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We have extended our investigation on the use of a linear algorithm for enhancing the accuracy of diffuse
optical tomography (DOT) images, to include spatial maps of the diffusion coefficient. The results show
that the corrected images are markedly improved in terms of estimated size, spatial resolution, two-object
resolving power, and quantitative accuracy. These image-enhancing effects are significant at expected
levels of diffusion-coefficient contrast in tissue and noise levels typical of experimental DOT data. Overall,
the types and magnitudes of image-enhancing effects obtained here are qualitatively similar to those seen
in previous studies on �a perturbations. The implications for practical implementations of DOT time-
series imaging are discussed. © 2007 Optical Society of America

OCIS codes: 100.1830, 100.2980, 100.6950, 170.3010, 170.3880.

1. Introduction

Three factors common to all forms of functional im-
aging are needed for system hardware, algorithms for
image formation, and feature-extraction methods. In
the case of dynamic DOT studies, a particular chal-
lenge is to develop image-formation algorithms that
are robust to experimental uncertainties, and are
computationally efficient. In prior reports we have
shown that while the normalized difference method
(NDM) meets these requirements,1 it can produce im-
ages that have reduced resolution and added spatial
bias (particularly, in limited-view cases) compared to
the much more computationally intensive iterative re-
cursive methods.2

In a series of reports, we have described a linear
image-correction algorithm that is both computation-
ally efficient and can substantially improve the image
quality produced by the NDM method.3–6 This cor-
rection is computed by a method motivated by the
principles of magnetic resonance imaging, which uses
a spatial gradient in the Larmor frequency to encode
position information.7 In our case, by encoding each

pixel location with a unique temporal signature, it
becomes possible to directly identify the contribu-
tions of all parts of a medium to each image pixel.3
Then the inverse of the medium-to-image mapping
can be used to reapportion recovered optical coeffi-
cient values to their correct locations.4,5 As shown in
this paper, this technique can be successfully applied
to complex tissue backgrounds, and it is effective
even in the absence of anatomical priors.8 In previous
reports, the image correction algorithm was applied
to media having inhomogeneity in the absorption co-
efficient only. Here we extend our investigations to
include media with spatially heterogeneous scatter-
ing coefficients.

2. Methods

A. Target Medium Structure and Optical Properties

Figure 1 shows the geometry and source-detector
arrangement used to generate the simulated data. A
2D circular medium 8 cm in diameter, and full tomo-
graphic measurements with 32 sources and 32
collocated D, were modeled. The background medium
was homogeneous and static, with �a

bkgr � 0.06
cm�1 and �s�

bkgr � 10 cm�1. Either one or two circular
inclusions were introduced, whose position and size
were varied as described below, and whose scattering
properties were varied sinusoidally in time at fre-
quencies within the vasomotor region ��0.15 Hz�.
Two levels of contrast were considered. In the low-
contrast case, the mean value of the time-varying
scattering was equal to the background value, with
10% modulation amplitude. The modulation fre-
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quency was f � 0.02 Hz for single inclusion studies,
and f � 0.02 and 0.05 Hz for two-inclusion studies. In
the case of high contrast, the mean value of the tem-
poral function was either two or three times the back-
ground �s�, with 20% modulation amplitude, and
f � 0.1 Hz for both the one- and two-inclusion studies.

The inclusion size and position were adjusted in
an effort to explore the known position-dependent
spatial blurring and bias associated with first-order
reconstructions (i.e., poorer spatial resolution at
greater depths and increased bias at intermediate
depths) of �a.5 In the case of a single object, the radius
was varied from a minimum of 0.2 cm to a maximum
of either 1.0 cm (deep inclusion) or 0.9 cm (superficial
inclusion). The center positions and size ranges mod-
eled are indicated in Fig. 1(b). For the two-object case,
two different positional studies were performed. In
both studies the object sizes were fixed, with a radius
of 0.3 cm. The depth dependence of resolution was
explored by varying the location of the inclusion pair
from the center to a minimum depth of 1 cm in incre-
ments of 0.2 cm. Resolving power about the medium’s
center was evaluated by varying the center-to-center
distance between the pair from 0.6 cm (i.e., objects in
contact) to 2.0 cm. Dynamic behavior was modeled
over a 50 s time period, with a 0.5 s sampling interval.

B. Forward Problem

All surface detector data and internal photon inten-
sities computed for target and reference media were
obtained by solving the diffusion equation with Robin
boundary conditions1,9 using the finite element method
(FEM). These were computed using two different
mesh densities. For target media a heterogeneous
fine mesh was used (2593–2670 nodes, depending on
target details). Reference-medium computations were
made using a homogeneous coarse mesh (981 nodes)
having the same background optical properties as the
target media. The same coarse mesh was also used to
compute the image correction matrices and for the
inverse problem. The number of time frames modeled

for the dynamic targets and for the image correction
matrix were 100 and 214, respectively. The latter re-
quired approximately 1.5 h to compute on a 2.8 GHz
PC, while the former took less than 5 min.

C. Inverse Problem

The images were reconstructed by using the NDM,1
which computes images of ��a and �D with respect to
a defined reference medium. For the computational
studies considered here, we found that it was not
necessary to employ a fine-onto-coarse mesh interpo-
lation scheme such as that of Ref. 8. The coarse mesh
shown in Fig. 1(a) is sufficiently dense that the com-
puted FEM solutions are good approximations of an-
alytic solutions to the continuous diffusion equation.

The images produced by using the NDM were cor-
rected by applying the linear correction algorithm
described in Refs. 3–6 and Ref. 8. The primary dif-
ference between the previous correction-matrix com-
putations and that undertaken for this report is that
here �s�, rather than �a, was modulated in each
reference-medium pixel. All modeled ��s��x, y� states
were converted to the corresponding spatial distribu-
tions of �D, and the correction matrix was generated
by comparing the latter to the recovered �D images,
as set forth in Refs. 3–5.

The effects of random error were explored by intro-
ducing additive Gaussian white noise, at levels of 1%,
2%, 3%, 5%, and 8% (only the first three are used in
the two-inclusion case). Here the noise level �k for the
kth S-D channel is defined as �k � 100sk�mk

0, sk is the
standard deviation of the kth channel noise distribu-
tion, and mk

0 is the time-averaged noise-free detector
reading.

Using the same PC as for forward problems, the
computation time was approximately 20 min for the
214 correction-operator inverse problems, while each
set of 100 target-medium inverse problems required
less than 1 min. Image correction, which involves
nothing more than one additional matrix multi-
plication,3–5 took less than a second.

Fig. 1. Model specifications for DOT forward problem. (a) FEM mesh (981 nodes) used for all inverse-problem computations, with the
locations of the isotropic point sources and detectors on the boundary also indicated. (b) Inclusion locations and size ranges modeled in
single-inclusion studies. The center was placed at either �xc, yc� � �1, 0� (solid circles) or �xc, yc� � �3, 0� (dot-dashed circles). Smallest (0.4 cm
diam.) and largest (1.8 or 2.0 cm diam.) inclusion sizes are shown. (c) Inclusion locations modeled in two-inclusion studies. Solid circles and
arrows indicate the range of positions used in the fixed yc, increasing xc study. Dashed circles and arrows indicate the range of positions
used in the fixed xc, increasing yc study.
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D. Noise Suppression

Recovered images were postprocessed with a noise-
suppression scheme that combines temporal low-pass
filtering (tLPF) and spatial pillbox filtering (sLPF), as
described in Refs. 6 and 8. The effects of this proce-
dure were quantified by computing the spatial and
temporal accuracies of the images before and after
filtering.

E. Quantification of Image Accuracy

The spatial and temporal correlation coefficients (SC
and TC, respectively), and spatial and temporal root-
mean-squared difference (sRMSD and tRMSD, respec-
tively), between target medium and reconstructed
images are used here as global indices of spatial and
temporal accuracies of recovered images.6 The SC
(ideal value is 1.0), being amplitude independent,
quantifies qualitative accuracy, while an RMSD (ideal
value is 0.0) is a measure of quantitative accuracy.10

In addition, four local accuracy measures were
computed. These include the contrast and FWHM of
the recovered inclusion, and, in the case of two-
inclusion studies, measures of the between-object re-
solving power and location bias. Resolving power, Pd,
was defined as the depth of the notch between the
recovered inclusions (Fig. 2), relative to the ideal
depth. Mathematically

Pd �
���D�

�D0
, (1)

where �D � Dbkgr � Dincl, �D0 is the maximal value of
�D, and ���D� is the difference between �D0 and the
�D value at a mesh node halfway between the inclu-
sions. The location bias, Ps, was measured by com-
puting the distance between the recovered inclusions,
relative to the ideal separation. That is

Ps �
�X
�X0

, (2)

where �X0 is the distance between the inclusion cen-
ters in the target medium, and �X is the distance
between the mesh nodes where |�D| is maximal in
each inclusion.

It is sometimes useful to express the mean recov-
ered contrast and the FWHM as fractions of the cor-
responding target-medium values. The terms RM
and RW are used to denote relative mean contrast
and relative width, respectively.

3. Results

A. Low-Contrast Media

Variations in physiologic state frequently are associ-
ated with small changes in tissue light scattering.11,12

Thus it is useful to investigate the accuracy of diffusion
coefficients recovered by the linear reconstruction-and-
correction method, as a function of contrast, noise,
and inclusion location.

1. Two-Object Resolving Power
For the media with purely dynamic inclusions (i.e.,
��s��t�� � �s�

bkgr), the scattering contrast varies over
time, from 0.9 to 1.1. In the two-inclusion cases, be-
cause distinct modulation frequencies were modeled,
both inclusions are more strongly or more weakly
scattering than the background at some time frames,
while at others they straddle the background value.
These categories are referred to here as Syn and Anti,
respectively. Figure 3 shows examples of uncorrected
and corrected images of �D for one Syn time frame
and one Anti time frame. This is an especially chal-
lenging case, as the inclusions are located near the
center and touch each other.

At the grossest level of inspection, it is seen that the
inclusions are not resolved in either the uncorrected
[Fig. 3(a)] or corrected [Fig. 3(b)] Syn image, while in

Fig. 2. Definitions of several parameters used in calculating in-
dices of image accuracy. �D � Dbkgr � Dincl, �D0 � maximal value
of �D, ���D� � depth of the notch between the inclusions. �X0

� true interinclusion separation distance, �X � image interinclu-
sion separation distance.

Fig. 3. Low-contrast-medium images, recovered from noise-free
data. The 0.6 cm inclusions have a point of contact at �x, y�
� �0, 0�. (a) Uncorrected image when �D � 0 in both inclusions. (b)
Corrected image, �D � 0 in both inclusions. (c) Uncorrected image,
�D � 0 in one inclusion, and �0 in the other. (d) Corrected image,
�D � 0 in one inclusion, and �0 in the other.
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the Anti state the inclusions are well resolved even in
the uncorrected image [Fig. 3(c)]. However, closer ex-
amination reveals that the corrected images are supe-
rior in several respects. First, the recovered �D ranges
are closer to those actually present in the target
medium in the corrected images [�Dimage��Dtarget �
0.86 in Fig. 3(b), 0.36 in Fig. 3(d)] than in the corre-
sponding uncorrected ones [�Dimage��Dtarget � 0.24 in
Fig. 3(a), 0.057 in Fig. 3(c)]. Second, the corrected
images have higher SC values [0.84 in Fig. 3(b), 0.63
in Fig. 3(d)] than those of the corresponding uncor-
rected images [0.67 in Fig. 3(a), 0.32 in Fig. 3(c)]. It is
noteworthy that the Anti images, while showing well-
resolved inclusions, are less accurate than the Syn
images in terms of both quantitative �D recovery and
SC value. Third, the corrected images provide better
approximations to the true spatial extent of the in-
clusions even though these are not resolved in
Fig. 3(b).

As the distance separating the inclusions is in-
creased, image quality would be expected to increase.
Shown in Figure 4 are the uncorrected and corrected
images of the two-inclusion low-contrast medium, at
a Syn time frame, when the inclusion centers are
separated by 2 cm. It is seen in Fig. 4(a) that the
inclusions are not resolved in the uncorrected image,
even though the 1.4 cm gap between them is more
than twice as wide as their 0.6 cm diameter. In con-
trast, the corrected image in Fig. 4(b) reveals the
presence of two distinct objects. An inspection of cor-
responding results (not shown) for intermediate in-
terinclusion distances indicates that they begin to be
resolved when the gap between them is wider than
their diameter.

The image accuracy indices computed for the re-
sults in Fig. 4 and for the corresponding Anti images
[not shown as the inclusions are already well resolved
in Figs. 3(c) and 3(d)] show that the difference be-
tween Syn and Anti image accuracy decreases with
increasing separation. The images in Figs. 4(a) and
4(b) have SC values of 0.55 and 0.79, respectively,
while the corresponding Anti images have SC values
of 0.60 and 0.78. As for quantitative accuracy,
�Dimage��Dtarget � 0.13 for Fig. 4(a) and 0.55 for Fig.
4(b), and the corresponding Anti image values are
0.14 and 0.52. It is interesting that image quality, as
measured by these indices, becomes worse for the Syn
images at the same time as it improves for the Anti.

Both trends are suggestive of interactions between
the inclusions at small separations. An examination
of time-varying SC and �Dimage��Dtarget data, as a
function of separation distance, indicates that these
interactions are insignificant when the distance be-
tween inclusion centers is 	1 cm.

2. Contrast–Noise Studies
Experimental DOT measurement data are not noise-
free. Therefore it is important to conduct the type of
analysis described above at different levels of data
noise, to determine the minimum level of inclusion-
to-background contrast that can realistically be re-
covered. In Fig. 5 we show an example of results from
a contrast-titration study, for a fixed noise level of
�k � 1% in all S-D channels. The target medium
considered here contained a single inclusion centered
at �xc, yc� � �1, 0� and 1.2 cm in diameter. Thus we see
that the uncorrected-image SC value is weakly de-
pendent on the contrast level, while the corrected-
image SC value is strongly contrast dependent. Also
there is a threshold contrast value, approximately
1.25 for the specific medium and noise level used
here, below which the correction operation degrades
the image quality.

Based on the preceding findings, for the balance of
this paper we restrict our attention to cases where
the inclusion-to-background contrast is either 2 or 3,
and to Syn-state time frames for two-inclusion re-
sults. The former condition guarantees that the con-
trast threshold is exceeded at all experimentally
realistic noise levels, and the latter is the condition
for which resolving the inclusions is most difficult.

B. High-Contrast Media (Noise-Free Data)

1. Single-Inclusion Studies
The results shown in Figs. 6–9 explore the depen-
dence of image improvement realized by use of the
image-correction algorithm, as judged by global and
local accuracy indicators, on inclusion size and posi-
tion. The Fig. 6 results demonstrate the image im-
provements realized for media having two different
inclusion diameters (0.4 cm [Figs. 6(a)–6(c)] and

Fig. 4. Low-contrast-medium images, recovered from noise-free
data. The distance between the centers of the 0.6 cm inclusions
2 cm. �D � 0 in both inclusions. (a) Uncorrected image. (b) Cor-
rected image.

Fig. 5. Plots of spatial correlation value versus scattering-
coefficient contrast (i.e., ratio of �s� in the inclusion and back-
ground), for uncorrected (dashed line) and corrected (solid curve)
images. Target medium contains a single, 1.2 cm diameter inclu-
sion centered at �x, y� � �1, 0�. Data noise level is �k � 1%.

1708 APPLIED OPTICS � Vol. 46, No. 10 � 1 April 2007



2.0 cm [Figs. 6(d)–6(f)]) at a time point where the
inclusion contrast is maximal. It is seen that the
uncorrected images [Figs. 6(b) and 6(e)] are almost
indistinguishable, qualitatively, despite the differ-
ences in inclusion diameter. An inspection of the
grayscale ranges, however, reveals that there are
quantitative differences in the recovered contrast.
The corrected images [Figs. 6(c) and 6(f)] provide
much better approximations to the true inclusion di-
ameters [Figs. 6(a) and 6(d)], and are more accurate
quantitatively.

The noted improvements following image correc-
tion would suggest that corresponding improvements
should be evident in solutions to the forward problem.
This is explored in Fig. 7, which shows the effect of
the 0.4 cm diameter inclusion [Figs. 6(a)–6(c)] on the
surface detector response, as a function of position

about the medium. The results in Fig. 7(a) demon-
strate a greatly improved fit to the expected response
following image correction, compared to that ob-
tained from the uncorrected image. Shown in Fig.
7(b) is the dependence of the root-mean-squared dif-
ference between the observed and expected detector
values as a function of source location. An inspection
reveals that the corrected image is always more
quantitatively accurate. Qualitatively similar results
(not shown) were obtained for the large-inclusion
case illustrated in Figs. 6(d)–6(f). In quantitative
terms, the corrected-image RMSD is even closer to
zero here than in Fig. 7(b), while the uncorrected-
image results are essentially the same for both the
small- and large-diameter inclusions.

The results in Figure 8 explore the dependence of
image accuracy improvement on the size and position
of the inclusion in the target medium. In Figs. 8(a)–
8(c), the size dependence for three different inclusion
diameters [Fig. 8(a), 0.4; Fig. 8(b), 1.4; Fig. 8(c),
2.0 cm] is shown. An inspection of the 1D transects
through the inclusions, along the y � 0 axis, shows
that image correction produces improvements in im-
age accuracy in all cases, with the greatest relative
improvements realized for the smallest inclusion.
Plotted in Figs. 8(d) and 8(e) are the temporal mean
values for a local measure of image accuracy (i.e.,
FWHM), as a function of inclusion size and position.
The results in Figs. 8(d) and 8(e) were obtained for
inclusions located near the center or near the surface,
respectively, as depicted in Fig. 1(b).

An inspection of these data reveals that the FWHM
varies with the independent variables in several
ways. For instance, the recovered inclusion size is
more strongly correlated with the true size after cor-
rection than before. It is also seen that image correc-
tion substantially removes a recovered inclusion size

Fig. 6. Representative single-inclusion target media [(a), (d)], uncorrected images [(b), (e)], and corrected [(c), (f)] images. The inclusion
is centered at �xc, yc� � �1, 0�, with diameter of the inclusion is 0.4 cm in (a)–(c), and 2.0 cm in (d)–(f).

Fig. 7. (a) Normalized detector readings 
 � R�t��Rr, for a source
located near the 3 o’clock position in Fig. 1(a), for all 32 detectors
at t � 100. The dot-dashed curve is computed for the target me-
dium shown in Fig. 3(a). Dashed and solid curves are computed for
the images in Figs. 3(b) and 3(c), respectively. (b) Root-mean-
squared difference between the � curves for the target medium and
image (i.e., RMSDi � ��j�1

32 �
ij
target � 
ij

image�2�32	1�2, where i and j
are the source and detector indices, respectively). Dashed and solid
curves are the results for the uncorrected and corrected images,
respectively.
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bias present in the uncorrected images. This is evi-
dent in Fig. 8(e), where a crossover point is seen,
such that for diameters �1.2 cm the inclusion size
is overestimated, while the opposite trend is seen
for diameters �1.2 cm. A comparison of results for
the inclusion locations shows that greater image ac-
curacy is obtained for those positioned closer to the
surface. This holds even for corrected images and is
consistent with the expected influence of position-
dependent spatial gradients in the weight function.
This comparison also shows that the lower size limit
for the inclusion, below which overestimates of its
size are obtained even with image correction, is 0.6
and 1.05 cm diameter for the outer and inner inclu-
sion positions, respectively.

Other indices of image accuracy are plotted in Fig.
9. In Figs. 9(a) and 9(b), a global accuracy measure is
shown (i.e., SC value averaged over all points in the
time series). In Figs. 9(c) and 9(d), a local accuracy
measure is presented (i.e., tRMSD between true and
recovered contrast values, for the image pixels within
the boundary of the inclusion). The trends seen are
generally consistent with those in Fig. 8: Image cor-
rection improves the spatial and temporal measures
of image accuracy, with the best results seen for the
more superficial inclusion. Interestingly, a compari-
son of these improvements between the spatial and
temporal dimensions shows different trends, with
some suggestion that relatively greater improve-
ments are seen upon image correction in the temporal
index for smaller inclusion sizes.

2. Two-Inclusion Studies
Two different studies were conducted. In one, resolu-
tion is explored as a function of object depth (Figs. 10
and 11). In the other, resolution is explored as a
function of the distance separating the two inclusions

Fig. 9. Spatial correlation [(a), (b)] and temporal RMSD [(c), (d)]
accuracy indices, for all single-inclusion target media. The results
shown are mean values over 100 time frames. (a), (c) �xc, yc�
� �1, 0�. (b), (d) �xc, yc� � �3, 0�. Thin lines in (b) are mean �SD;
in the other panels, SD is smaller than the line thickness.
�d � uncorrected images, �d � corrected images.

Fig. 8. (a) One-dimensional sections, along the y � 0 diameter, through one-inclusion target medium, uncorrected image, and corrected
image, for 0.4 cm diameter inclusion [Figs. 3(a)–3(c)]. (b) Analogous 1D sections for a medium with a 1.2 cm diameter inclusion. (c)
One-dimensional sections for a medium with a 2.0 cm diameter inclusion [Figs. 3(d)–3(f)]. (d) Recovered versus true inclusion diameter (i.e.,
FWHM), for the uncorrected and corrected images of all single-inclusion target media with �xc, yc� � �1, 0�. (e) FWHM of the uncorrected
and corrected images, for all �xc, yc� � �3, 0� target media. �d � uncorrected images, �d � corrected images.
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(Fig. 12). It will be recalled that the mean inclusion
contrast (i.e., scattering coefficient value) is twice
that of the background and is modulated by �20% at
a frequency of 0.1 Hz. In Fig. 10, results are shown
for a selected time point at which the inclusion con-
trast was maximal (2.2� background). The inclusions
modeled are centered at xc � �0.5 cm, i.e., the gap
separating them is 0.4 cm wide. The y coordinates of
the inclusion centers are yc � 1, 2, and 3 cm in Figs.
10(a)–10(c), respectively [cf Fig. 1(c)]. The plotted
curves are 1D sections along the line bisecting the
inclusion centers. It is seen that even at their most
superficial position the pair is never resolved in the
uncorrected images, while in the corrected images
they are partly resolved when yc � 2 cm and fully
resolved when yc � 3 cm (i.e., the most superficial
location).

Image accuracy indices for this study, considering
results obtained at all time points, are shown in Fig.
11. The resolving-power index Pd is shown as a func-
tion of yc in Fig. 11(a), while the location-bias index Ps

is plotted versus yc in Fig. 11(b). As suggested by the
Fig. 10 results, neither index rises above zero for the
uncorrected images, indicating that the inclusions
are never even partially resolved. For the corrected
images, partial resolution is seen when yc � 1.4 cm.
For yc � 1.4, the Ps index increases rapidly, reaching
the ideal value by the time yc � 2. The Pd index
increases monotonically but more slowly, reaching
the ideal value of unity only for the most superficial
position.

The other quantities plotted in Fig. 11 are counter-
parts of those in Fig. 9. Heavy curves are mean values
over all 100 time frames [Figs. 11(a)–11(c)], or over all

Fig. 10. (a) One-dimensional sections along the line y � 1, through a two-inclusion target medium and corresponding images, where
�xc, yc� � ��0.5, 1�. (b) Analogous 1D sections along the line y � 2, for the �xc, yc� � ��0.5, 2� case. (c) Analogous 1D sections along the line
y � 3, for the �xc, yc� � ��0.5, 3� case. Dot-dashed, dashed, and solid curves are sections through target media, uncorrected images, and
corrected images, respectively.

Fig. 11. (a) Resolving-power index Pd, as a function of the
inclusion-center coordinate yc, for images of the two-inclusion tar-
get media considered in Fig. 10 (i.e., |xc| has a fixed value of 0.5,
yc is variable). (b) Location-bias index Ps versus yc, for the same set
of media. (c) Spatial correlation between target medium and image
as a function of yc. (d) Temporal RMSD versus yc. Thin lines in (c)
are mean �SD; in the other panels SD is smaller than the line
thickness. Vertical dot-dashed lines in (c) and (d) indicate the
distance from the center, above which the inclusions can be re-
solved. �d � uncorrected images, �d � corrected images.

Fig. 12. (a) Resolving-power index Pd, as a function of the
inclusion-center coordinate xc, for recovered images in the second
two-inclusion study (i.e., xc is variable, yc has a fixed value of 0). (b)
Location-bias index Ps versus xc for the same set of media. (c)
Spatial correlation versus xc. (d) Temporal RMSD versus xc. Thin
lines in (c) are mean �SD; in the other panels, SD is smaller than
the line thickness. Vertical dot-dashed lines in (c) and (d) indicate
the separation distance, above which the inclusions can be re-
solved. �d � uncorrected images, �d � corrected images.
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FEM mesh nodes within the inclusions [Fig. 11(d)],
while the thin curves in Fig. 11(c) are the standard
deviation (SD) values about the mean. It is seen that
the SC [Fig. 11(c)] is significantly higher, and that the
tRMSD [Fig. 11(d)] is substantially lower, in the cor-
rected than in the uncorrected images. The sRMSD
(not shown) of the corrected images also is less than
or equal to that of the uncorrected images. The ver-
tical dotted lines in Figs. 11(c) and 11(d) are located
at the yc value where the inclusions begin to be re-
solved. An inspection shows that when the inclusions
are more superficial than this depth, the SC grows
more rapidly with increasing yc, and the tRMSD falls
more rapidly.

Figure 12 shows results analogous to those in Fig.
11, but derived from the complementary study where
yc � 0 while xc was varied from 0.3 cm to 1 cm. As in
Fig. 11, heavy curves show mean values over all 100
time frames in Figs. 12(a)–12(c), and mean values
over all FEM mesh nodes in the inclusions in Fig.
12(d), while the thin curves in Fig. 12(c) are �SD
values about the mean. Here, too, it is seen that the
inclusions are not resolved in the uncorrected images,
even at the largest separation distance. In the cor-
rected images they are partially resolved, in terms of
the Pd index, as soon as xc exceeds 0.6 cm [Fig. 12(a)].
The dependence of Ps on separation is even more
striking: The value of this index increases from 0

Fig. 13. Recovered images of a two-inclusion target medium, with �xc, yc� � ��0.9, 0�. (a)–(f) Detector data are noise-free; (g)–(l) detector
data noise level is 1%. (a) and (g) uncorrected, unfiltered images; (b) and (h) corrected, unfiltered images; (d) and (j) uncorrected, low-pass
filtered images; (e) and (k) corrected, low-pass filtered images. (c), (f), (i), (l) One-dimensional sections through the plotted 2D images along
the y � 0 diameter.
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�xc 
 0.6� to 1 �xc � 0.6� in a single step [Fig. 12(b)].
The xc � 0.6 case has physical significance: It is at
this separation that the closest-approach distance is
equal to the inclusion diameter.

The dotted vertical lines in Figs. 12(c) and 12(d)
demarcate the unresolved from the resolved cases.
There are unmistakable differences in the SC versus
xc and tRMSD versus xc trends on the two sides of the
dotted lines. While the corrected image has the larger
SC at all values of xc [Fig. 12(c)], that index initially
decreases with increasing xc (i.e., qualitative accu-
racy becomes worse), but it begins to increase when
xc � 0.6. Similarly, the corrected-image tRMSD [Fig.
12(d)] and sRMSD (not shown) are always less than
the corresponding uncorrected values, but they ini-
tially grow with increasing xc (i.e., quantitative accu-
racy becomes worse). However, the tRMSD falls with
increasing separation, and the sRMSD levels off,
when xc � 0.6.

C. Effects of Data Noise (High-Contrast Media)

Representative images from a noise-titration study,
involving a two-inclusion target medium, are shown
in Fig. 13. The inclusions are centered at �xc, yc� �
��0.9, 0�, and the noise level of the detector data was
either �k � 0% [Figs. 13(a)–13(f)] or �k � 1% [Figs.
13(g)–13(l)]. Note that because these inclusions are
nearer the center than those considered in Figs. 10
and 11, and noise has been added to the detector data,
here we have increased the scattering contrast of the
inclusion to a mean value of 3� background, with
�20% amplitude modulation. To improve the achiev-
able image quality, in addition to applying the image-
correction operation, we have applied spatial and
temporal low-pass filtering to the image time series.
As with the results in Fig. 10, the particular case
shown is for a time point having maximal contrast
relative to the background �i.e., 3.4��. The post-
construction operations applied to the data shown in
Fig. 13 are: none [Figs. 13(a) and 13(g)]; image cor-
rection only [Figs. 13(b) and 13(h)]; low-pass filtering
only [Figs. 13(d) and 13(j)]; both [Figs. 13(e) and
13(k)]. Because of differences in quantitative accu-
racy, the images presented here have different gray-
scale ranges. However, a common fixed scale is
applied to the plots of 1D sections �y � 0� shown in
Figs. 13(c), 13(f), 13(i) and 13(l). The latter also pro-
vide for straightforward visualization of the smooth-
ness and edge detection quality of each image.

Similar to the findings seen in the preceding sec-
tions, an inspection reveals that the corrected images
are superior in terms of spatial resolving power,
quantitative accuracy, and edge detection. At the
same time, however, the correction operation tends to
amplify background artifacts, whether they originate
from systematic factors [Fig. 13(b)] or from noise [Fig.
13(h)]. The inclusions are recovered with fair accu-
racy even when the detector data are noisy [Fig.
13(i)], but the amplitudes of noise artifacts can be-
come comparable to those of the inclusions. Using the
tLPF and sLPF in combination5 substantially re-
duces the background artifacts [compare Figs. 13(b)

and 13(e)], at the cost of some reduction in quantita-
tive accuracy [compare Figs. 13(c) and 13(f)]. Results
similar to those presented here were obtained for
other time frames, for other noise levels in the two-
inclusion studies, and in the one-inclusion studies
(results not shown).

Whereas the preceding results concern a single
image frame, in Fig. 14 the the effects of image
correction, data noise, and noise suppression are
summarized for an entire time series. The curves
shown were computed for a one-inclusion medium,
with �xc, yc� � �1, 0� and a 2 cm inclusion diameter.
The dot-dashed curves are the average value of �D
within the inclusions of the target medium. Dashed
and solid curves are the corresponding spatial mean
�D in the uncorrected and corrected images, respec-
tively. The noise levels in the detector data used were
�k � 1% [Figs. 14(a) and 14(b)] and 3% [Figs. 14(c)
and 14(d)]. Plots of �D versus t are shown both before
[Figs. 14(a) and 14(c)] and after [Figs. 14(b) and 14(d)]
noise suppression is performed. These complement
the single time-frame results in Fig. 13 and show
that the correction procedure substantially enhances
quantitative accuracy but also amplifies the impact of
noise. The noise effect is seen primarily at higher tem-
poral frequencies (just as Fig. 13 shows that it affects
predominantly the high spatial frequencies), while
the low-frequency inclusion dynamics are recovered
with considerable accuracy. The noise-suppression
step yields images with high temporal correlations
between the target medium and image time series at
both noise levels considered.

The performance of the image-correction operation
was more extensively characterized by increasing the
noise level to a maximum value of �k � 8%. (Owing to
the greater impact of noise in 2D computational stud-

Fig. 14. Spatial mean value of the time-varying �D, within the
inclusion, for the Fig. 1(b) one-inclusion case. Dot-dashed curves
show the true ��D�r�� versus t of the target medium. Dashed
curves are the corresponding ��D�r�� versus t plots for uncorrected
images. Solid curves are the corresponding plots for the corrected
images. (a) and (b) Detector data noise level is 1%. (c) and (d)
Detector data noise level is 3%. (a) and (c) Unfiltered image data;
(b) and (d) low-pass filtered image data.
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ies5,13 than in 3D,6,8 8% greatly exceeds the noise levels
typical of experimental DOT measurement data). The
time-averaged SC, RM, and RW values are compiled
in Table 1, for representative one-inclusion and two-
inclusion target media. (In two-inclusion cases no RW
value is reported if the inclusions are not even partially
resolved.) The corresponding inclusion-area-averaged
TC values are reported in Table 2. The single inclusion
was centered at �xc, yc� � �1, 0�, and its diameter was
2 cm, while the paired inclusions (0.6 cm diameter)
were centered at �xc, yc� � ��1, 0�.

An inspection of these data show that the noise
dependence of both correlation values is stronger in
the corrected than in the uncorrected images. An un-
critical examination of these trends could lead to a
mistaken conclusion, that the image correction pro-
cedure is beneficial only at very low noise levels. In
reality, the SC trend is a largely a consequence of
residual background artifacts such as those in Fig.
13(k), and the TC trend is strongly influenced by
residual time-varying phase shifts such as those in
Fig. 14(d). The RM and RW data in Table 1 indicate

that, up to the highest noise level modeled, the sizes
and magnitudes of recovered inclusions are more ac-
curate in the corrected images. In experimental and
clinical practice, some amount of prior knowledge re-
garding locations of regions of interest usually is
available. This suggests that magnitudes and sizes of
diffusion-coefficient perturbations of clinical interest
can be recovered from experimental data having re-
alistic noise levels.

4. Discussion

When DOT image recovery is carried out for time-
series data, the issue of computational efficiency
takes on increased importance. Our recognition of
this fact was the motivating factor for this paper and
the companion paper (Ref. 8), which report on recent
progress relating to the development of a two-stage,
linear image reconstruction-and-correction algorithm.
Here we have demonstrated that the described method
can yield images of diffusion-coefficient perturba-
tions, of a quality comparable to that achieved using
more sophisticated reconstruction algorithms, in a
small fraction of the time.

The results presented in this paper are substan-
tially similar to those reported in Refs. 3 and 5 for the
recovery of ��a. A careful comparison reveals some
apparent differences in detail (e.g., corrected �D im-
ages seemingly have better quantitative accuracy
than their ��a counterparts). However, specific con-
clusions regarding quantitative differences cannot be
made yet, because the �D and ��a computations
were not conducted with identical FEM meshes or
S-D configurations.

A. Mechanism of Action for the Linear Image Correction
Algorithm

A point illustrated in Refs. 4 and 8 is that the use of
the correction procedure yields improvements in im-
age accuracy, regardless of the value chosen for the
Tikhonov regularization parameter. Those demon-
strations effectively refute the suggestion that the
lower quality of uncorrected images is a simple con-
sequence of selecting the wrong parameter value. But

Table 1. Indices of Qualitative and Quantitative Spatial Accuracy

Number of
Inclusions

Noise
Levela

SCb RMc RWc

Uncorrected Corrected Uncorrected Corrected Uncorrected Corrected

1 0% 0.87 0.93 0.65 0.96 1.23 1.05
1% 0.87 0.90 0.65 0.96 1.23 1.05
2% 0.87 0.80 0.65 0.93 1.12 1.12
3% 0.87 0.70 0.65 0.87 1.12 1.07
5% 0.87 0.56 0.65 0.85 1.15 0.98
8% 0.86 0.38 0.65 0.83 1.12 1.07

2 0% 0.43 0.65 0.14 0.49 – 1.46
1% 0.43 0.62 0.14 0.48 – 1.46
2% 0.43 0.48 0.14 0.47 – 1.71
3% 0.43 0.35 0.14 0.40 – 1.62

aThe tLPF and sLPF noise-suppression operations are applied to all the reconstructed images.
bSpatial correlation computation encompasses the entire FEM mesh.
cRelative mean and relative width computations consider only the nodes within the inclusions.

Table 2. Temporal Correlation Coefficients

Number of
Inclusions

Noise
Levela

TCb

Uncorrected Corrected

1 0% 1c 0.999
1% 0.995 0.877
2% 0.995 0.521
3% 0.995 0.484
5% 0.993 0.360
8% 0.992 �0.165

2 0% 1b 1b

1% 0.987 0.779
2% 0.985 0.516
3% 0.980 0.420

aThe tLPF and sLPF noise-suppression operations are applied to
all the reconstructed images.

bTemporal correlation computation considers only the nodes
within the inclusions.

cTC � 0.9995.
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in doing so, they raise other significant questions:
What, then, is the basis of the correction method’s
effectiveness? How is it different from standard reg-
ularized image reconstruction methods?

The various approaches to DOT image reconstruc-
tion14 differ in many details but have an essential
feature in common. Namely, the principal criterion
for successful image reconstruction is close agree-
ment between the measurement data and a com-
puted solution to the forward problem. As the inverse
problem typically is underdetermined, there can be
uncertainty as to the quantitative accuracy of the
result. The conventional response to this is to incor-
porate some form of regularization into the inverse
problem.15 Regularization has the effect of limiting
the set of admissible inverse-problem solutions to
those that satisfy some type of assumption regarding
the optical coefficients of the medium. Typically used
assumptions are: The correct solution, or one of its
spatial derivatives, is continuous (Tikhonov regular-
ization)16; minimum and maximum possible values for
the optical coefficients are known (range constraints9);
the solution is band limited, with known minimum
and maximum spatial frequencies (truncated singular
value decomposition,17 discrete-cosine transform18); or
the spatial distribution of optical coefficients closely
follows anatomy (structural priors19).

The linear image correction method used here dif-
fers from conventional regularization strategies in
an important way. A computation of a correction
matrix entails a direct comparison between a large
number of known, uncorrelated medium states and
the corresponding uncorrected images.3–5 Thus ad-
ditional information, of a type not available to the
standard approaches, is introduced into the inverse
problem. The process used to generate the correction
matrix may be thought of as a form of regularization.
However, the information that is distilled into the
correction matrix is precisely tailored to the particu-
lar mesh and reference medium used. It follows that
the correction is not simply equivalent to any of the
regularization methods listed above, which do not
incorporate an equivalent amount of medium-specific
information. Therefore, it is not surprising that the
image quality achieved here and in previous reports
cannot be replicated simply by, for example, adjusting
the value of a Tikhonov regularization parameter.4

B. Future Directions

The studies conducted for this report lay the ground-
work for exploring an idea first outlined in Ref. 4, for
reducing interparameter cross talk in DOT images.
This would be accomplished by simultaneously mod-
ulating �a and D of the reference medium, then com-
puting correction matrices from the known medium
states and their corresponding (uncorrected) recon-
structed images. The underlying assumption, which
the computations will directly test, is that misiden-
tification of one optical coefficient as the other by a
reconstruction algorithm is analogous to the blurring
and location bias errors that are considered in this
paper.

A successful outcome to the preceding effort would
permit us to consider the possibility of combining the
image-reconstruction and image-correction operators
into a single matrix. When images are reconstructed
using the NDM, both the ��a and �D perturbations
are solved for simultaneously. Formally

�W�a�WD	
Ç

W


��a
u

�Du�� ��R	 ) 
��a
u

�Du�� 
X�a

XD
�

Ç
X

��R	, (3)

where X is the (regularized) pseudoinverse of the
weight matrix W,1 and the superscript u denotes the
uncorrected image. If a two-coefficient correction ma-
trix were available, it would be straightforward to
generate a composite operator that computes cor-
rected images from detector data in a single step, as
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c

�Dc�� 
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�

Ç
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XD
���R	 � 
Y�a

YD
�

Ç
Y
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where Y � FX, and the superscript c denotes the
corrected image. Note that the F�aD submatrix spec-
ifies how to redistribute information from the uncor-
rected �D image into the corrected ��a image, and
that analogous interpretations apply to the other
submatrices of F. Additionally, the pseudoinverse of
Y could be interpreted as a corrected weight matrix.
This would be a more accurate representation, than
first-order perturbation theory provides, of the rela-
tion between the medium optical coefficients and the
measurement data. As a practical matter, the single-
step image formation process represented in Eq. (4)
may yield further improvements in image accuracy,
by avoiding the accumulation of numerical errors
that is often associated with the generation of inter-
mediate results.

Another goal, also directed to further improving
corrected image accuracy, will be to reduce the im-
pact of data noise on the fidelity of temporal informa-
tion recovery. Two possible routes for accomplishing
this can be explored. One approach is to incorporate
some form of temporal regularization into the image
reconstruction algorithm,20 in contrast to the cur-
rently employed strategy of treating each time frame
as an independent inverse problem. The former
strategy is more computation intensive but is also
sensible, as the optical coefficients of a medium would
not be expected to change radically on the subsecond
time scale of our time-series DOT measurements.
The second approach is to incorporate measurement
noise directly into the data used for the generation of
the correction matrix. Preliminary calculations have
shown that this can have the effect of homogeneously
redistributing an image’s noise component over the
entire area or volume of the medium. At the same
time, the average noise magnitude per FEM mesh
node falls by a factor of 1�
N, where N is the number
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of nodes. The two strategies outlined here are not, of
course, mutually exclusive.

Finally, an important assumption underlying the
linear correction approach is that the relation be-
tween the medium state and the uncorrected image is
the same for a physical target medium as for the
simulated medium used in the correction matrix com-
putations. To determine if the image correction strat-
egy can be successfully applied to experimental data,
we have constructed and performed initial tests on a
series of solid-state dynamic phantom media. Prelim-
inary experiments thus far conducted have shown the
same types of image quality improvement as are
found in simulation studies.21 The results presented
here and in the companion paper will be used in
future work aimed at developing phantom media
having more complex backgrounds as well as inde-
pendently variable scattering and absorption. The
latter are expected to provide information useful for
achieving the ultimate goal of time-series DOT imag-
ing in human subjects, with clinically useful levels of
spatial and dynamic accuracy.
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