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accuracy of reconstructed three-dimensional
diffuse optical tomographic images

Harry L. Graber, Yong Xu, Yaling Pei, and Randall L. Barbour

A straightforward spatial deconvolution operation is presented that seeks to invert the information-
blurring property of first-order perturbation algorithms for diffuse optical tomography (DOT) image
reconstruction. The method that was developed to generate these deconvolving operators, or filters, was
conceptually based on the frequency-encoding process used in magnetic resonance imaging. The compu-
tation of an image-correcting filter involves the solution of a large system of linear equations, in which
known true distributions and the corresponding recovered distributions are compared. Conversely,
application of a filter involves only a simple matrix multiplication. Simulation results show that appli-
cation of this deconvolution operation to three-dimensional DOT images reconstructed by the solution of
a first-order perturbation equation (Born approximation) can yield marked enhancement of image qual-
ity. In the examples considered, use of image-correcting filters produces obvious improvements in image
quality, in terms of both location and �a of the inclusions. The displacements between the true and
recovered locations of an inclusion’s centroid location are as small as 1 mm, in an 8�cm-diameter medium
with 1.5�cm-diameter inclusions, and the peak value of the recovered �a for the inclusions deviates from
the true value by as little as 5%. © 2005 Optical Society of America
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1. Introduction

The subject of this paper is a novel application of
linear deconvolution techniques for the problem of
improving the spatial resolution of three-dimensional
(3D) reconstructed images in the field of diffuse opti-
cal tomography (DOT). In brief, DOT involves the
illumination of tissue structures with one or more
wavelengths of visible or near-infrared radiation at
multiple positions on the tissue boundary, multiple-
site detection of the light that is reemitted across the
boundary, and reconstruction of images of the spatial
distributions of the tissue’s absorption or scattering
coefficients. The clinical utility of DOT lies in the
relations between these coefficients and physiological
parameters such as blood oxygen saturation and tis-

sue blood volume; furthermore, it is recognized that
DOT offers specific practical advantages relative to
established functional imaging modalities such as
positron emission tomography and single-photon
emission computed tomography (it does not entail
administration of radionuclides) or functional mag-
netic resonance imaging (higher temporal resolution,
possibly less ambiguity in the interpretation of re-
sults).

In a series of papers published during the past 4–5
years, our group has demonstrated the advantages of
performing rapid repeated DOT measurements, then
extracting dynamic information by applying various
time-series analysis methods—many of which are al-
ready widely used to process optical spectroscopy
data—to the reconstructed images.1–7 As a practical
matter, a requirement for use of these algorithms is
the availability of a reconstruction algorithm that can
recover many images in a short time. The basic
framework we have adopted for this purpose is the
normalized difference method (NDM),8 which is ro-
bust to many of the biases and types of noise that are
commonly encountered when laboratory or clinical
DOT measurements are performed and is also able to
accommodate many refinements. One of these, the
normalized constraint method,9 was shown to suc-
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cessfully distinguish absorption and scattering per-
turbations in a diffusing medium over a broad range
of medium optical properties when applied to
continuous-wave DOT measurement data. For cases
in which the test medium for the normalized con-
straint method had spatially coincident absorption
and scattering perturbations, we assessed the algo-
rithm’s ability to separate them by assigning a qual-
itatively different form of temporal fluctuation to
each optical parameter.10 These dynamics acted as
tags by which interparameter cross talk was pre-
cisely quantified.

While the preceding study was in progress, it was
recognized that the tagging of optical parameters
with temporal information immediately suggests a
general mechanism to characterize the action of DOT
image reconstruction algorithms on their input
data.11–14 Namely, let a distinct mode of temporal
fluctuation be assigned to each optical parameter of
interest in every volume element of a medium, and let
a time series of forward- and corresponding inverse-
problem solutions be computed. Then a map of mag-
nitude versus location for a given mode of fluctuation
within the image space reveals precisely how the re-
construction algorithm distributes the corresponding
optical parameter throughout that space. A mapping
from object space into image space obtained in this
way is conceptually analogous to a point-spread func-
tion (PSF),15 which characterizes the physical accu-
racy and resolution of an optical device. In view of
this analogy, the term information spread function
(ISF) has been adopted as our descriptor for the type
of object–space to image–space mapping described
here.

The ISF formulation has an important implica-
tion that provides the main topic of the present
paper. Namely, once the behavior of a reconstruc-
tion algorithm has been characterized under a
given set of initial conditions (e.g., the NDM for a
particular reference medium and arrangement of
sources and detectors), its ISFs can be used in de-
convolution computations to improve the spatial
resolution and accuracy of reconstructed images.
This application is analogous to the established
practice in which the point-spread functions of an
optical measuring device are used as the basis for
calibration and correction procedures to reduce im-
age blurring or aberrations.16–19 Results presented
in this paper demonstrate that highly significant
improvements in the quality of DOT image spatial
information can be achieved in this way. It is worth
stressing that the technique described here can be
applied to media of arbitrary shape and internal
composition, and arbitrary source–detector geome-
tries, in a computationally efficient manner.

It is well appreciated that solutions to the DOT
forward problem are nonlinear functions of the me-
dium’s optical parameter values. Previously, groups
that engaged in DOT research, ourselves included,
always assumed that these nonlinearities are a prin-
cipal cause of the distortions and low spatial resolu-
tion typically seen in images recovered by linear

reconstruction algorithms.20,21 Accordingly, the usual
prescription used to improve image quality has been
to adopt a nonlinear reconstruction strategy, recom-
puting solutions to the forward and inverse problems
in an alternating pattern.22 The findings presented
here imply, however, that linear spatial convolution,
or mixing of information from many target medium
locations in any given image pixel or voxel, is actually
a more important source of the errors in recon-
structed DOT images. The significance and limita-
tions of this premise are expanded on in Section 4.

2. Methods

A. Spatial Deconvolution Algorithm

The strategy described here was conceptually moti-
vated by a consideration of the physical basis of im-
age formation in magnetic resonance imaging (MRI).
There, spatial discrimination is possible because the
imposition of a magnetic field gradient creates a
range of position-dependent resonance frequencies.
This same concept is applied here to the image for-
mation problem of optical tomography, although it
seems likely (see Section 4) that it will be applicable
to other inverse problems as well. The basic idea is
that first-order solutions to linear perturbation prob-
lems often produce less than ideal solutions, with
image blurring evident. Now suppose there is some
way to specifically encode the pixel information in the
object space and to track where it is recovered in the
image space. As in MRI, this can be accomplished
when the absorption coefficient ��a� is tagged in every
object pixel with a unique time-varying function. The
reduced scattering coefficient ��s�� can be simulta-
neously tagged in the same way to assess the degree
of interparameter cross talk in the recovered images.
However, to simplify the presentation in this initial
demonstration, only �a was modulated in the exam-
ples presented in this paper.

In the implementation that was used to produce
the results presented below, the particular tagging
functions used were simple sine waves with incom-
mensurable frequencies. We achieved incommensu-
rability by using the square roots of successive prime
numbers as the tag frequencies (i.e., f1, 2, 3, 4, . . .

� 1, 21�2, 31�2, 51�2, . . . Hz) so that the ratio of any
two is an irrational number; by adopting this se-
quence, any nonlinear phenomena that might occur
cannot produce harmonics or sum–difference fre-
quencies that are equal to any of the tag frequencies.
The tagging functions were evaluated at a large num-
ber Nt �Nt � 16, 384 � 214� of successive time points,
with a constant time interval �t��t � 0.005 s� that
was short relative to the difference between the os-
cillation periods of the two highest-frequency tagging
functions. This choice of Nt and �t assures that none
of the tagging functions are undersampled, which
would produce aliasing artifacts, and that they all
can be resolved in the frequency domain.

At each time point a forward problem for a tomo-
graphic measurement (i.e., multisource, multidetec-
tor) was solved, as described in Subsection 2.B. We
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subsequently solved the inverse problem, as de-
scribed in Subsection 2.C, by using the NDM to pro-
duce a system of linear equations whose solution was
computed by LU decomposition.23 In this way a time
series of reconstructed images was built up. Inspec-
tion of the power spectra of the images (i.e., spatial
maps of power versus position for selected frequen-
cies) directly identifies where and to what extent in-
formation from each pixel in the object domain is
mapped to the image domain. As described in Section
1, a spatial map of this sort is referred to as an ISF.
The details of the information spread, a two-
dimensional (2D) example of which is shown in Fig. 1,
are specific to the properties of the object and the
illumination geometry used and to the algorithm em-
ployed for image recovery. Accordingly, inspection of
these maps can provide valuable insight into the ac-
tion of a reconstruction algorithm. The ISF in Fig. 1,
for example, demonstrates that the reconstruction
algorithm used yields images containing two com-
monly observed types of error. First, the optical pa-
rameter (absorption coefficient, in this example)
value present at a specific location in the medium
[Fig. 1(a)], as identified by the amplitude of the sinu-
soidal fluctuation used to tag its location, is attrib-
uted to a much larger area in the image space [Fig.
1(b)]. Second, the location of the high-amplitude peak
in the image is displaced from its correct location
toward, in this case, the center of the image space.
That is, the reconstruction algorithm used here pro-
duces a blurred and distorted image.

The potentially most important application of the
knowledge obtained when we compute ISFs would be
to use them as the basis of an image enhancement
algorithm. That is, knowing how optical parameter
information is mapped from object space to image
space should enable one to devise a suitable correc-
tion that would in effect remove the effects of linear
spatial convolution from images. In practice, in the
preferred strategy for doing this, we do not use the
power spectra of the recovered temporal fluctuations
(or, more generally, the temporal covariance be-
tween the assigned and recovered tagging func-

tions) as the input data for derivation of image
deconvolution operators. The reason is that compu-
tation of the relevant deconvolution operator typi-
cally is an ill-conditioned problem. Consequently,
for media comprising Ns voxels, our attempts to gen-
erate such operators by inverting Ns � Ns matrices of
ISFs have mostly yielded unsatisfactory results.12

(The issue of ill-conditioning is also important to un-
derstand why in practice the best corrections are ob-
tained when Nt �� Ns, as discussed in Subsection
4.B.) Instead, the assigned and recovered time-
varying �a in all pixels should be compared in the
time domain directly. That is, the input is collected
into an Ns � Nt matrix Y and the reconstructed �a’s
are collected into an Ns � Nt matrix X, where the
element yij is the assigned (tag) value of �a in voxel i
at time j and the element xij is the recovered value of
�a in voxel i at time j. The objective is to determine an
Ns � Ns filter matrix F that will transform X into Y.
That is, a solution to the equation Y � FX is sought.
This F will subsequently be applied to reconstructed
experimental images in the hope of improving them.
Thus if u is a particular reconstructed image of a test
medium (i.e., a medium different from all the ones
used to generate F), then v � Fu is the correspond-
ing corrected, or deconvolved, or filtered image.

In general X and Y are not square matrices, as
Nt �� Ns in the situations of interest. For example, in
the results to follow there were 982 or 984 voxels [i.e.,
finite-element method (FEM) mesh nodes] in the 3D
media that were studied, which is more than an order
of magnitude smaller than the number of time steps.
Then X and Y cannot in general be inverted, and the
equation Y � FX cannot hold. This situation is com-
mon in statistical problems; the matrix equation rep-
resents Nt linear equations in Ns unknowns; and
unless the coefficients are linearly dependent in some
way, there is no exact solution. A commonly used
strategy in these cases is to try to make the difference
matrix Y � FX as small as possible, in the least-
squares sense. That is, the elements fji of F are chosen
so that the quantity

I��
k�1

Nt

�
j�1

Ns �yjk��
i�1

Ns

fjixik�2

, (1)

which is the sum of the squares of the errors in the
individual terms when Y is approximated by FX is
minimized. Setting the derivative of I with respect to
each element of F equal to zero yields

�I
�fji

��2�
k�1

Nt �yjk��
l�1

Ns

fjlxlk�xik�0, (2)

or

�
k�1

Nt

yjkxik��
k�1

Nt

�
l�1

Ns

fjlxlkxik, ∀ i, j. (3)

Fig. 1. (a) Spatial map of the amplitude of one selected temporal
model function assigned to the absorption coefficient ��a� of a FEM
mesh node located at the intersection of the horizontal and vertical
lines. In this example, the mesh is an 8�cm-diameter 2D disk with
homogeneous �s� and homogeneous time-averaged �a. (b) Spatial
map of the amplitude in the time series of reconstructed �a images
of the same temporal frequency as that assigned to the indicated
FEM mesh node in (a).
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Equation (3) is just the matrix equation YXT

� FXXT, where XT is the transpose of X. Since XXT is
a square matrix and the columns of X are linearly
independent, XXT can be inverted to give F � �YXT�
�XXT��1.

Finally, it should be noted that if the process is
inverted, to produce the optimal approximation X
� GY in the least-squares sense, it is found that G
� �XYT��YYT��1 and, in general, F and G are not
inverses of each other.

B. Solution of the Forward Problem

Forward-problem solutions were computed for the
two FEM meshes shown in Fig. 2. The hemispheric
mesh shown in Fig. 2(a), which approximates the
measurement geometry for DOT mammographic
studies, contains 4309 tetrahedral elements with 982
nodes; the curved-slab mesh [Fig. 2(b)], which ap-
proximates the measurement geometry for DOT
brain imaging, contains 4274 tetrahedral elements
with 984 nodes. The diameter of the hemisphere is
8.0 cm. The distance between the convex and concave
surfaces of the curved slab is 3 cm, and it can be
circumscribed by a parallelepided of dimensions
7.2 cm �length� � 5.2 cm �width� � 4.33 cm (thick-
ness). The starting point in its generation was a
7.2 cm � 5.2 cm � 3.0 cm rectangular slab, which
was next subjected to two thickness-preserving cir-
cular bends, first in the length dimension and then in
the width dimension.

Defined sets of points on the convex mesh surfaces
were used as the locations for isotropic sources or
detectors. For the hemispheric mesh, 29 detector lo-
cations were designated [only 14 are visible in Fig.
2(a)], and 25 of these were also used as sources, for a
total of 725 source–detector channels. For the
curved-slab mesh, 24 source and detector locations
were designated, as shown in Fig. 2(b), for a total of
576 source–detector channels.

We acquired tomographic data for the simulated
tissue models by using the FEM to solve the diffusion
equation with Robin boundary conditions and a dc
source term. For a spatial domain � with boundary
��, this is represented by the expression

	 · �D(r) 	 
(r)� � �a(r)
(r) � ��(r � rs), r � � (4)

where 
�r� is the photon intensity at position r, rs is
the position of a dc point source, and D�r� and �a�r�
are the position-dependent diffusion and absorption
coefficients, respectively. Here the definition used for
the diffusion coefficient was D�r� � 1�	3��a�r�
� �s��r��
, where �s��r� is the position-dependent re-
duced scattering coefficient. For all computations
considered in this paper, both media shown in Fig. 2
had spatially homogeneous and temporally invariant
scattering with �s� � 10 cm�1.

For the forward-problem computations that gener-
ated the object versus image comparisons that were
used to compute filter (F) matrices, the spatial dis-
tributions and temporal fluctuations of the dynamic,
heterogeneous media’s absorption coefficients are de-
scribed in Subsection 2.A. The spatiotemporal mean
value was ��a� � 0.06 cm�1, and the amplitude of the
sinusoidal temporal variation at each FEM mesh
node was 0.0048 cm�1 (8%) for the hemisphere and
0.009 cm�1 (15%) for the curved slab. For the compu-
tations that generated the data used in the subse-
quent tests of the filters’ image-correcting power, the
static, spatially heterogeneous medium structures
shown in Fig. 3 were employed. In this step the FEM
meshes used for computation of detector readings
intentionally were made finer than those used for
generation of the F matrices and for subsequent im-
age reconstruction (hemisphere, 2212 nodes and

Fig. 2. Three-dimensional FEM meshes and source–detector ge-
ometries used to compute and test the image deconvolution oper-
ators. (a) Hemispheric mesh containing 982 nodes and 4309
elements. (b) Curved-slab mesh containing 984 nodes and 4274
elements. Source–detector locations are marked with small white
circles.

Fig. 3. Heterogeneous test media used in demonstrations of the
efficiency of deconvolution to improve reconstructed image accu-
racy. (a)–(c) Hemisphere with one inclusion; (d)–(f) hemisphere
with three inclusions; (g)–(i) curved slab with three inclusions.
First column [(a), (d), (g)] shows the x–y projections; the second
column [(b), (e), (h)] shows the x–z projections; and the third col-
umn [(c), (f), (i)] shows the y–z projections of the 3D test media.
Numbers along the gray scales give the quantitative value of the
spatially varying �a, whereas �s is homogeneous.
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10,305 elements; curved slab, 2062 nodes and 8698
elements) so that we would not be committing a sim-
ple inverse crime. In these test media the inclusions
are approximately spherical (limited by the coarse-
ness of the FEM meshes), with average diameters of
1.5 cm for the hemispheres and 1.2 cm for the curved
slabs. The background regions of these media had
uniform absorption, with �a � 0.06 cm�1, whereas
the inclusions were more strongly absorbing, with
�a � 0.12 cm�1 for the hemisphere and either
0.12 cm�1 (Fig. 9) or 0.3 cm�1 (Figs. 6 and 8) for the
curved slab. The latter perturbation was made larger
strictly for reasons of computational convenience, i.e.,
because backscattering measurements were being
simulated in this case and the inclusions’ volumes
were less by almost a factor of 2 ��1.2 cm�1.5 cm�3

� 0.512�, a higher value of �a in the inclusions was
needed to produce detector reading perturbations of
the same magnitude as those obtained for the hemi-
spheric medium. However, it should be stressed—
and the results presented in Fig. 9 prove—that the
image reconstruction and image enhancement algo-
rithms do not require this degree of contrast between
structures in the medium to perform successfully.

Imaging operators (see Subsection 2.C) were com-
puted, in the manner described in Ref. 24, for each
source–detector channel. In brief, each row of the
matrix Wr [Eq. (5)] is a function of two forward-
problem solutions: a product of forward and adjoint
intensities for perturbations of �a and a dot product of
forward and adjoint intensity gradients for perturba-
tions of D. For each simulated medium (i.e., target
medium) shown in Fig. 2, a single set of imaging
operators was used for all inverse-problem computa-
tions. These were computed for a homogeneous ref-
erence medium having the same shape, size, and
measurement geometry as the (heterogeneous) target
and with optical parameters equal to the mean values
��a � 0.06 cm�1, �s� � 10 cm�1� of those in the tar-
get.

C. Solution of the Inverse Problem

The reconstruction algorithm that was used to gen-
erate the results presented below seeks to solve a
modified perturbation equation whose form is

Wr · �x � �Ir, (5)

where �x is the vector of differences between the
optical properties [e.g., absorption and scattering
(diffusion) coefficients] of a target and a defined ref-
erence medium; Wr, the imaging operator or weight
matrix, is the weight matrix describing the influence
that each voxel has on the surface detectors for the
selected reference medium; and �Ir is proportional to
the difference between detector readings obtained
from the target in two distinct states (e.g., the differ-
ence between data collected at two different instants
or the difference between instantaneous and time-
averaged data). Also, to improve the condition num-
ber of the linear systems being solved, zero-order

Tikhonov regularization (ridge regression) was
used in all image reconstructions. Thus we recon-
structed the images not by computing �x
� Wr

� · �Ir � Wr
T�WrWr

T��1 �Ir in accordance with Eq.
(5), but by computing the regularized quantity

�x � Wr
T(WrWr

T � I)�1�Ir. (6)

For all inverse-problem calculations carried out for
this paper, the numerical value of the regularization
parameter was  � 0.01. As is shown subsequently,
the presence of regularization term is important, but
the parameter value used has, over a 5 order-of-
magnitude range from  � 10�5 to  � 100, little
effect on image quality.

The distinction between Eqs. (5) and (6) and a stan-
dard linear perturbation equation lies in the struc-
ture of the right-hand side. Here we used the
previously described NDM,8 in which the quantity �Ir

on the right-hand sides of Eqs. (5) and (6) is defined
by

(�Ir)i �
(I � I0)i

(I0)i
(Ir)i. (7)

In Eq. (7), Ir is the computed detector readings cor-
responding to a selected reference medium. For the
filter-generating computations, I and I0 represent the
intensity at a specific time point and the time-
averaged intensity, respectively. For the filter-testing
computations, I and I0 are the intensities (i.e., detec-
tor readings) computed for the heterogeneous target
medium and the homogeneous reference medium, re-
spectively.

A Levenberg–Marquardt (LM) algorithm was used
to compute the numerical solutions to Eq. (6).22 A
time period of less than 1 min was required for com-
putation of the weight matrix and the subsequent LU
decomposition. [Note that the L (lower triangular)
and U (upper triangular) factors could be read from a
library of precomputed matrices and that the decom-
position is a one time only event in any case.] Subse-
quently, the time required to reconstruct each image
(i.e., backsubstitution step) was approximately 0.3 s
on a PC with a 2.4�GHz Pentium IV processor and
1 Gbyte of RAM. The weak dependence of image
quality on the degree of regularization used, for 
� 10�5, is shown in Fig. 4, where the root-mean-
squared error (RMSE) of the reconstructed image rel-
ative to the original target medium is plotted versus
� for the three-inclusion hemispherical medium de-
picted in Figs. 3(d)–3(f). For the uncorrected images
that we reconstructed by solving Eq. (6) (dashed
curve), the RMSE increases rapidly with decreasing �
for  � 10�6. However, the RMSE is only 10% larger
at  � 100 than at the absolute minimum of the
curve, which occurs at  � 5 � 10�5. The depen-
dence of RMSE on � is even weaker for the corrected
images (solid curve) and actually decreases with in-
creasing � over the same interval in which the un-
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corrected image RMSE increases. The specific value,
 � 10�2, that we used in generating the results
presented in Section 3 was chosen as a compromise
value. Also worthy of note is the absence of crossings
between the curves in Fig. 4, which indicates that
there is no degree of regularization for which decon-
volution fails to enhance the reconstructed image.
Consistent with this, inspection of the uncorrected
images (not shown) reveals that no value of � yields
reconstructed images substantially better than those
presented below in Figs. 6(a)–6(c).

Initial tests of the spatial deconvolution strategy
for image enhancement were made on noise-free
data. Subsequently, to assess the robustness of the
method to noise in detector data, the same image
reconstruction and deconvolution steps were applied
a second time to the media in Figs. 3(b) and 3(c), after
the detector readings were corrupted with multipli-
cative Gaussian noise, at a uniform level of 1%. Thus
the noise vector element corresponding to the ith
source–detector channel was sampled from the
Gaussian distribution N�0, 0.01�I0�i�. Then I� � I
� n, where n is the noise vector, was substituted for
I in Eq. (7).

3. Results

Three orthogonal 2D projections of the hemispheric
target medium used in the first test of the spatial
deconvolution approach are shown in Figs. 3(a)–3(c).
The corresponding views of the image reconstructed
obtained by the solution of Eq. (6) are shown in Figs.
5(a)–5(c). It can be seen that the presence, location,
and direction (i.e., inclusion more strongly absorbing
than background) of the inclusion are recovered rea-
sonably accurately, whereas more quantitative fea-
tures such as its shape and volume and the
magnitude of the �a contrast are not. Noteworthy is
the frequently seen tendency of some DOT image

reconstruction algorithms to push the recovered per-
turbation into regions of the medium with the lowest
weight, which in this case lies along the planar
boundary of the hemisphere. The same views of the
corrected image obtained by application of the filter-
ing scheme described here is shown in Figs. 5(d)–5(f).
The improvement in image quality and the similarity
between the image and the original target are strik-
ing. Comparison of the gray scales of the uncorrected
and corrected images with those of the original re-
veals that the improvement is quantitative and dem-
onstrates the possibility of accurately recovering the
absolute value of optical parameter variations with a
reconstruction algorithm that operates on relative
changes in detector readings. Because of space limi-
tations, extensive numerical analyses of qualitative
and quantitative accuracy10,25 are not presented here,
but will be included in a more in-depth report cur-
rently in preparation. We do note here, however, that
in this example the location of the inclusion’s centroid
in the corrected image lies within 1 mm of its true
position, and the peak recovered �a lies within 5% of
the correct quantitative value.

Although the preceding single-inclusion study
might lead some to conclude that the quality of the
uncorrected image is adequate, and the computa-
tional effort that went into generating the filter ma-
trix is therefore gratuitous, it does not address the
important issue of the reconstruction algorithm’s re-
solving power. To examine the effect of our image-
correcting procedure on this feature, the next test
medium that was considered contained three inclu-
sions, as shown in Figs. 3(d)–3(f). Here the average
distance between the centroids of pairs of inclusions
was 2.68 cm. The image that we reconstructed by
using the method of Subsection 2.C, shown in Figs.
6(a)–6(c), exhibits the same types of quantitative in-
accuracy as was seen in the one-inclusion case, but
here the qualitative accuracy also suffers as a conse-

Fig. 4. Root-mean-squared difference between the three-
inclusion hemispherical medium shown in Figs. 3(d)–3(f) and the
uncorrected (dashed curve) and corrected (solid curve) recon-
structed images of the same target, versus the magnitude of the
Tikhonov regularization parameter �.

Fig. 5. Reconstructed image of one-inclusion hemispheric test
medium [see Figs. 3(a)–3(c)]. (a)–(c) Uncorrected image, which is
the solution to Eq. (6); (d)–(f) corrected image obtained by applying
the spatial deconvolution to the result in (a)–(c). First column [(a)
and (d)] shows the x–y projections; the second column [(b) and (e)]
shows the x–z projections; and the third column [(c)–(f)] shows the
y–z projections of the 3D images. Numbers along the gray scales
give the quantitative value of the spatially varying �a.
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quence of the inability of the reconstruction to resolve
the perturbation into three distinct objects. In con-
trast, the corrected image displayed in Figs. 6(d)–6(f)
exhibits the same degree of qualitative and quanti-
tative accuracy improvement as obtained in the one-
inclusion case. Significantly, there is no appreciable
degradation in the performance of the filtering strat-
egy, even though the strongly absorbing volume is
larger and the potential for nonlinear interactions
among the inclusions exists in this case.20,21 This ob-
servation suggests that the primary cause of inaccu-
racies in the uncorrected images produced with the
solution of Eq. (6) are a consequence of linear spatial
convolution arising from the algorithm’s ISF. It is
reasonable to suppose that a similar result would be
obtained with a different choice of reconstruction al-
gorithm, in which case the conceptual basis of non-
linear iterative reconstruction schemes would be
called into question (see Section 4).

In the preceding two tests, the uncorrected images
were reconstructed from fully tomographic sets of
measurement data. Two important questions not yet
addressed are the dependence of the filtering strate-
gy’s performance on the geometry of the target me-
dium and on the disposition of sources and detectors
(i.e., measurement geometry). To begin to examine
these issues, the image-correction procedure was ap-
plied in the case of the three-inclusion curved-slab
test medium shown in Figs. 3(g)–3(i). Here the dis-
tance between centroids of adjacent inclusions was
2.23 cm, and all three lay at the same depth. Conse-
quently, nonlinear phenomena ought to have a
smaller effect on the quality of the reconstructed im-
age here than in the preceding hemispheric medium
case. However, the quality of the image we recovered
by using the method of Subsection 2.C is, as can be
seen in Figs. 7(a)–7(c), so poor as to make it unusable.
Application of the image-correcting filter appropriate
for this case produces the result in Figs. 7(d)–7(f). The
corrected image has the same levels of qualitative
and quantitative accuracy as that obtained in the
preceding tests, which means that an appreciably
higher degree of improvement was obtained. The re-
sults in Figs. 7(d)–7(f) imply that information regard-

ing the correct spatial distribution of �a in the target
medium is present in the uncorrected image, but in a
highly spatially convolved form. This strengthens the
hypothesis that nonlinear image-correction ap-
proaches, when applied to DOT problems, are based
on a false premise regarding the origin of the inaccu-
racies in the reconstructed images. It further sug-
gests (see Section 4) that many apparent DOT image
reconstruction failures actually have been unrecog-
nized successes, requiring only an appropriate post-
processing step to put them into a visually
recognizable form.

Because the preceding results were obtained under
ideal conditions, it is important to examine the effect
of factors that impair the quality of real experimental
data on the effectiveness of the spatial deconvolution
procedure. Chief among these is the inevitability of
some level of random error in the detector readings
used by the image reconstruction algorithm. In other
medical imaging fields, it has been shown that de-
blurring operations can amplify image degradation
resulting from noise.26,27 Therefore it is important to
include test cases in which noise was added to the
detector data and to compare the output of the image-
correction scheme to the corresponding noise-free re-
sult. The uncorrected and corrected images obtained
of the three-inclusion hemispheric [Figs. 3(d)–3(f)]
and curved-slab [Figs. 3(g)–3(i)] test media when the
detector readings were corrupted with multiplicative
noise as described in Subsection 2.C are shown in
Figs. 8 and 9, respectively.

Comparing Figs. 8(d)–8(f) with Figs. 6(d)–6(f), it
can be seen that the noise does not appreciably affect
the accuracy of either qualitative or quantitative fea-
tures of the recovered inclusions. Rather, the only
apparent effect of noise is to introduce a number of
irregularly shaped blobs of spurious �a contrast into
the background region. That is, although noise places
limits on spatial resolution and sensitivity, just as it
does for any other imaging modality (i.e., inclusions
with physical dimensions or contrast smaller than

Fig. 6. Reconstructed image of a three-inclusion hemispheric test
medium [see Figs. 3(d)–3(f)]. See caption to Fig. 5 for explanation
of gray scales and of row and column assignments.

Fig. 7. Reconstructed image of a three-inclusion curved-slab test
medium [see Figs. 3(g)–3(i)]. See caption to Fig. 5 for explanation
of gray scales and of row and column assignments.
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those of the noise blobs cannot be distinguished from
the effects of noise), it does not pose any extra burden
on the image-correcting filter approach outlined here.

For the curved-slab case, a comparison of Figs. 9(d)
and 7(d) could suggest that noise has a larger effect
on the ability of the filtering scheme to resolve inclu-
sions and to accurately recover their qualitative
shape features. However, the views of the images
that show the depth dependence of the recovered �a

spatial distributions [Figs. 7(e) and 7(f) and 9(e) and
9(f)] reveal that the inclusions actually are well re-
solved. Also interesting is that the spurious blobs
produced by the data noise have a marked depth
dependence, and in this example most of them lie in
the region more superficial than the inclusions. It is
important to determine, in future research, whether
this observation continues to hold when the relative
noise level increases with increasing source–detector
separation,28 as one would expect to find in experi-
mental or clinical data. If results of the type seen in

Fig. 9 are obtained consistently, then in subsequent
efforts to incorporate regularization into the decon-
volution step (in addition to the Tikhonov regulariza-
tion that is used, as described in Subsection 2.C, to
reconstruct the uncorrected images), the idea of em-
ploying a depth-dependent regularization functional
should be explored. The regularization magnitude
would increase with decreasing depth, as some pre-
vious empirical studies already have recommended.29

Finally, because a principal conclusion drawn from
this study is that image-correcting procedures of the
type presented here should either replace or comple-
ment the strategy of iteratively updating the
forward- and inverse-problem computations, it is im-
portant to directly compare the performance of these
two approaches when they are applied to the same set
of detector data. The curved-slab target medium used
for this comparison has the same anatomical struc-
ture as that shown in Fig. 3(b), but here the
inclusion/background �a contrast ratio is 2:1, instead
of the 5:1 used for the computations whose results are
shown in Figs. 7 and 9. The first-order reconstructed
image (not shown) is qualitatively similar to that in
Figs. 7(a)–7(c), and the image recovered after ten
iterations of a previously described22 LM algorithm is
shown in Figs. 10(a)–10(c). The total computation
time was approximately 90 min on the same comput-
ing platform used for the filter generation and spatial
deconvolution computations. Although evidence of a
three-inclusion structure is present here, only two
inclusions are well defined in terms of shape and
centroid location, and only one has a well-defined
boundary. It also can be seen that the error in the
apparent depth of the inclusions is not corrected after
this number of iterations. The corresponding result
that we obtained by deconvolving the first-order im-
age is shown in Figs. 10(d)–10(f). In this result all
three inclusions are well resolved with well-defined
boundaries, and their depth is correctly identified.

Fig. 8. Reconstructed image of three-inclusion hemispheric test
medium [see Figs. 3(d)–3(f)] when detector data are corrupted with
noise in the manner described in Subsection 2.C. See caption to
Fig. 5 for explanation of gray scales and of row and column assign-
ments.

Fig. 9. Reconstructed image of three-inclusion curved-slab test
medium [see Figs. 3(g)–3(i)] when detector data are corrupted with
noise in the manner described in Subsection 2.C. See caption to
Fig. 5 for explanation of gray scales and of row and column assign-
ments.

Fig. 10. Comparison of the performance of the nonlinear iterative
image reconstruction algorithm and the spatial deconvolution ap-
proach. The test medium is a curved slab with three inclusions [see
Figs. 3(g)–3(i)]; detector data are noise free. See caption to Fig. 5 for
explanation of gray scales and of row and column assignments.
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It is recognized that the particular iterative recon-
struction algorithm used in this example has not
been optimized with respect to the convergence rate
for the imaging problem that was considered. Un-
doubtedly the quality of the image in Figs. 10(a)–
10(c) would improve with more iterations, and it is
probable that algorithms can be found that require
fewer iterations for convergence. In any case, the
time required to recover the final answer would be
many times greater than the 0.01 s needed to apply
the filter correction. In marked contrast to iterative
strategies, the time required for filter generation can
precede the collection of any given data set and so
does not affect the time interval between data collec-
tion and production of the final image.

4. Discussion

In this paper a straightforward spatial deconvolution
operation is presented that seeks to invert the
information-blurring property of first-order perturba-
tion algorithms for DOT image reconstruction. The
computation of such a deconvolving operator, or filter,
involves the solution of a large system of linear equa-
tions, in which known true distributions and the cor-
responding recovered distributions are compared.
The application of a filter is by simple matrix multi-
plication. Thus, although their generation entails sig-
nificant computational effort, for any given type of
DOT measurement they can be precalculated, and
only the application time (10�3 s or 6–7 orders of
magnitude smaller than the generation time for the
illustrative examples presented here) contributes to
the postmeasurement computational burden.

The method that was developed to generate the
image-correcting filters was conceptually based on
the frequency-encoding process used in MRI. It is
largely for this reason that, for the examples pre-
sented in this paper, we tagged each medium’s voxels
by assigning incommensurable sinusoidal fluctua-
tions to their optical coefficients. Because of this par-
ticular choice of tagging functions, the technique we
developed for generating the filters was referred to in
preliminary reports as frequency encoding of spatial
information.11,13 In general, however, many other
functional forms should be usable for this purpose.
Consequently, the generic term we apply to proce-
dures of the type described above in Subsection 2.A is
temporal encoding of spatial information.

A seemingly cogent objection to the strategy pre-
sented here can be raised, namely, that the inaccu-
racies and artifacts that the described spatial
deconvolution corrects for are only those that the
reconstruction algorithm itself introduces into the
image. Then the appropriate remedy should be to
substitute a better one, or at least to make a better
choice of control variables (e.g., the optical parame-
ters assigned to the reference medium or initial
guess, regularization parameters, truncation point in
a truncated singular value decomposition algorithm,
whether and how to scale rows or columns of Wr),
rather than to attempt a posteriori repair on the out-

put of one that is bad or suboptimally tuned. There is
a three-part answer to this objection: First, nothing
more is being claimed for our image enhancement
procedure than that it can substantially improve re-
sults obtained when linear reconstruction techniques
are used, but that the image quality attainable by
these methods may not have been fully appreciated
by some in the DOT community; second, that the
reconstruction algorithm used may have properties
(e.g., speed, robustness) that compel its use and are
lacking in other algorithms that yield more accurate
answers under ideal conditions8–10; third, that in
practice it may not be possible to know in advance
what the optimal values for all control variables are,
so that an efficient data-driven technique for a pos-
teriori correction has considerable practical value.

The specific application area of primary interest to
our group is diffuse optical tomography. However, the
strategy developed and presented here can be ex-
pected to have applicability to a much larger set of
problem areas. This follows from the fact that there
are many fields in which a linear transformation is
used to convert sets of observations or measurements
into interpretable results. A correction operation
analogous to that derived here for the specific case of
DOT should be possible in many of these areas. Elec-
trical impedance tomography, microwave tomogra-
phy, magnetoencephalographic imaging, and
positron emission tomography and single-photon
emission computed tomography are medical imaging
modalities that could be expected to benefit from
these operations, and they might also be usefully
applied to inverse problems in electroencephalogra-
phy. The potential for application to problem areas in
geology, oceanography, atmospherics and meterol-
ogy, and astronomy, wherein interpretation of obser-
vations also ultimately entails a solution to an
inverse problem derived from a transport equation,
also seems clear. Outside of the natural sciences,
however, it also would seem that there is potential
utility for the general correction strategy outlined
here in economics and other social sciences, where,
interestingly, inverse diffusion problems also are con-
sidered.30,31

A. Summary and Implications of Results

Here it has been shown that application of the de-
convolution operation to DOT images reconstructed
by a solution to a first-order perturbation equation
(Born approximation) can yield marked enhance-
ment of image quality. These corrected (filtered)
images are quantitatively accurate in terms of tar-
get location, size, and shape. In the 3D examples
that are considered here, use of image-correcting
filters produced obvious improvement in image
quality in terms of both location and �a of the inclu-
sions. The displacements between the true and the
recovered locations of an inclusion’s centroid location
were as small as 1 mm, in an 8�cm-diameter medium
with 1.5�cm-diameter inclusions, and the peak value
of the recovered �a for the inclusions deviated from
the true value by as little as 5% (see Figs. 5, 6, and 8).
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Multiple inclusions were present in all but one case,
and in all of these the spatial deconvolution strategy
successfully resolved the inclusions while also accu-
rately locating each one.

Corruption of the simulated detector data with
multiplicative Gaussian noise (Figs. 8 and 9) did not
bring about a reduction of spatial resolution or in the
qualitative (centroid location) or quantitative (peak
�a value) accuracy of the recovered inclusions. Thus it
is reasonable to progress from simulation studies to
tests involving laboratory phantoms to determine
whether the approach presented here is likewise ro-
bust to all the forms of noise that are present in
experimental data. The principal effect of the noise
was the appearance of small, irregularly shaped re-
gions of spurious absorption contrast. Notably, for the
case in which a backreflection measurement was sim-
ulated (Fig. 9), the latter regions showed a pro-
nounced depth dependence, decreasing in size and
magnitude with increasing depth. This pattern sug-
gests that it could be profitable to implement depth-
dependent regularization when Eq. (6) is solved or to
combine the deconvolution step with a long-pass
spatial-frequency filtering operation having a depth-
dependent threshold.

The relatively low spatial resolution of recovered
images in DOT applications has been observed and
commented on many times. Also well known is the
tendency of image reconstruction algorithms to pro-
duce appreciable error in the depth component of an
inclusion’s location, although the direction of the bias
is a function of the specific algorithm that is em-
ployed. An important implication of the results in
Figs. 5–9 is that much previous research on develop-
ing and improving image reconstruction algorithms
has been based on a mistaken premise regarding the
origin of these phenomena. We believe this point is
one of the more significant conclusions of the present
study and that some elaboration is called for here.

It is certainly true that if a perturbation in the
optical coefficients of a medium is large in terms of
magnitude or volume, then the first derivatives that
constitute the imaging operator do not correctly
model the effect of changes in the medium’s optical
coefficients on the detected near-infrared signals.
Nonlinear reconstruction strategies proceed from the
assumption that the inaccuracies in the images re-
covered by solution of the first-order perturbation
equations are caused by these deviations from linear
relationships between perturbation and signal. But if
that assumption were correct, then the linear spatial
deconvolution approach developed here would not be
expected to enhance the accuracy of the test medium
images, and in fact should make them worse. The
quality of the results actually obtained, particularly
in the direct comparison of spatial deconvolution and
a nonlinear LM reconstruction algorithm (Fig. 10),
implies that the information-spreading properties of
the reconstruction algorithm are the true cause of the
low spatial resolution and depth bias commonly seen
in DOT images. It is recognized that ten is almost
certainly not the optimum number of LM iterations;

employing the optimal number of iterations would
improve the quality of the result in Figs. 10(a)–10(c),
and the algorithm itself could probably be adjusted to
yield a higher rate of convergence. In any case, the
postmeasurement computational time and cost
would invariably be many times greater for any ap-
proach of this type than for application of the image-
correcting filter, which requires only a matrix
multiplication.

The preceding is not an assertion that nonlinear
relationships between optical parameter perturba-
tions and detector readings are not present, or that
they cannot in certain cases place important limits on
the performance of linear reconstruction algorithms.
In fact, we have explored the relative importance of
linear information spread and nonlinear effects and
have found (results not shown) that with sufficient
effort the filtering strategy can be made to fail. In the
test media for which this occurred, the inclusions
were located at more than one depth, with superficial
ones obstructing every source–detector channel’s
view of the deep ones. In at least some cases it was
found that the nonlinear reconstruction algorithm
eventually recovered all the inclusions, and the fil-
tering approach recovered only the superficial ones. It
is noteworthy, however, that in every such case elim-
inating the deep-lying inclusions from the medium
had only a very small effect on the detector data (i.e.,
at best in the third significant digit). Then the addi-
tion of even a low level of noise or any sort of system-
atic error (i.e., the tests were all carried out on ideal,
noise-free data) would bring us back to the situation
in which the linear and nonlinear algorithms produce
comparable answers.

An important implication of these considerations,
as already alluded to, is that many earlier assess-
ments of DOT reconstructed images, if based princi-
pally or exclusively on visual inspection of the
images, may have been unduly pessimistic. An espe-
cially vivid example of this phenomenon can be seen
in Fig. 7 (others almost as striking can be seen in
Figs. 4 and 6 of Ref. 12). Here the first-order image
obtained from a multiple-inclusion test medium has
almost no hint of the actual structure of the medium,
but the corrected image demonstrates that the cor-
rect answer is actually present in the former result,
only in a visually unrecognizable form. It is our ex-
pectation that application of the appropriate spatial
deconvolution operator to apparently unsatisfactory
image reconstruction results obtained by many of the
groups engaged in DOT research would have a com-
parably gratifying outcome. (In the future we hope to
invite other groups to allow us to apply spatial de-
convolution to some examples of their image data as
a test of the preceding prediction.)

B. Theoretical and Numerical Considerations

There are several useful ways to conceptualize the
method used to determine F that is outlined in Sub-
section 2.A. For one, it can be thought of as a partic-
ular type of general linear model calculation, in
which the columns of X are the models that are pos-
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tulated to account for most of the variability in each
column of Y (i.e., X is the general linear model design
matrix). Limiting our consideration to linear combi-
nations of the models (i.e., main effects) is equivalent
to assuming that interactions among two or more of
them are unimportant. In principle, we could obtain
a mapping from X into Y that is accurate over a larger
range of medium optical coefficient values by solving
higher-order equations,

yi � ai ��
j�1

Ns

bijxj ��
j�1

Ns

�
k�j

Ns

cijk�xj1xk1 xj2xk2 . . . xjNt
xkNt�T

� . . . , (8)

for the unknown coefficients ai, bij, cijk, . . .. But to do
so is a practical impossibility because of the prohibi-
tively large number of additional terms, even if only
two-way interactions are included in the model. Al-
ternatively, the generation of F can be thought of as
a system calibration problem, more computation in-
tensive but no different in principle from common
laboratory practices such as use of standard com-
pounds with well-established melting points to pro-
duce a correction curve for a thermometer. Another
alternative is to regard X and Y as the equivalent of
a training set in a neural network computation and F
as the equivalent of the connectivity pattern that
results from the training process.

From any of the preceding interpretations for the
filter generation process, one can infer the principal
trade-off that must be borne in mind when specifying
Y: The set of modeled target media must constitute a
representative sample of the mathematical space of
all media to which the filter could possibly be applied;
but at the same time, the magnitudes of the assigned
perturbations cannot be so large that the relationship
between the modeled and the recovered optical coef-
ficients becomes manifestly nonlinear. (Of course, it
is understood that this trade-off places a limit on the
range of target medium optical coefficients for which
a computed filter can have its image-correcting ef-
fect.) In Fig. 11 we illustrate what is meant by rep-
resentative sample; points whose coordinates are the
absorption coefficient values of two particular FEM
nodes in the first 1000 time points of the curved-slab
training set are plotted in Fig. 11(a), and the corre-
sponding plot for the entire 214-point time series is
plotted in Fig. 11(b). These plots are 2D projections of
the 984-dimensional mathematical space (�a space)
whose points correspond to all possible distributions
of �a in the curved slab. The plot in Fig. 11(b) makes
it clear that, as the size of the training and calibration
set increases, it will contain at least one point that
falls within any specified finite subregion of �a space.
Equivalently, a sufficiently large training set guar-
antees the existence of a training set point lying ar-
bitrarily close, in �a space, to any given test medium.

The preceding considerations provide an important
part of the answer to the question of why it was
necessary that Nt be almost 17 times larger than Ns

in the filter-generating process, when intuitively it

would seem that Nt � Ns should suffice. The empiri-
cal fact that Nt � Ns does not suffice is shown explic-
itly in Fig. 12, where the results obtained by
application of deconvolution operators computed
from the first 1 � 103, 6 � 103, 1.2 � 104, and
1.6 � 104 rows of X and Y to the uncorrected image of
the three-inclusion hemispheric test medium [Fig.
6(a)–(c)] are presented.

These results demonstrate that the deconvolution
operator is not effective unless the number of time
points taken into account is more than ten times
greater than the number of FEM mesh nodes. For
smaller values of Nt, the corresponding points in �a

space do not constitute a representative sample. Ad-
ditional insight into the question of why it is neces-
sary that Nt��Ns is provided by examination of the
dependence of the condition number and effective
rank of X on Nt. Plots of the former, for both hemi-
spheric and curved-slab media, are shown in Fig.
13(a), and the latter, for both media, are plotted in
Fig. 13(b). Here, the condition number is defined as
the ratio of the smallest nonzero singular value to the

Fig. 11. Plots of assigned �a�n1, t� versus �a�n2, t� �cm�1�, where
n1 and n2 denote two specific curved-slab FEM mesh nodes. In
particular, n1 and n2 are those nodes for which the modulation
frequencies are 21�2 and 51�2 Hz. (a) �a�n1, t� versus �a�n2, t� plot
for Nt � 1000; enlarged round and square dots indicate first and
last points in the training and calibration time series. (b) �a�n1, t�
versus �a�n2, t� plot for Nt � 16, 384. As Nt increases, sampled
points in �a space constitute more complete sampling.

Fig. 12. Effect of the deconvolution operator applied to the recon-
structed image [Figs. 6(a)–6(c)] of a three-inclusion hemispheric
test medium, as a function of Nt. From left to right: results for
Nt � 103, 6 � 103, 1.2 � 104, and 1.6 � 104. The top row shows the
x–y projections; the middle row shows the x–z projections; and the
bottom row shows the y–z projections of the 3D images. Numbers
along the gray scale give the quantitative value of the spatially
varying �a.
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largest singular value (this is the reciprocal of the
usual definition, but has the advantage that the re-
sulting quantity in constrained to lie in the interval
0.0–1.0); the closer this ratio is to zero, the more
badly conditioned the matrix. Effective rank is here
defined as the number of singular values larger than
ε, a small positive number [in particular, �
� 103�8 � 10�8 � 2.4�10�8 was used to compute the
curves in Fig. 13(b)]; this is a measure of how many
columns of the matrix are linearly independent. From
Fig. 13(a) it is apparent that the case of Nt � Ns

yields the most badly conditioned X, from which it
follows that computation of a useful F requires that
Nt be significantly larger than Ns. At the same time it
can be seen that the condition of X does not always
improve with increasing Nt, so another factor must be
involved in producing the calibration-set-length de-
pendence that can be seen in Fig. 12. The effective
rank curves in Fig. 13(b) supply the remaining piece
of the puzzle. They signify that until Nt exceeds Ns by
a factor of 10, the effective rank of X is smaller than
the number of nodes in the FEM mesh. That is, as a
practical matter not all columns of Y can be simulta-
neously equated to linear combinations of the col-
umns of X.

C. Future Directions

The preceding characterizations of deconvolution op-
erators and their mechanism of action suggest sev-

eral directions for further development and
improvement of the image enhancement strategy
presented in this report. For one, it appears highly
probable that a simultaneously fast and accurate hy-
brid reconstruction algorithm can be synthesized by
the application of the spatial deconvolution and a
nonlinear updating scheme in an alternating fashion.
The resulting procedure should converge more rap-
idly than, say, the LM algorithm used to generate the
results shown in Fig. 10, while also permitting recov-
ery of media in which nonlinear effects of the optical
coefficient perturbations are significant. A second
modification that is of equal importance, and whose
implementation is more straightforward, is to tag
both the absorption and the scattering coefficients of
a medium simultaneously. The principal benefit of
this is that the filter matrices thereby derived can be
applied to the output of algorithms that provide si-
multaneous reconstruction of �a and �s. At the same
time, it would constitute a mechanism for quantify-
ing the extent of interparameter cross talk associated
with a given reconstruction algorithm10 and for re-
ducing its effect where it does occur. An important
conceptual point is that such cross talk can be re-
garded as another sort of information spread, one
that occurs in optical parameter space rather than in
physical space. As such, the same general strategy
that is used to correct for the effects of a reconstruc-
tion algorithm’s ISFs should also be able to reduce
cross-talk artifacts. A third objective will be to search
for nonsinusoidal forms for the tagging functions that
are optimal in the sense of minimizing the Nt that is
needed to achieve a representative sampling of �a

space. In contrast to the first two tasks, this one is
geared more toward reducing total computational
overhead than to directly increasing the range of ap-
plicability of the method. However, it is reasonable to
expect that a reduction of the overall size of the linear
systems that must be solved [Eq. (3)] will assume
considerable practical importance when implementa-
tion of the first and second objectives is attempted.
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