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INTRODUCTION
Diffuse optical tomography (DOT) is a functional imaging 
modality with great potential utility for studies of human 
brain function.  DOT employs harmless near infrared 
radiation and yields images of spatially varying tissue 
absorption and scattering coefficients (µa and µ′s), which can 
be correlated with important physiological parameters.  The 
advantages of DOT include its superior temporal resolution 
and the greater freedom of movement by the subject that it 
permits, compared to PET imaging or fMRI.  But the image 
quality that typically is achieved, especially in terms of 
spatial resolution, is less than desirable.  Most previously 
proposed strategies for improving image quality entail use of 
computation-intensive algorithms, which eliminate the 
possibility of studying tissue dynamics in a practical time 
frame.

A sequence of papers from our group has chronicled the 
development of a computationally efficient strategy for 
producing DOT images of usefully high quality [1-4].  The 
key operation is a linear spatial deconvolution; computation 
of the relevant operator is independent of, and so may 
precede, collection of experimental data, and the time needed 
for its application is <<1 s.  While we have had considerable 
success with this approach, previous characterizations of it 
were limited by taking only spatiotemporally varying 
absorption into account.  Here we complement the prior work 
by examining the ability of the deconvolution strategy to 
improve the quality of recovered images of the diffusion 
coefficient D (∼ 1/µ′s).

METHODS
All of the simulations reported here used circular, 4-cm 
radius, 2D media.  The modeled heterogeneities consisted of 
either one or two circular inclusions wherein D was 
approximately half that of the background region (i.e., 
inclusion μ′s is approximately twice that of the background).

Two types of two-inclusion studies were undertaken; in 
every case the inclusion diameter was fixed at 0.6 cm, with 
one centered at (xc,yc) and the other at (-xc,yc).  For the first 
study, yc was fixed at 0 and xc was adjusted, in 0.1-cm 
increments, from a minimum of 0.3 cm (i.e., inclusions have 
a point of contact) to a maximum of 1.0 cm.  For the second, 
xc was fixed at 0.5 cm and yc was adjusted, in 0.2-cm 
increments, from a minimum of 0.2 cm to a maximum of 3.0 
cm.  The particular case illustrated in Fig. 1 is D(x,y) for 
inclusions centered at (±1,0).

In every simulation, the absorption coefficient was fixed 
at μa = 0.06 cm-1 throughout the medium, while the 
background scattering coefficient was μ′sbkgr = 10 cm-1, 
which, according to the relation D = 1/[3(μ′s + μa)], 
correspond to a background diffusion coefficient of 
Dbkgr = 0.0331 cm.  Within the inclusions, the time-averaged 
scattering coefficients were 〈μ′sincl〉 = 20 cm-1 for all one-
inclusion and all noise-free two-inclusion computations, and 
〈μ′sincl〉 = 30 cm-1 for the two-inclusion simulations with noise 
added to the detector data.   Dynamic scattering was modeled 
through the relation μ′sincl(t) = 〈μ′sincl〉[1 + 0.2sin(2π⋅f⋅t)], with 
f = 0.1 Hz and  t = 0.5, 1, ..., 49.5, 50 s.  Thus Dincl ranges 
from 0.0139 to 0.0208 cm (0.00924-0.0139 cm for the noise-
added two-inclusion case) with a mean value of 0.0170 
(0.0113) cm.

All forward-problem and inverse-problem computations 
were carried out in the manner specified in Ref. 5. 
Reconstructed images [e.g., Fig. 4(a),(e); 5(d)-(f)] were post-
processed by applying the spatial deconvolution algorithm 
that was the subject of Refs. 1-4 and Poster 686 T-PM.  The 
key distinction between this report and the previous ones is 
that here μ′s, rather than μa, was modulated in each reference-
medium pixel.  All modeled μ′s(x,y) states were converted to 
the corresponding spatial distributions of D, and the 
deconvolution operator was generated by comparing the latter 
to the recovered D images, as explained in Refs. 1-3. To 
examine the effect of random error on the accuracy of 
recovered images, computations were conducted three times, 
with noise-free detector data used in the first instance, and 
with data to which Gaussian white noise was added in the 
remainder  The noise levels were 1% and 2%, where the 
noise level εk for the kth S-D channel is defined as 
εk = 100sk/m0

k, sk is the standard deviation of the kth-channel 
noise distribution, and m0

k is the time-averaged noise-free 
detector reading.

Recovered images were subsequently treated with a noise-
suppression scheme consisting of a combination of temporal 
low-pass filtering (tLPF) and spatial “pillbox” filtering (sLPF) 
[5].  The spatial and temporal correlation coefficients (SC and 
TC, respectively), and spatial and temporal root mean squared 
error (sRMSE and tRMSE, respectively), between target 
medium and reconstructed images are used here as global 
indices of spatial and temporal accuracy of recovered images 
[5]. Several “local” measures of image quality also were 
computed [see Fig. 5(a)-(d)]. The parameters from which the 
latter were computed are defined in Figure 2.

RESULTS
Representative images and 1D sections for a two-inclusion 
target medium, time frame and inclusion location [(xc, 
yc) = (±0.9, 0)], are shown in Figure 3.  Qualitatively, the 
trends and dependencies seen in these results agree with those 
previously reported for target media containing µa
perturbations [3].  Most important is that spatial deconvolution
yields significantly improved images, in terms of spatial 
resolving power and quantitative accuracy.  Second, 
deconvolution tends to amplify any background artifacts, 
whether they originate from systematic factors or from random 
errors; when the detector data are noisy, the inclusions 
continue to be recovered with fair accuracy, but the amplitudes 
of noise artifacts can become comparable to those of the 
inclusions.  Third, by using the tLPF and sLPF in combination 
[5], the background artifacts are substantially reduced, at the 
cost of some reduction in quantitative accuracy.

For the Figure 4 results, the center-to-center distance 
between the inclusions is 1 cm, the detector data are noise-free, 
and the tLPF and sLPF are not used.  The coordinates of the 
inclusion centers are (xc,yc) = (±0.5,1), (±0.5,2), or (±0.5,3).  
Corresponding 1D sections, along the inclusion bisector, also 
are shown.  Even at their most superficial position, the 
inclusions are never resolved in the spatially convolved 
images, while after deconvolution they are partly resolved 
when yc = 2 cm and fully resolved when yc = 3 cm.

Various scalar indices of image accuracy are plotted in 
Figure 5.  Results for the variable-yc study are in Fig. 5(a)-(e), 
and those for a complementary variable-xc (yc fixed at 0) are in 
Fig. 5(f)-(j).  Neither of the resolving-power indices [Fig. 
5(a),(b),(f),(g)] rises above zero for the spatially convolved 
images.  For the deconvolved images, partial resolution is seen 
when yc > 1.4 cm in Fig. 5(a).  The other quantities plotted in 
Fig. 12 are the SC, sRMSE and tRMSE.  The SC is 
significantly higher, and that the tRMSE is substantially lower, 
after deconvolution than before.  Likewise, whenever the 
sRMSE is different before and after deconvolution, the latter 
image has the lower value.  The vertical dashed lines in Fig. 5 
are located at the values of yc or xc at which the inclusions 
begin to be resolved.

CONCLUSIONS
The linear approach to DOT image enhancement described in 
Refs. 1-4 is as effective at improving the quality of D images 
as it is for μa.  The accuracy of the recovered spatial 
distributions were observed to increase in terms of both 
resolution and quantitatively. Guided in part by these studies, 
and those presented in Poster 686 T-PM, we have constructed 
a series of solid-state dynamic phantom media; the imaging 
studies so far conducted (manuscript in preparation) indicate 
that combination of spatial deconvolution and noise 
suppression operations can produce the same types of image 
quality improvement when applied to experimental data as 
they have in simulations.
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Figure 1: Model medium D(x,y) Figure 2: Image accuracy index definitions
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Figure 5: Summary indices of qualitative and quantitative image accuracy

Figure 4: Target media [(a)-(c)], recovered images before [(d)-(f)] and after [(g)-(i)] deconvolution, 1D sections 
through inclusions [(j)-(l)].
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Figure 3: Recovered images of the target medium depicted in Fig. 1
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