX1/2~I 2 X1/2P0X1/2!21X1/2w. (3.B.8)

Now, X1/2(I 2 X1/2P0X1/2)21X1/2 5 @X21/2(I 2 X1/2P0X1/2)
X21/2#21 5 @(I 2 P0X)X21#215 X(I 2 P0X)21. Using
our previous definition, T 5 (I 2 P0X)21, gives the same
formal result as in the lattice model: R 5 rTXTw.

With these definitions, then, from either a lattice model
or a continuum model the detector-reading perturbation
is DR 5 r0

TT0w0 2 rTXTw. As we are assuming that w
5 w0 and that rT 5 r0

T , we have

DR 5 r0
T~T0 2 XT!w0. (3.B.9)

Let Y 5 I 2 X and let yj 5 1 2 xj , so that Yij5 yjd ij .
Only those yi’s corresponding to perturbed voxels are non-
zero. Now, Y 5 I 2 P0X 2 X 1 P0X5 (I2 P0X)
2 (I 2 P0)X 5 T21 2 T0

21X 5 T0
21(T0 2 XT)T21, or

T0 2 XT 5 T0YT. (3.B.10)
Then T0 5 (X 1 T0Y)T 5 (I 2 Y 1 T0Y)T 5 (Y21 2 I
1 T0)YT. Let V [ Y21 2 I 1 T0 . That is,

T0 5 VYT. (3.B.11)

3.C. Absorption Perturbed in Exactly One Voxel
Let us perturb a single voxel, which we will call q, by al-
tering only its absorption cross section. So only the qqth
element of Y is nonzero, and Eqs. (3.B.10) and (3.B.11)
give us (T0 2 XT) ij 5 (T0) iq(YT)qj and (T0)qj
5 Vqq(YT)qj , respectively. Combining these relations
leads to

~T0 2 XT!ij 5
~T0!iq~T0!qj

Vqq
, (3.C.1)

and substitution of Eq. (3.C.1) into Eq. (3.B.9) gives us

DR 5
1

Vqq
(
i, j

r0,i~T0!iq~T0!qjw j
0

5
1

Vqq
F(

i
r0,i~T0!iqGF(

j
~T0!qjw j

0G
5

1
Vqq

F(
i

r0,i~T0!iqGfq
0 5

r0
Ttqfq

0

Vqq
, (3.C.2)

where tq is the qth column of T0 , (tq) i 5 (T0) iq . Now
Vqq 5 yq

21 2 1 1 (T0)qq , and so

DR 5
r0

Ttqfq
0yq

1 1 ~T0 2 I!qqyq
, (3.C.3)

which is a rational function in yq . For the lattice and
continuum cases we have, respectively, yq 5 Dma,q /(m t,q

0

1 Dma,q) and yq ' Dma,q /(l q
21 1 Dma,q). Then the

detector-reading perturbation is

DR 5
r0

Ttqfq
0Dma,q

m t,q
0 1 ~T0!qqDma,q

(3.C.4a)

for the lattice case, and

DR '
r0

Ttqfq
0Dma,q

1
l q

1 ~T0!qqDma,q

(3.C.4b)

for the continuum case. Each of these is a simple ratio-
nal function in which the numerator and denominator are
both linear in Dma,q .

The greatest possible detector-reading perturbation
that can be caused by an absorption perturbation in voxel
q is

DR`q [ lim
Dma,q→`

DR 5
r0

Ttqfq
0

~T0!qq
, (3.C.5)

while the limiting (linear) form for small absorption per-
turbations is

lim
Dma,q→0

DR 5
r0

Ttqfq
0

kq
Dma,q , (3.C.6)

where kq is either m t,q
0 (lattice case) or l q

21 (continuum
case). This gives the linear absorption weight of the jth
voxel for the ith detector [Eq. (1.1)],
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wij 5
r0,i

T tjf j
0

k j
, (3.C.7)

where we use r0,i to denote the ith detector’s response
function.

From Eqs. (3.C.4) and (3.C.5), one has

DR
DR`q

5
Dma,q

kq

~T0!qq
1 Dma,q

. (3.C.8)

There is no dependence on the detector response function
r0 in Eq. (3.C.8), so the ratio DR/DR`q is independent of
detector location. Furthermore, its dependence on the lo-
cation of the perturbed voxel will be weak to the extent
that kq /(T0)qq is slowly spatially varying.

From Eqs. (3.C.5) and (3.C.7), one has
When rewritten in terms of yq and yp , Eq. (3.D.4) be-
comes

DR 5 r0
T

tqfq
0yq 1 tpfp

0yp 1 Aq,pyqyp

1 1 ~T0 2 I!qqyq 1 ~T0 2 I!ppyp 1 Bq,pyqyp
,

Aq,p 5 tq~T0 2 I!ppfq
0 1 tp~T0 2 I!qqfp

0 2 tq~T0!qpfp
0

2 tp~T0!pqfq
0,

Bq,p 5 ~T0 2 I!qq~T0 2 I!pp 2 ~T0!qp~T0!pq .
(3.D.5)

For the lattice case, we define z [ Dma,q /m t,q
0 and n

[ Dma,p /m t,p
0 ; for the continuum case the definitions are

z [ Dma,ql q and n [ Dma,pl p . In either case we have
yq 5 z/(1 1 z) and yp 5 n/(1 1 n). Substituting these
expressions into Eq. (3.D.5), we get
DRi
` j

wij
5

k j

~T0!jj
, (3.C.9)

in which there is, again, no dependence on the detector lo-
cation. This fact may be useful when attempting to in-
corporate a correction for the nonlinear dependence of de-
tector readings on absorption perturbations into an image
reconstruction procedure (see Subsection 5.D).

3.D. Absorption Perturbed in Exactly Two Voxels
Let us perturb two voxels, which we will call q and p, by
altering only their absorption cross sections. So only the
qqth and ppth elements of Y are nonzero, and Eq.
(3.B.10) gives us (T0 2 XT) ij 5 (T0) iq(YT)qj
1 (T0) ip(YT)pj . And from Eq. (3.B.11),

~T0!qj 5 Vqq~YT!qj 1 ~T0!qp~YT!pj ,

~T0!pj 5 Vpp~YT!pj 1 ~T0!pq~YT!qj . (3.D.1)

Inverting Eq. (3.D.1) yields

~YT!qj 5
1
D

@Vpp~T0!qj 2 ~T0!qp~T0!pj#,

~YT!pj 5
1
D

@Vqq~T0!pj 2 ~T0!pq~T0!qj#, (3.D.2)

where D [ VqqVpp 2 (T0)qp(T0)pq . Substitution of Eq.
(3.D.2) into the expression for (T0 2 XT) ij results in
~T0 2 XT!ij 5
~T0!iq@Vpp~T0!qj 2 ~T0!qp~T0!pj# 1 ~T0!ip@Vqq~T0!pj 2 ~T0!pq~T0!qj#

D
. (3.D.3)
Next, substitution of Eq. (3.D.3) into Eq. (3.B.9) gives us

DR 5 r0
T

tqVppfq
0 1 tpVqqfp

0 2 tq~T0!qpfp
0 2 tp~T0!pqfq

0

D
.

(3.D.4)
DR 5 r0
T

tqfq
0z 1 tpfp

0n 1 @tq~T0!ppfq
0 1 tp~T0!qqfp

0 2 tq~T0!qpfp
0 2 tp~T0!pqfq

0#zn

1 1 ~T0!qqz 1 ~T0!ppn 1 @~T0!qq~T0!pp 2 ~T0!qp~T0!pq#zn
. (3.D.6)
Thus DR is a rational function in which both numerator
and denominator are bilinear in Dma,q and Dma,p . As re-
quired, Eq. (3.D.6) is invariant under exchange of the in-
dices p and q. Also, when Dma,p 5 0, Eq. (3.D.6) reduces
to Eq. (3.C.4).

The interaction between the two absorption perturba-
tions can be quantified by comparing Eq. (3.D.6) to the
detector-reading perturbation that would result if their
effects were simply additive. In that case the combined
effect would be

DR 5 r0
T

tqfq
0z 1 tpfp

0n 1 @tq~T0!ppfq
0 1 tp~T0!qqfp

0#zn

1 1 ~T0!qqz 1 ~T0!ppn 1 ~T0!qq~T0!ppzn
.

(3.D.7)

We see immediately that the difference between Eqs.
(3.D.6) and (3.D.7) is that the latter contains only the di-
agonal elements of T0 and lacks the off-diagonal ele-
ments. It is to be expected that (T0)qp and (T0)pq will
typically decrease as the distance between voxels p and q
increases. As this happens the mutual coupling effect
will likewise diminish, so Eq. (3.D.7) is a limiting form of
Eq. (3.D.6). The mutual coupling is the difference be-
tween Eq. (3.D.7) and Eq. (3.D.6). The relative mutual
coupling 1 2 @DRpq/(DRq 1 DRp)# is, however, fre-
quently a more useful quantity for describing the effect.
For either the absolute or the relative mutual coupling,
the equations give rise to a rational function containing
terms up to z2n2 in both numerator and denominator. As
required, its value is exactly zero if either Dma,q 5 0 or
Dma,p 5 0. The coefficients for both functions are given
in Table 1.

In contrast to the single-absorber case, here the nor-
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Table 1. Coefficients of Rational Functions for the Absolute Mutual Coupling DRq 1 DRp 2 DRpq and the
Relative Mutual Coupling 1 2 @DRpq/(DRq 1 DRp)# between Two Perturbed Voxels (See Subsection 3.D),

in Terms of the Relative Absorption Perturbations z and n

Coefficient
Multiplying Numerator

Denominator, Absolute
Mutual Coupling

Denominator, Relative
Mutual Coupling

1 0 1 0
z 0 2(T0)qq r0

Ttqfq
0

n 0 2(T0)pp r0
Ttpfp

0

z2 0 (T0)qq
2 r0

Ttq(T0)qqfq
0

n2 0 (T0)pp
2 r0

Ttp(T0)ppfp
0

zn r0
T@tq~T0!qpfp

0 1 tp~T0!pqfq
0# 4~T0!qq~T0!pp 2 ~T0!qp~T0!pq 2r0

T@tq~T0!ppfq
0 1 tp~T0!qqfp

0#

z2n r0
T@tq~T0!qq~T0!qpfp

0 1 tp~T0!pq~T0!qqfq
0

2tq(T0)qp(T0)pqfq
0]

~T0!qq@2~T0!qq~T0!pp 2 ~T0!qp~T0!pq# r0
T@2tq~T0!qq~T0!ppfq

0 1 tp~T0!qq
2 fp

0

2tq~T0!qp~T0!pqfq
0]

zn2
r0

T@tp~T0!pp~T0!pqfq
0 1 tq~T0!qp~T0!ppfp

0

2tp(T0)pq(T0)qpfp
0]

~T0!pp@2~T0!qq~T0!pp 2 ~T0!qp~T0!pq# r0
T@2tp~T0!qq~T0!ppfp

0 1 tq~T0!pp
2 fp

0

2tp~T0!pq~T0!qpfq
0]

z2n2
r0

T$tq~T0!qp~T0!pp@~T0!qqfp
0 2 ~T0!pqfq

0#

1 tp~T0!pq~T0!qq@~T0!ppfq
0 2 ~T0!qpfp

0#%

~T0!qq~T0!pp@~T0!qq~T0!pp 2 ~T0!qp~T0!pq# r0
T@tq~T0!ppfq

0 1 tp~T0!qqfp
0#

3 @~T0!qq~T0!pp 2 ~T0!qp~T0!pq#
malized detector-reading perturbation is not, in general,
the same in all voxels. We have found it is not possible to
eliminate all reference to the detector response function
from the expression for the ratio of DRpq to DR`p`q.
Therefore the normalized detector-reading perturbation
is a function of position within the medium. This is a
consequence of having absorption perturbations in two
distinct voxels at the same time, and is not caused by
their mutual coupling, for the ratio of DRq 1 DRp to
DR`p 1 DR`q also retains a dependence on r0 .

4. ILLUSTRATIVE DATA
4.A. Methods

4.A.1. Relaxation Solver
In order to demonstrate relationships derived in the
preceding section, sets of detector readings were com-
puted using a relaxation code.16 It numerically computes
solutions to a six-flux model of light propagation. The
media modeled in these computations are, strictly speak-
ing, sets of discrete points or nodes, with each node di-
rectly linked to six others. It is conceptually simpler,
however, to envision them as continuous three-
dimensional media subdivided into cubical cells. Corre-
sponding to each cell is a six-dimensional vector f, each
component of which is a discretized angular intensity (or
specific intensity, or radiance) in one of the allowed direc-
tions.

The relaxation model is an order-of-scattering calcula-
tion in which the light is constrained to move exactly one
mean free path (mfp) between successive collisions, from
the cell it occupies into the six contiguous cells. The
propagation of light into a cell from each of its six neigh-
bors is governed by a 6 3 6 scattering matrix p, where pij
is the fraction of light entering the cell in direction j that
scatters into direction i. Any desired type and extent of
heterogeneity and anisotropy can be modeled in the relax-
ation code’s most general form, because p can be indepen-
dently specified for every cell in the medium, and it need
not be symmetric. However, for our purposes we mod-
eled only media that were homogeneous except for one or
two cells, with scattering everywhere isotropic, and no in-
ternal reflection at the boundaries. Combining the angu-
lar intensity vectors and scattering matrices for all the
cells into a single system of linear equations gives us
f(n 1 1) 5 Prlxf(n). The transmission matrix Prlx is the
relaxation model equivalent of the direction-discretized
one-step transition matrix P defined in Subsection 2.C.
Then f(n) is Prlx

n w.
The dimensions of a slab medium, the absorption coef-

ficient of each cell, and a first-collision distribution (i.e., a
w) are specified at the outset of a computation. The com-
putation terminates when the Euclidean norm if(n)i
[where ixi [ ((nxn

2)1/2] falls below a preset threshold.
The angular intensities are then summed over all direc-
tions and all collision orders in each cell to obtain the
steady-state intensity. The sum over collisions of the
light that is scattered out of the medium through each
surface cell is taken as the steady-state detector reading
R for a detector in the corresponding location on the sur-
face of the medium. The detector readings are reported
in units of photons emerging per incident photon per unit
area.

The reference medium for which results presented be-
low were computed was a homogeneous, nonabsorbing
(ma 5 0) slab whose dimensions were 61 3 61 3 11 cells.
The scattering cross section was ms 5 1, i.e., one scatter-
ing per mfp. The scattering distribution was isotropic in
all cells. The light source was modeled by specifying w
5 1 in cell (i, j, k) 5 (31, 31, 1), 0 elsewhere. Read-
ings were computed for 62 distinct detectors, which were
located on the exterior faces of cells (i, 31, 1) and
(i, 31, 11), with i 5 1 –31.

To generate the one-absorber results presented here,
the absorption cross section was perturbed in cell
(31, 31, 5), (31, 30, 6), (31, 31, 6), (31, 31, 7), or (31, 31, 1).
For each of the first four of these cells, we did calculations
with Dma 5 0, 0.05, 0.1, ..., 0.35, 0.4, 0.5, ..., 0.9, 1.0, and



840 J. Opt. Soc. Am. A/Vol. 15, No. 4 /April 1998 Graber et al.
`. For a perturbation in cell (31, 31, 1), we used Dma
5 0, 0.02, ..., 0.22, 0.24, and 1.0.

In the two-absorber study whose results are shown be-
low, the effects on detector readings of simultaneous ab-
sorption cross-section perturbations in cells (31, 31, 5)
and (31, 31, 7) were computed. These computations em-
ployed the same sequence of values for the absorption
probabilities as did the one-absorber studies. Internal
collision rates and detector readings were obtained for ev-
ery possible pairing of the Dma’s.

4.A.2. Analytic Solution to the Diffusion Equation
As a test of the accuracy of the relaxation solver, the dif-
fuse transmittance and reflectance computed for the finite
slab medium described above were compared to the corre-
sponding fluxes computed from an analytic solution to the
diffusion equation for an infinite slab. Let the diffusing
medium be a homogeneous, nonabsorbing, isotropically
scattering infinite slab with plane boundaries at z 5 0
and z 5 Z (all distances are in units of mean free paths).
For such a slab, with a unit strength point source located
at (x, y, z) 5 (0, 0, zs) and with extrapolated boundaries
lying a distance z0 outside the physical boundaries, the
magnitude of the reflected flux at radial distance x from
the source is

uJ~x, 0, 0 !u 5
1

4p U (
i52`

`

@a i~x2 1 a i
2!23/2

2 b i~x2 1 b i
2!23/2#U , (4.A.1)

where a i 5 2iZ 2 zs 1 (4i 2 2)z0 and b i 5 2iZ 1 zs
1 4iz0 . For the same medium, the magnitude of the
transmitted flux, uJ(x, 0, Z)u, is obtained by replacing a i
and b i in Eq. (4.A.1) with, respectively, a i 2 Z and b i
2 Z.

The flux magnitudes uJ(x, 0, 0)u and uJ(x, 0, Z)u were
calculated for many source depths zs,i 5 0.1i, i
5 1 –109, and at x 5 0, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 1.5, ...,
30.0, 30.5, with z0 5 0 and again with z0 5 0.7104.
Each calculation was terminated when the ratio of the
nth partial sum to the (n 2 1)th differed from unity by
less than 1026 in absolute value.17 The flux magnitudes
corresponding to an exponentially attenuated line source
were estimated by multiplying the flux arising from the
ith point source by e2zs,i/(je

2zs, j and then summing over
i. This procedure generates an approximate value for
the flux across a boundary at a point; the point-flux esti-
mates were numerically integrated using Simpson’s rule
to obtain estimates of fluxes through 1-mfp2 surface area
patches for comparison to the relaxation data.

4.A.3. Computation of Best-Fitting Parameter Values
All computations of best-fitting parameters referred to be-
low were performed by using the nonlinear curve-fitting
procedure of PSI-Plot version 4.51 for Windows. This
uses a Marquardt–Levenburg algorithm18 with a least-
squares convergence criterion. For nonlinear model
functions, the coefficient of determination (COD), which is
the fraction of total variance in the data that is accounted
for by the model,19 was used to measure the goodness of
fit.
4.B. Results

4.B.1. Accuracy of Numerical Flux Computations for a
Homogeneous Medium
A sketch of the reference medium with its dimensions and
the locations of the source and detectors explicitly indi-
cated is shown in Fig. 1(b). One-dimensional detector ar-
rays were specified on the slab’s top and bottom faces in
generating the computational results presented here; the
lines along which the sets of reflectance detectors and
transmittance detectors lay were all in the central plane
y 5 31. The computed fluxes of light reflected (open
circles) and transmitted (open squares) across these two
surfaces, as a function of the distance between the x coor-
dinates of source and detector, are shown in Fig. 1(b).
Shown on the same plot are two sets of curves obtained
from the analytic solution of the diffusion equation for an
infinite, 11-mfp-thick, nonabsorbing, homogeneous slab.
These results were obtained with z0 set to zero (solid

Fig. 1. Detector readings, homogeneous reference medium. (a)
Sketch of three-dimensional homogeneous, isotropically scatter-
ing medium modeled in computation of reference detector read-
ings by the relaxation code. Units of the indicated dimensions
are numbers of cells. Also shown are source and detector loca-
tions; the two detector arrays are in the same plane. (b) Plot of
base-ten logarithms of the computed detector readings for re-
flected (circles) and transmitted (squares) light, as a function of
distance along the surface between the incident beam and the de-
tector. Plotted curves are analytic diffusion equation solutions
for an infinite homogeneous, nonabsorbing, isotropically scatter-
ing slab that is 11 mfp thick, with the diffuse intensity going to
zero at the physical boundaries (solid curves) or at extrapolated
boundaries 0.7104 mfp outside the physical boundaries (dashed
curves).



Graber et al. Vol. 15, No. 4 /April 1998 /J. Opt. Soc. Am. A 841
curves) and to 0.7104 mfp (dashed curves). The good
agreement between the numerical and analytic results in-
dicates that the relaxation code computes an accurate nu-
merical solution to the diffusion equation for this me-
dium.

4.B.2. DR versus Dma , One Absorption Perturbation
Results of a one-absorber computation with Dma located
in cell (31, 31, 5) are shown for 4 of the 62 detectors in
Fig. 2. Figure 2(a) is a sketch of the two-dimensional
(2-D) section y 5 31 of the slab, with the locations of the
perturbed cell and the detectors indicated; the distance
units are numbers of cells, and each cell’s linear dimen-
sion is one mfp in the unperturbed reference medium.
The absolute values of DR (i.e., R0 2 R, where R0 is the
reference medium detector reading) are plotted against
Dma in Fig. 2(b). Here (and in subsequent figures) Dma is
expressed as the percent increase in the perturbed cell’s
m t that is caused by the absorption perturbation. The
data points for detectors r2 (open circles) and t2 (open
triangles) appear to lie on the Dma axis because the DR
values for these detectors are 2–3 orders of magnitude
smaller than are those for detectors r1 (filled circles) and
t1 (filled triangles). The best fit of each set of data
points to the equation

DR 5
DR`Dma

K 1 Dma
(4.B.1)

was computed using only the data for Dma < 1.0; the
form of Eq. (4.B.1) follows directly from Eq. (3.C.4). The
resulting best fits are plotted as solid curves through the
data points, and the best-fitting parameters are given in
Table 2; in every case the COD differed from unity by less
than 1028.

Equation (4.B.1) is formally identical to the Michaelis–
Menten equation of enzymology, which relates the rate of
an enzyme-catalyzed reaction V to the concentration of
substrate S. The DR` and K parameters are respec-
tively analogous to Vmax and KM .

4.B.3. DR/DR` versus Dma , One Absorption
Perturbation
In Table 2 it is seen that the values obtained for K are
nearly identical for all four detectors indicated in Fig.
2(a), a result that lends computational validity to Eq.
(3.C.8). Also, for each detector the DR` obtained from
the curve fit is nearly identical to that computed by the
relaxation solver when Dma 5 `. In Fig. 2(c) the data
points and curves in Fig. 2(b) are replotted as DR/DR` vs.
Dma . Each data point was normalized by dividing by the
DR` obtained from the relaxation computation for the
corresponding detector, and each curve by dividing by the
DR` determined from the corresponding curve fit. As
predicted by Eq. (3.C.8), the relation between DR/DR`

and Dma is independent of detector location; the distances
between curves in Fig. 2(c) is less than the line thickness.

4.B.4. Dependence of Detector Readings on Perturbed
Cell Location
Results of a study of the sensitivity of the parameter K in
Eq. (4.B.1) to the location of the perturbed cell are shown
in Fig. 3. Figure 3(a) is a sketch of the 2-D section y
5 31 of the slab, with three locations [(31, 31, 1),
(31, 31, 5), (31, 31, 7)] of the perturbed cell for which one-
absorber computations were performed indicated. For
each of these sites, the ratio DR(Dma)/DR` was calcu-
lated for every 1 of the 62 detectors and every value of
Dma ; for the case of Dma Þ 0 in cell (31, 31, 1), which
blocks the source, each detector’s DR` is equal to its R0 .
Then the mean and standard deviation of DR(Dma)/DR`

over the full set of detectors were calculated for each
value of Dma . In Fig. 3(b), the mean values of

Fig. 2. Effect of a single localized Dma on computed detector
readings. (a) Sketch of 2-D section through the slab medium,
showing the location of the perturbed cell [cell (31, 31, 5)] and
four detectors. Units of indicated distances are numbers of
cells. (b) DR vs. Dma (in units of percent increase in the per-
turbed voxel’s m t owing to the increased absorption), for the four
detectors indicated in (a). Curves are best fits of Eq. (4.B.1) to
the data points, using only the data points for finite values of ma .
Data point–detector correspondences are as follows: filled
circles, detector r1 ; filled triangles, detector t1 ; open circles, de-
tector r2 ; open triangles, detector t2 . (c) DR/DR` versus Dma
for the same detectors as in (b); symbols also are the same as in
(b).
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DR(Dma)/DR` are plotted against Dma for each of the
three cells indicated in Fig. 3(a). The associated stan-
dard deviations are shown in a base-ten, log-linear plot in
Fig. 3(c). The greatest coefficient of variation for any
single data point is 0.21%, when Dma 5 0.1 in cell
(31, 31, 7). For most data points, the coefficient of varia-
tion is less than 0.1%.

The curves sketched in Fig. 3(b) are plots of the best fits
of the data points to the two-parameter model

K DR
DR`L 5 l

Dma

K 1 Dma
. (4.B.2)

The distance between the curves for Dma in cell (31, 31, 5)
(circles) and in cell (31, 31, 7) (squares) is less than the
curve thickness. For Dma in cell (31, 31, 1), the best fit to
the model was calculated from only the data points for
which Dma < 0.24, and the data point for Dma 5 1.0 was
computed afterward. The numerical values obtained for
the best-fitting parameters, for the three cells indicated in
Fig. 3(a) and for two other cells [(31, 31, 6), (31, 30, 6)],
are given in Table 3; in all cases the COD differed from
unity by less than 1028. Ideally, l would be exactly 1.0
in all cases. The calculated l differs from 1.0 by at most
0.0002; this maximum deviation was obtained for the set
of data points encompassing the smallest range of Dma
values. There was no appreciable change in K, the COD,
or the model selection criterion19 computed for Dma Þ 0
in any cell when a one-parameter model was used in place
of Eq. (4.B.2).

4.B.5. DR versus Dma , Two Absorption Perturbations
Results of a two-absorber computation for two specific de-
tectors, and Dma Þ 0 in cells (31, 31, 5) and (31, 31, 7),
are shown in Figure 4. Figure 4(a) is a sketch of the 2-D
section y 5 31, with the locations of the perturbed cells
and the detectors indicated. The absolute value of DR
for detector r is plotted against Dma,5 [ Dma,(31, 31, 5) and
Dma,7 [ Dma,(31, 31, 7) in Fig. 4(b). Let us call the function
graphed in Fig. 4(b) DRc (for ‘‘coupled’’), and let DRi (for
‘‘independent’’) be the sum of the detector reading pertur-
bations produced by Dma,5 and Dma,7 each acting alone.
The absolute mutual coupling between cells (31, 31, 5)

Table 2. Coefficients of Best Fits of Eq. (4.B.1) to
the Four Sets of Data Points Shown in Fig. 2(b).

Shown Also Are the Detector Readings’
Perturbations Obtained from the Relaxation

Computation When a Perfect Absorber Was Placed
in the Cell Shaded in Fig. 2(a)

Detector Located
over Cell K

DR` from
Curve Fit

DR` from
Relaxation

Computation

(26, 31, 1) 0.68552 5.3684 3 1025 5.3685 3 1025

62 3 1025 69 3 10210

(6, 31, 1) 0.68550 1.2498 3 1027 1.2498 3 1027

61 3 1025 61 3 10212

(31, 31, 11) 0.685540 7.9602 3 1025 7.9602 3 1025

62 3 1026 61 3 10210

(11, 31, 11) 0.685545 5.2639 3 1027 5.2639 3 1027

61 3 1026 66 3 10213
and (31, 31, 7), DRi 2 DRc , is shown in Fig. 4(c). The
same data are replotted in Fig. 4(d) as the relative per-
cent mutual coupling, 100(1 2 DRc /DRi). DRc , DRi
2 DRc , and 100(1 2 DRc /DRi) for detector t are
graphed in Figs. 4(e)–4(g).

The surfaces plotted in Figs. 4(e)–4(g) are symmetric
about the line Dma,5 5 Dma,7 . This was expected, for two
reasons. First, the perturbed cells are symmetric about
the midplane of the slab and the reference medium is ho-
mogeneous, and therefore (T0)pp 5 (T0)qq and both linear
terms in the denominator of Eq. (3.D.6) should have the
same coefficient. Second, the absorption weights [as de-

Fig. 3. Dependence of DR/DR` on location of a single Dma . (a)
Sketch of 2-D section through the slab medium, showing three
alternative locations for the perturbed cell [(31, 31, 1), (31, 31, 5),
or (31, 31, 7)]. Units of indicated distances are numbers of cells.
For each Dma location and magnitude the ratio DR(Dma)/DR`

was calculated for each of the 62 detectors, and the mean and
standard deviation over the set of detectors were then computed.
(b) Plots of DR(Dma)/DR` versus Dma , for Dma in each of the
three cells indicated in (a). Data point–perturbed cell corre-
spondences are as follows: circles, cell (31, 31, 5); squares, cell
(31, 31, 7); triangles, cell (31, 31, 1). (c) Plots of
log10$s@DR(Dma)/DR`#% versus Dma . Units and symbols are
the same as in (b).
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fined in the text following Eq. (1.1)] of the two cells are
equal for detector t because of the inline transmission ge-
ometry and the homogeneity of the reference medium,
and therefore both linear terms in the numerator of Eq.
(3.D.6) should have the same coefficient. The surface in
Fig. 4(c) also is symmetric about Dma,5 5 Dma,7 within the
domain of the plot; however, it would become more visibly
asymmetric if the domain were extended to include values
of Dma,5 and Dma,7 greater than unity.

The DRc and DRi data were fitted to the equations

DR 5
anDma,5 1 bnDma,7 1 cnDma,5Dma,7

1 1 adDma,5 1 bdDma,7 1 cdDma,5Dma,7

(4.B.3a)
for detector r , and

DR 5
an~Dma,5 1 Dma,7! 1 cnDma,5Dma,7

1 1 ad~Dma,5 1 Dma,7! 1 cdDma,5Dma,7

(4.B.3b)
for detector t ; these functional forms follow directly from
Eqs. (3.D.6) and (3.D.7), and the four-parameter model is
appropriate for detector t because of the symmetry of DR
about Dma,5 5 Dma,7 . The numerical values obtained for
the best-fitting parameters are given in Table 4; in all
cases the COD differed from unity by less than 1028.
Equations (3.D.6) and (3.D.7) differ only in the coeffi-
cients of the quadratic terms, and this is also what we see
in the calculations. For detector r , ad and bd are essen-
tially equal. This was expected because the elements of
T0 for the two perturbed cells are equal in the medium
that we specified. There was no appreciable change in
the best-fitting parameter values, the COD, or the model
selection criterion when a five-parameter model that re-
places bd with ad was used in place of Eq. (4.B.3a).

5. DISCUSSION
The current work was motivated by the prospect of ob-
taining a simple improvement to linear perturbation
theory. We have derived expressions for the net DR
caused by Dma’s of any magnitude in any one [Eq. (3.C.4)]
or two [Eq. (3.D.6)] voxels. These can, in principle, be
generalized to conditions of time harmonic illumination
and anisotropic scattering.

Comparison of detector readings computed by the re-
laxation method to those obtained from analytic diffusion
equation solutions shown in Fig. 1 (and comparisons, not

Table 3. Coefficients of Best Fits of Eq. (4.B.2) to
the Three Sets of Data Points Shown in Fig. 3(b)
and for Two Other Locations of the Absorption

Perturbation Not Shown in Fig. 3

Perturbed Cell l K

(31, 31, 1) 0.99979 6 6 3 1025 0.79427 6 6 3 1025

(31, 31, 5) 0.99998 6 2 3 1025 0.68553 6 2 3 1025

(31, 31, 7) 1.00001 6 5 3 1025 0.68557 6 6 3 1025

(31, 31, 6) 1.00001 6 2 3 1025 0.68444 6 2 3 1025

(31, 30, 6) 0.99999 6 2 3 1025 0.68434 6 3 3 1025
shown, of intensities at locations in the slab interior)
gives us confidence in the numerical data.

For a medium containing one ma perturbation, Eq.
(3.C.4) shows that the condition for validity of the linear
approximation, Eq. (1.1), is z ! 1/(T0)qq , where z
5 Dma,q /m t,q

0 in the lattice case and z 5 Dma,ql q in the
continuum case. From the results shown in Fig. 2 and
Fig. 3, we see that for the particular reference medium
and Dma locations considered, all DRs are nearly propor-
tional to Dma,q when Dma,q < 0.1m t,q

0 , a finding which is
consistent with the rule-of-thumb used by researchers
computing transport equation solutions.20 From Eq.
(3.D.6) we can likewise obtain the conditions for validity
of Eq. (1.1) in a medium containing two ma perturbations.

The one-perturbation results shown in Fig. 2 and Fig. 3
are fully consistent with the theoretical derivation in Sub-
section 3.C. Perturbations in individual detector read-
ings depend on the magnitude of Dma in the manner pre-
dicted by Eq. (3.C.4), and the quantity
DRi(Dma,q)/DRi(`) exhibits no dependence on the detec-
tor location beyond that which numerical roundoff errors
could be expected to cause [Fig. 2(c), Fig. 3(c), and Table
2]. In terms of the quantities in Eq. (3.C.4), the param-
eter K that appears in Eq. (4.B.1) is equal to m t,q

0 /(T0)qq

(lattice case) or 1/@(T0)qql q# (continuum case). m t,q
0 is in-

dependent of q for the lattice media used in our numerical
studies, so K is simply inversely proportional to (T0)qq .
We would expect (T0)qq to be smaller for a voxel/cell near
a boundary than for a deep-lying one, because a photon
colliding with a near-surface cell is more likely to exit the
medium before it has another collision in the same cell.
This is consistent with the results of the one-absorber
studies, where the largest K was obtained when the per-
turbed cell is (31, 31, 1).

The two-absorber results shown in Fig. 4 are fully con-
sistent with the equations derived in Subsection 3.D.
Perturbations in individual detector readings depend on
the magnitude of Dma,q and Dma,p in just the manner pre-
dicted by Eq. (3.D.6). In contrast to the one-perturbation
case, the shape of the DRi surface as a function of Dma,p
vs. Dma,q depends upon the detector location.

In the relaxation model, photons travel in steps of ex-
actly one mfp between successive collisions. Further, all
incident photons experience their first collision in the
first-layer cell directly beneath the source [i.e., even when
Dma is in cell (31, 31, 1), the spatial distribution of first
collisions is unaffected], and all photons entering a given
detector have their last collision in the first-layer cell di-
rectly beneath the detector. As a consequence the relax-
ation model satisfies the assumptions made. These prop-
erties would not be changed by replacing the isotropic
scattering used to generate the results with forward-
directed scattering. Again, these are features that are
shared by any theory or computation that models light
propagation as a random walk, or any other Markov pro-
cess, with a fixed step size. In addition, any numerical
method for solving the diffusion equation that replaces
the second-order differential operator with a three-point
nearest-neighbor formula is again of this form. There-
fore, to the extent that either random-walk or diffusion
theory is an adequate representation of light propagation
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Fig. 4. Mutual coupling between two localized absorption perturbations. (a) Sketch of 2-D section through the slab medium, showing
locations of the two perturbed cells [(31, 31, 5) and (31, 31, 7)] and two detectors. Units of indicated distances are numbers of cells. (b)
Effect of two simultaneous localized Dma’s, DRc vs. Dma,5 versus Dma,7 , for detector r indicated in (a). (c) Absolute mutual coupling
between the two cells indicated in (a), i.e., DRc 2 DRi . (d) Percent relative mutual coupling between the two cells indicated in (a), i.e.,
100(1 2 DRc /DRi), for detector r . (e)–(g) show the same quantities as in (b)–(d), but for detector t .
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in a turbid medium, the assumptions of our theoretical
model are satisfied.

5.A. Comparison with Findings of Other Investigators
The collision expansion is a well-known method for con-
structing formal solutions to transport problems.21 Here
we have used it as a means of deriving expressions for the
net effect of one or two localized absorption perturbations
on the photon intensity distribution in such a medium.
It is important to note that the particular relation be-
tween P and T given by Eq. (2.A.2) is not exclusively a
consequence of the physics of photon propagation.
Rather, an analogous result is obtained for any phenom-
enon that can be modeled as a Markov process with ab-
sorbing states. Beltrami,22 for example, has shown how
a variety of problems in the biological and social sciences
give rise to such processes. In every case a formulation
having the same form as Eq. (2.A.2) is involved.

For example, a Markov model of photon propagation in
which the photons migrate in uniform one-cell steps has
been used by Grünbaum in his analysis of the turbid-
medium inverse problem.23 The expression he obtains
for the input-output matrix QIO (i.e., the matrix of prob-
abilities of going from any given source to any given de-
tector) is QIO 5 PIO 1 PIH(I 2 PHH)21PHO [which has
the same form as Eq. (3.A.1)], where the P ’s are one-step
transition matrices and the indices I, O and H denote in-
put, output and hidden, respectively. He describes the
equivalent representation that the factor (I 2 PHH)21 has
as an infinite series whose terms specify all possible path-
ways by which a medium can evolve from its first hidden
state to its final one.

Several formal analyses of propagation of light through
a scattering medium have resulted in rational-function
formulations analogous to ours for the effect of one local-
ized absorption perturbation. The various approaches
taken do not, however, appear to be readily extendable to
the case of two (or more) absorbers. For example, Fu-
rutsu and Yamada14 analytically derive the effect that an
isolated absorption perturbation has on solutions to the
diffusion equation. They obtain an equation that is of
the same form as Eq. (3.C.4) [Eq. (56) in Ref. 14] for a
Fourier-space scattering matrix and that is a function of
only the absorption perturbation and the diffusion-
equation solution for the unperturbed medium.

A similar result is obtained by Gandjbakhche et al. in a
different context.15 They use random-walk theory to
analyze the effect of a single localized absorption pertur-
bation on transillumination measurements through an
optically turbid slab. They derive an expression for the
difference between the probabilities of a photon arriving
at a given location after a set number of random-walk
steps in the absence and presence of the absorber. Their
formula contains a factor with a rational-function form
similar to that of Eq. (3.C.8), especially for optically thick
slabs.

Expressions similar to those derived here also have
been arrived at previously through independent means.
An example is the work of Howard et al. on the problem of
reconstructing the apparent conductivity of inhomoge-
neous layered media based on measurements of induced
voltage.24 They seek to compute Ds(x8), the difference
between the inhomogeneous conductivity and a constant
background conductivity, and show that the error caused
by making the Born approximation can be corrected by re-
placing Ds(x8) with Ds(x8)/@1 2 aDs(x8)# in their inte-
gral equation, where a is an empirically determined con-
stant. The nonlinear effect of each heterogeneity upon
itself is thus accounted for, but again it is not clear that
the method can be extended to accounting for the effects
of two heterogeneities on each other.

5.B. Computation of P0 and (I 2 P0)21

In this work it was not actually necessary to compute P0
or T0 for any medium. We used these matrices only as
stepping stones in the derivations of Eqs. (3.C.4) and
(3.D.6). The significance of these equations lies in their
functional forms, and their utility does not require an
ability to evaluate the expressions for the coefficients in
terms of elements of T0 and r0 . As shown below in Sub-
section 5.D, these coefficients have alternative expres-
sions in terms of quantities that can be computed by other
means.

It is interesting nevertheless to address the question of
whether P0 and T0 could be explicitly computed in an ef-
Table 4. Coefficients Obtained by Fitting the Coupled DR and Independent DR for Detectors r and t [See
Fig. 4(a)] to Eqs. (4.B.3a) and (4.B.3b), Respectively

Coefficient
Detector r ,

Coupled
Detector r ,

Independent
Detector t ,

Coupled
Detector t ,

Independent

an
1.484979 3 1024 1.484971 3 1024 1.161159 3 1024 1.161166 3 1024

67 3 10210 69 3 10210 65 3 10210 64 3 10210

bn
3.70941 3 1025 3.70914 3 1025

5 an 5 an66 3 10210 66 3 10210

cn
2.40447 3 1024 2.70710 3 1024 2.75103 3 1024 3.38746 3 1024

67 3 1029 68 3 1029 64 3 1029 63 3 1029

ad
1.45868 1.45868 1.45871 1.45873

61 3 1025 62 3 1025 61 3 1025 61 3 1025

bd
1.45870 1.45855

5 ad 5 ad64 3 1025 64 3 1025

cd
2.08686

67 3 1025
2.12772

67 3 1025
2.08681

65 3 1025
2.12767

64 3 1025
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ficient manner. Imaging problems of practical interest
can be expected to involve 104 to 106 voxels or even more.
This is the same as the number of columns of P0 , each
one of which requires a separate computation in the gen-
eral case of a heterogeneous medium. Thus it appears
that P0 could not be computed in practice in an accept-
ably brief time. However, the problem may be more trac-
table than this in reality, because only the first collision of
each photon is relevant. Certainly it is easy to compute
P0 for a homogeneous medium, and in any case computa-
tion of P0 does not require solution of a transport (or dif-
fusion) equation.

Accurate computation of T0 might well be accomplished
at reasonable cost by inverting I 2 P0 , in spite of the
large size of P0 . It should be possible to replace many
very small elements of P0 with zeroes, resulting in a
sparse matrix. Thus computation of T0 5 (I 2 P0)21

from P0 is a well-conditioned inverse problem, and one to
which efficient specialized algorithms developed for
sparse matrices are applicable. In the case of a homoge-
neous medium we would also make use of the fact that in
all regions far from a boundary, any two elements of T0
with the same intervoxel spacing would be about the
same.

5.C. Higher-Order Corrections
It may be obvious to some that the method of Subsections
3.C and 3.D can be extended to the case of n absorbers by
including a total of n nonzero elements in Y when evalu-
ating Eqs. (3.B.10) and (3.B.11). The magnitudes of suc-
cessive corrections typically will decrease steadily with
increasing n, and this militates against undertaking the
effort of computing higher-order interaction formulas for
two reasons. First, the algebraic labor involved in-
creases with increasing n. Second, as n grows the errors
arising from the assumptions introduced in Subsection
3.B eventually will be greater than the corrections.

5.D. Possible Applications to Image Reconstruction
There have been published reports on algorithms for im-
age reconstruction that recognized that Eq. (1.1) does not
accurately express the dependence of DRi on Dma
5 @Dma,1Dma,2 ...Dma,I#

T. These have suggested that a
Newton-type updating scheme be adopted for image re-
construction, that is, that the forward and inverse prob-
lems be solved repeatedly in an alternating sequence.7,9,25

The nth computed solution to the inverse problem would
be used to modify the properties of the reference medium,
e.g., ma,i

0 (n) 5 ma,i
0 (n 2 1) 1 Dma,i(n), then the weight

functions and reference detector readings would be re-
computed for the revised reference medium, and these
would then be used to compute the (n 1 1)th inverse
problem solution.

Newton update computations can be lengthy and diffi-
cult. The formulas in Subsections 3.C and 3.D suggest
an attractive alternative. There are two principal ques-
tions that must be addressed. First, how may precise nu-
merical values of the coefficients multiplying the assorted
terms in Eqs. (3.C.4) and (3.D.6) be determined? Second,
exactly how may we make use of the equations in an im-
age reconstruction algorithm once the numerical values of
the coefficients are known?
5.D.1. Quantitative Evaluation of Coefficients in Eqs.
(3.C.4) and (3.D.6)
We proceed from the premise that the elements of T0 will
not be directly computed. Two practical approaches for
evaluation of the coefficients in Eq. (3.C.4) have been
identified. The second of these can also be used to evalu-
ate the coefficients in Eq. (3.D.6).

In the first approach (an equivalent form of this was
presented earlier10), we begin by taking the low-
absorption limit of Eq. (4.B.1), limDma, j → 0DRi

j

5 DRi
` jDma, j /K, and identify the coefficient of Dma,i

with the weight function wij . Then Eq. (4.B.1) becomes

DRi
j 5

wijDRi
` jDma, j

DRi
` j 1 wijDma, j

. (5.D.1)

Methods for calculating wij in terms of forward-problem
solutions for the reference medium are well known. To
determine numerical values for DRi

` j it is necessary to
perform additional forward-problem computations with
ma, j 5 ` in voxel j. This would be an impractical proce-
dure if it were necessary to perform a separate computa-
tion for every combination of i and j, but there are at
least three reasons why this might not be necessary in
practice. First, for a fixed j, the DR` js for any two detec-
tors i and i8 are related by DR

i8

` j 5 DRi
` j(wi8j /wij), so

once DRi
` j is computed for any one detector it is computed

for all detectors. Second, in the important special case in
which j is a voxel at the medium’s surface, a detector can
always be placed directly over it. There is no need to
compute DR` j for this detector; DRi

` j 5 R0,i , and the
DR` js for all other detectors are then determined just as
in the previous case. Third, results so far obtained sug-
gest that DRi

` j may in practice be a slowly varying func-
tion of the perturbed voxel’s location (although more re-
sults computed for heterogeneous media are necessary to
support or refute this), in which case it could be sufficient
to divide the reference medium into a number of regions
much smaller than the total number of voxels, and per-
form a single forward-problem computation for each of
them.

This method does not generalize to a practical proce-
dure for evaluating the coefficients in Eq. (3.D.6). In or-
der to evaluate the coefficients multiplying DmajDmaj8 , it
would be necessary to compute forward-problem solutions
for two additional combinations of Dmaj and Dmaj8 , for (in
principle) every possible j, j8 pairing of voxels in the me-
dium. That is, as many as I(I 2 1) additional forward
computations would be needed for a medium with I vox-
els. Although the number required in practice ordinarily
would be smaller than this because mutual coupling typi-
cally becomes negligible for voxels separated by more
than a few mean free paths, we would still expect that it
would be impractically large.

The second approach involves computation of the coef-
ficients of Eq. (3.C.4) from first principles. Let f ij

10
be the

adjoint Green’s function for the background medium:
the volume-integrated intensity in voxel i due to one pho-
ton born per second in voxel j, or, equivalently, the
volume-integrated fluence in i due to one photon born in
j. Suppose that the intensity in voxel j is f j

0. Then
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m t, j
0 f j

0 is the collision density in voxel j, and so

f ij
10

Vjm t, j
0 f j

0 is the volume-integrated intensity in i due to
intensity f j

0, where Vj is the volume of voxel j. By our
definition of T0 , this is just Vj(T0) ijf j

0. Since this rela-
tion is an identity, for any f j

0 it follows that

~T0!ij 5 m t, j
0 f ij

10
(5.D.2)

and therefore that

DRi
j 5

Ff j
0(

k51

I

r0,i,k~T0!kjGDma, j

k j 1 ~T0!jjDma, j

5

S f j
0(

k51

I

r0,i,km t,k
0 fkj

10D Dma, j

k j 1 ~m t, j
0 f jj

10
!Dma, j

5

S (
k51

I

r0,i,km t,k
0 wkjD Dma, j

k j 1 ~m t, j
0 f jj

10
!Dma, j

, (5.D.3)

where r0,i,k denotes the kth component of the ith detector
response function. In Eq. (5.D.3) we use the familiar
definition of absorption weight as the product of an inten-
sity and an adjoint, wij 5 f j

0f ij
10

. This is the correct
definition for the absorption weight under the constraint
that the transport cross section (or, equivalently, the dif-
fusion coefficient) is fixed. It would be necessary to per-
form forward-problem computations of fkj

10
for computa-

tion of the intervoxel weight functions.
The same idea can be adapted to the problem of evalu-

ating the coefficients in Eq. (3.D.6). Application of Eq.
(5.D.2) gives us

DRi
jj8 5

(
k51

I

r0,i,k$wkjz8 1 wkj8n8 1 Aj, j8,kz8n8%

1 1 f jj
10

z8 1 f j8j8
10

n8 1 Bj, j8z8n8
,

(5.D.4)

for the perturbation of the ith detector reading caused by

Dma Þ 0 in voxels j and j8, where Aj, j8,k [ wkjf j8j8
10

1 wkj8f jj
10

2 wjj8fkj
10

2 wj8jfkj8
10

, Bj,j8 [ f jj
10

f j8j8
10

2 f j8j
10

f jj8
10

, z8 5 m t, j
0 z and n8 5 m t, j8

0 n. Note that in the
lattice case the variables z8 and n8 are respectively equal
to the absolute absorption perturbations Dma, j and
Dma, j8 . The mutual coupling effect lies in the terms con-

taining f jj8
10

, f j8j
10

, wjj8 or wj8j .
We stress that the intervoxel adjoints and weights in

these formulas are for the reference medium, so that they
can be precomputed and a library of values built up.

5.D.2. Incorporation of Corrections into Image-
Reconstruction Algorithms
Here we assume the numerical values of all coefficients in
Eq. (5.D.3) and Eq. (5.D.4) are known and address the
practical problem of inverting them. We begin by consid-
ering only the single-absorber effect, in which case Eq.
(1.1) is replaced by

DRi 5 (
j51

I wijDma, j

1 1 k jDma, j

5 (
j51

I S wij

1 1 k jDma,j
DDma, j

[ (
j51

I

wij8 Dma, j (5.D.5)

in order to correctly represent the dependence of DRi on
Dma . Then Dma can in principle be found by solving the
linear system DR 5 W8Dma . However, calculation of
the correct numerical value for wij8 requires knowledge of
the unknown Dma, j . It should be possible to approach
the correct Dma as the limiting value of a two-stage itera-
tive process: solve the linear system DR 5 W8(n
2 1)Dma(n) [with W8(0) 5 W], and substitute Dma, j(n)
into the expression for wij8 to compute wij8 (n), etc.

When the two-absorber effect also is taken into ac-
count, the dependence of DRi on Dma becomes

DRi 5 (
j51

I

wij8 Dma, j

2
1

I 2 1 (
j51

I21

(
j85j11

I Pi~Dma, j , Dma, j8!

Qi~Dma, j , Dma, j8!
,

(5.D.6)

where Pi(Dma, j , Dma, j8)/Qi(Dma, j , Dma, j8) is the ratio-
nal function (Table 1) for the effect of mutual coupling be-
tween voxels j and j8 on detector i. Let us denote the
second term on the right-hand side of Eq. (5.D.6) by bi .
Then Dma can in principle be found by solving the linear
system (DR)8 [ DR 1 b 5 W8Dma . The vector b, like
W8, cannot be calculated without knowledge of Dma .
Successive estimates of b could, however, be computed in
an iterative approach analogous to the one outlined
above. Many variants are possible. At one extreme,
b(n) can be computed within each iteration of the algo-
rithm used to calculate the solution of @DR(n)#8
5 W8(n)Dma(n). At the other, the system DR
5 W8(n)Dma(n) can be solved before the first estimate,
b(1), of b is computed, then the system @DR(1)#8
5 W8(n)Dma(n), etc.
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