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Abstract
Objective. The statistical analysis of functional near infrared spectroscopy (fNIRS) data based 
on the general linear model (GLM) is often made difficult by serial correlations, high inter-
subject variability of the hemodynamic response, and the presence of motion artifacts. In this 
work we propose to extract information on the pattern of hemodynamic activations without 
using any a priori model for the data, by classifying the channels as ‘active’ or ‘not active’ 
with a multivariate classifier based on linear discriminant analysis (LDA). Approach. This 
work is developed in two steps. First we compared the performance of the two analyses, using 
a synthetic approach in which simulated hemodynamic activations were combined with either 
simulated or real resting-state fNIRS data. This procedure allowed for exact quantification of the 
classification accuracies of GLM and LDA. In the case of real resting-state data, the correlations 
between classification accuracy and demographic characteristics were investigated by means 
of a Linear Mixed Model. In the second step, to further characterize the reliability of the newly 
proposed analysis method, we conducted an experiment in which participants had to perform 
a simple motor task and data were analyzed with the LDA-based classifier as well as with the 
standard GLM analysis. Main results. The results of the simulation study show that the LDA-
based method achieves higher classification accuracies than the GLM analysis, and that the LDA 
results are more uniform across different subjects and, in contrast to the accuracies achieved by 
the GLM analysis, have no significant correlations with any of the demographic characteristics. 
Findings from the real-data experiment are consistent with the results of the real-plus-simulation 
study, in that the GLM-analysis results show greater inter-subject variability than do the 
corresponding LDA results. Significance. The results obtained suggest that the outcome of GLM 
analysis is highly vulnerable to violations of theoretical assumptions, and that therefore a data-
driven approach such as that provided by the proposed LDA-based method is to be favored.
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1. Introduction

Functional near infrared spectroscopy (fNIRS) is a  non-invasive 
neuroimaging technique based on the measurement of the 
optical absorption of cerebral blood. Thanks to the different 
absorption spectra of oxygenated and deoxygenated hemo-
globin (HbO and HbR, respectively) in the near-infrared region 
of the electromagnetic spectrum (650–900 nm), it is possible to 
estimate the relative changes of oxygenation and blood perfu-
sion in the human head, and therefore the level of oxygenation 
in the area of interest in response to a specific task [1, 2].

Although it is a relatively young technique, fNIRS is used 
in a wide range of fields, including (among many others) lan-
guage studies, social interaction, and motor studies. Some fea-
tures, such as portability, relative inexpensiveness, make fNIRS 
particularly advantageous over other functional techniques like 
functional magnetic resonance (fMRI) for certain populations 
of subjects, for example infants and children [3–5].

In a standard task-related fNIRS experiment, the subject 
usually performs several trials of one or more experimental 
conditions. After acquisition, data need to be pre-processed 
to remove cardiac and respiratory-related oscillations and 
possibly artifacts, and then the raw light-intensity data are 
converted into hemoglobin concentration changes through 
a modified Beer–Lambert law. To assess if a task induced a 
significant increase in the local neuronal activity, typically a 
general linear model (GLM) is employed to model the hemo-
globin data Y (HbO, HbR, or Hb total) as Y  =  Xß  +  ε, where 
X is the design matrix obtained by convolving the stimulus 
design with the expected hemodynamic response [6], ß are 
the regressors representing the effect of each condition on the 
responses, and ε is the measurement error [7].

An issue that has received substantial attention is that 
valid estimation of ß requires that ε have zero mean and be 
spherical (i.e. it must be ‘white noise’) [8]; these assumptions 
usually are greatly violated by fNIRS data, due to physiolog-
ical noise, temporal and spatial correlations in the measure-
ment data, and presence of artifacts. For these reasons, the 
GLM method is susceptible to yielding high false discovery 
rates. One strategy to overcome the problem is to remove 
structured noise from the residual term by filtering the data 
with a whitening filter based on the autoregressive model of 
the data [8, 9]. In contrast, largely unaddressed is the issue 
of inter- and intra-subject variability of the  hemodynamic 
response; if the time course of the ‘expected’ hemodynamic 
response used to generate X is not a good approximation to 
the one that actually underlies the data Y, then a true con-
dition-induced change in neural activity could remain unde-
tected. This is an especially relevant concern when data from 
very young subjects, or from a particular clinical population 
that under certain circumstances show atypical hemody-
namic responses [10].

A strategy for addressing the variability in shape of the real 
hemodynamic response is incorporation of temporal and dis-
persion derivatives into the model [6]. The rationale for this 
procedure is that the additional regressors can capture the 
variance arising from small differences in the duration of the 
response and regress it out of the data. However, the method 
is time consuming and it complicates the interpretation of 
results, especially in group-level analyses [11–13].

As an alternative to the model-based approach, we pro-
pose to use a multivariate classifier based on linear discrimi-
nant analysis (LDA) [14] to distinguish two classes of NIRS 
signals that we will call ‘active’ and ‘not active’. LDA has 
several features (low computational requirements, good per-
formances, easy to use) that make it suitable for brain–comp-
uter interface (BCI) applications, the field where at present 
it is most frequently used [15]. Here we want to assess if its 
characteristics make it also a convenient tool for offline statis-
tical analysis in quest of interpreting hemodynamic patterns 
with respect to the experimental conditions that elicited them.

The advantage of using a classifier for this purpose is that 
no assumptions on the structure of the noise are necessary, and 
that no prior knowledge of the shape of the expected hemody-
namic response is needed. Furthermore, while GLM is a uni-
variate approach to data analysis, in that time series of HbO, 
HbR or HbTot are considered independently of each other, in 
LDA information regarding the simultaneous variations of two 
or more hemoglobin components can be combined in a mul-
tivariate strategy. In fact, the use of combined features from 
HbO and HbR has been already reported to achieve higher 
accuracy than the use of separate features [16]. In this way, 
the analysis would yield a single metric for ‘activation’ for 
each channel, and this would be easier to test than separately 
testing ß coefficient from HbO and HbR, especially at group-
level. In addition, comparisons between the results yielded 
by the (data-driven) classifier and (model-based) GLM may 
be informative in the sense that the classifier might identify 
unpredictable effects that elude the model-based analysis. For 
example, in a case where GLM analysis reports a channel as 
‘not active’, the availability of LDA results could facilitate the 
process of deciding whether activation truly was absent (i.e. 
because LDA also classified the channel as ‘not active’) or if 
the hemodynamic model used for GLM was not optimal (i.e. 
because LDA classified it as ‘active’).

The present work comprises two steps: the first is a compar-
ison of the proposed LDA-based method with canonical GLM 
analysis. In order to do this, an extensive volume of simulated 
data is used to characterize the two algorithms in terms of receiver 
operator curves (ROC) when no systemic oscillation is present 
(i.e. simulated hemodynamic responses were added to simulated 
resting-state data) or when a considerable amount of systemic 
oscillation is present (i.e. simulated hemodynamic responses 
were added to experimental resting-state data); the real-data 
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results also were used to characterize the impact of inter-subject 
variability on the outcomes of the classification analyses. Second, 
the two algorithms were used to analyze and classify the task-
induced activations in a set of experimental data.

2. Methods

In order to compare the performances of the LDA-based and 
GLM-based methods under controlled conditions, sensitivity 
and specificity were quantified by recovering a known synth-
etic hemodynamic response added to either synthetic or real 
resting-state data. This approach has been used in several 
reports [8, 9, 17, 18] and its particularly suited for studies that 
make use of ROC analysis, because it permits an exact quanti-
fication of true and false discovery rates. In a second step, the 
two analysis pipelines were applied to real experimental data 
and channel-wise statistical assessments of each subject were 
compared.

Figure 1 reports a summary description of the whole proce-
dure followed in this work. Figure 2 shows how known hemo-
dynamic responses were added over resting state time traces.

2.1. Theoretical formulation

2.1.1. Generation of the synthetic dataset. 5000 datasets of 
NIRS data were iteratively simulated by combining tempo-
rally correlated (‘colored’) noise and synthetic hemodynamic 
response functions (HRFs).

Baseline noise was produced by first generating white 
noise, then imposing temporal correlation on it by employing 
an autoregressive model of order 30, via tools in the fNIRS 
toolbox [8].

Each dataset contained 20 channels, and synthetic HRFs 
were added to the resting state for half of them (i.e. Channels 
1–10). Channels that include synthetic HRFs in their HbO and 
HbR data called ‘active’ and the others are ‘not active’. For 

Figure 1. In each iteration, data are simulated, based on either synthetic or real resting-state data; HbO and HbR (red and blue time 
traces in the ‘Synthetic dataset’ panel, respectively) were analyzed with GLM or LDA, and ROC analysis was performed to compare the 
classification accuracies. The simulated HRFs vary in shape and size, and 30% of them are characterized by a ‘double bump’ as a simplified 
model of stimulus-locked Mayer waves.

Figure 2. (A) Example of how simulated HRFs are created (black line) and added to a real resting-state time trace (dark grey line). The 
top trace is a simple HRF while the bottom trace contains a double bump. (B) The red time trace represents the HbO signal before the 
hemodynamic activations are added; the grey and blue ones are, respectively, the time traces after a simple HRF or a double-bump HRF 
have been added.
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the ‘active’ channels, ‘Start’ and ‘Stop’ markers were created 
according to an experimental paradigm with three episodes, 
each of 10 s duration. The position of the ‘Start’ markers was 
randomized, with the constraint that successive ones were 
separated in time by at least 35 s. The total duration of each 
time series was 4 min, at a sampling frequency of 7.81 Hz.

To model the inter- and intra-subject variability of real 
hemodynamic responses, synthetic evoked HRFs had variable 
size and shape across subjects and channels. While each HRF 
had the mathematical form of a canonical HRF [6], their peak 
amplitudes ranged from 0.01 to 0.1 µM [18], while, based on 
experience and existing literature on the variability of the hemo-
dynamic response [19], the onset-to-peak times ranged from 2 
to 8 s and the onset-to-undershoot times ranged from 14 to 18 s.

Positive-going synthetic HRFs (see figure 1(A)) were added 
to the resting-state data for the HbO time series. The synthetic 
HRFs added to the corresponding HbR resting-state data had 
the same form as those for HbO, but were 50% reduced in 
magnitude and reversed in algebraic sign (i.e. they were neg-
ative-going). In addition, for 30% of the ‘active’ channels in 
each dataset the synthetic HRF included a ‘double bump’ (see 
figure  1(A)), as an elementary model of systemic hemody-
namic activity time-locked with the experimental condition. 
An example of this sort of additional activity that frequently 
is present in experimental data is so-called ‘Mayer waves’, 
which are systemic oscillations originating in the superficial 
tissue layers [20], and which occur, more or less prominently, 
at ~0.1 Hz frequencies. Such oscillations are particularly dif-
ficult to treat in a GLM-analysis framework, owing to their 
extensive spectral overlap with typical event-related activity 
(i.e. they cannot be eliminated via straightforward frequency 
filtering) [21].

The use of synthetic baseline noise has the clear benefit that 
a large volume of data can be created, and it allows us to bench-
mark our methodology against recent literature on the topic [8, 
9]. However, synthetic data might not capture all the proper-
ties of real physiological data. Therefore we complemented 
the synthetic-data analysis by using experimental resting-state 
data as baseline noise. For this purpose, 15 young adults (mean 
age  ±  SD: 28.1  ±  4.0 years old; age range: 23–38; 11 women, 
four men) participated in the collection of 4 min of resting-
state data. For a subset of the participants, this measurement 
was followed by the motor-task study that was used in a later 
stage of this analysis (see section 2.2.1 for descriptions of the 
exper imental setup and data collection).

Experimental resting-state recordings were used as a source 
of real physiological and correlated data, and were employed in 
the same manner as described above for the synthetic resting-
state data, namely by performing 5000 randomizations of the 
positions of the ‘Start’ markers and adding simulated HRFs 
of variable shapes and amplitudes to only Channels 1–10 (left 
hemisphere), and labeling those channels as ‘active’.

2.1.2. Data analysis.
2.1.2.1. Pre-processing.  Both simulated and real data 
underwent the same pre-processing steps. Hemoglobin con-
centration changes were calculated using the modified Beer–
Lambert law (differential pathlength factor (DPF): 6, absorption 

coefficients (µa, cm−1 M−1) for HbO: µa(760 nm)  =  1349 
and µa(850 nm)  =  2436, for HbR: µa(760 nm)  =  3565 and 
µa(850 nm)  =  1592).

Data was bandpass filtered in the range [0.01–0.2] Hz, with 
a zero-phase distortion digital FIR filter designed and imple-
mented, respectively, with the Matlab commands firls and 
filtfilt.

For the subsequent statistical analysis, filtered data was 
used for the LDA analysis, in accordance with most fNIRS-
based BCI literature [22], while unfiltered data was used for 
the GLM computations because it has been reported that fre-
quency filtering can produce biased estimates of the regres-
sors [8]. In this way, both methods were used at their optimal 
settings.

2.1.2.2. Analysis with GLM. GLM was applied using the 
autoregressive iteratively reweighted least squares algorithm 
available in the fNIRS toolbox. This algorithm is reported 
to efficiently remove serial correlations from data, thereby 
achieving an acceptable false discovery rate [9]. HbO and 
HbR time traces were analyzed independently.

After the regressors ß are estimated, the null hypothesis 
that there was no hemodynamic response (H0: β  =  0) is tested 
by defining a contrast vector (c) and calculating the channel-
wise t-statistic via the formula [7]:

t =
c Tß√

c T cov (ß) c
. (1)

In this case, with only one experimental condition to be tested, 
the contrast vector would be [1 0], with the second column 
referring to the constant column added to the GLM design 
matrix. The p-values corresponding to the t-statistics from 
equation (1) were computed via two-tailed t-tests.

2.1.2.3. Analysis with LDA. For each HbO and HbR time 
series, trials were defined as the signal in the 15 s time inter-
val following each ‘Start’ marker. Each trial was baseline-
corrected by removing the mean value of the signal over the 
3 s interval prior to stimulus onset. Channel-wise block aver-
ages were obtained by averaging across all trials within each 
channel.

Features were extracted from the channel-wise block 
averages (figure 3(A)). To do this, a 3 s wide window was 
moved through the block-average time series in 1 s steps and 
the mean value and mean slope (computed as the change in 
signal amplitude over the time window divided by its size 
in number of samples) were computed within each window, 
yielding a 30-features vector (2 features  ×  15 windows) for 
each of HbO and HbR. Each feature vector was normalized 
to zero mean value and unit variance. Then the HbO and HbR 
feature vectors were concatenated, resulting in a 60-features 
vector that was used for the classification (figure 3(B)).

Channels were classified as ‘active’ or ‘not active’ with 
regularized linear discriminant analysis, via tools available in 
the Berlin brain–computer interfacing (BBCI) toolbox [23, 
24]. Ten repetitions of four-fold cross validation was per-
formed: 20 trials (ten ‘active’ channels and ten ‘not active’ 
channels) were separated into four folds, with three folds used 
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for training and the remaining fold as the test dataset. The pro-
cedure was repeated ten times. Each feature vector x ∈ RN  
is assigned an output by the application of the formula of the 
separating hyperplane characterizing the LDA classifier [23]:

wTx + b = 0 (2)

where w is the projection vector characterizing the classifier 
and b is a bias term. The projection vector w is calculated 
based on the difference between the estimated mean values of 
the two classes and the common covariance matrix (for further 
details about binary linear classifiers, see [14, 25]). The bias 
term b is chosen such that the separating threshold between 
the two classes is 0; therefore the classification function 
assigns each vector x a class label according to the algebraic 
sign of the output, sign(wTx + b). In this implementation, the 
class ‘not active’ was assigned to negative or zero outputs and 
class ‘active’ was assigned to positive outputs.

2.1.2.4. Evaluation of performance. The performances of the 
GLM analysis and the LDA-based method were evaluated by 
computing receiver operating characteristic (ROC) curves. 
ROC curves for the GLM results were computed by varying 
the significance threshold for the t-test p-values, from 0 to 
1 in increments of 0.001, and computing the corresponding 
false positive rate and true positive rate for each threshold. 
ROC curves for the LDA results were computed by comparing 
the distributions of output values of ‘active’ and ‘not active’ 
channels. We defined a significance threshold, varying from 
0 to 1 in increments of 0.001, in the following manner: on 
the distribution of ‘not active’ outputs, we defined a reference 
value as the percentile corresponding to the considered thresh-
old. We defined as true negatives (TN) the samples of the ‘not 
active’ distribution that were smaller than the reference value, 

false positive (FP) the samples of the ‘not active’ distribution 
that were equal or greater than reference value, true positives 
(TP) the samples of the ‘active’ distribution that were equal 
or greater than the reference value and false negative (FN) 
the samples of the ‘active’ distribution that were smaller than 
the reference value. We repeated the procedure by sliding the 
reference value until 100% of the ‘not active’ distribution was 
covered (i.e. significance threshold  =  1). For example, by set-
ting the threshold at 0.05, we computed the reference value on 
the distribution of ‘not active’ outputs corresponding to its 5% 
percentile, and based on this reference value we computed TP, 
TN, FP, FN at p  =  0.05.

For both GLM and LDA, classification accuracy was 
computed as the rate of correct classifications, (TP  +  TN)/
(TP  +  TN  +  FP  +  FN), at p  =  0.05. In order to investigate 
the impact of double-bump HRFs on classification accuracy, 
we conducted two separate analyses on the two subsets of 
data characterized by, respectively, only HRFs with no-double 
bumps and only HRFs coupled with double-bumps.

2.1.2.5. Analysis of the correlation between subject demo-
graphics and classification accuracy. Subject demographics 
such as gender, age and chronobiology have been reported to 
play a role in the cerebral metabolism [26–29], and therefore 
we tested for correlations between the individual-subject clas-
sification accuracies and each subject’s characteristics. To do 
so, a linear mixed effects (LME) model was fitted in Matlab 
2017, with a random intercept for each participant and fixed 
effects for age, gender, hair color (two levels: blond, brown), 
and time-of-day of the measurement (three levels: 10 AM–1 
PM, 1 PM–3 PM, 3 PM–6 PM):

Accuracy ∼ Age + HairColor + Gender
+ TimeMeasurement + (1|Participant).

Figure 3. (A) Block averages of HbO (left) and HbR (right) signal used for feature extraction; dashed lines represent the 1 s steps used for 
the moving-window computation of amplitude and slope. (B) Features vectors are obtained from the block averages by computing mean 
and slope of the signal over a sliding window of 3 s duration with 1 s steps, resulting in a 30-features vectors that were then normalized and 
concatenated to produce the 60-features multivariate (HbO  +  HbR) classifier. Grey lines represent individual trials, black lines highlight 
the mean value of the feature vectors corresponding to ‘active’ channels, and blue lines highlight the mean value of the feature vectors 
corresponding to the ‘not active’ channels. Values of the y axis are normalized values.
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This analysis was carried out for LDA (HbO  +  HbR), GLM 
(HbO) and GLM (HbR) separately. Analysis of variance 
(ANOVA) was performed on each model to test the signifi-
cance of the effects (error DF  =  10 (15 observations minus 
five modelled effects)).

2.2. Application of the algorithms to experimental data

To provide a practical example of use of the proposed algo-
rithm and compare it with the GLM analysis in the frame-
work of a real experiment, a paradigm was chosen—finger 
tapping—that has a well-known effect on the motor cortex. 
In particular, it is expected to elicit a recognizable and sig-
nificant response in the primary motor cortex (M1, Brodmann 
area 4, likely to underlie the C3/C4 positions of the EEG 10–
20 system) and the premotor cortex (PMC, Brodmann area 6, 
likely to underlie the FC3/FC4 positions) [30].

2.2.1. Experimental setup and data collection. Seven healthy 
young adults (a subset of the 15 participants in the preced-
ing study; mean  ±  SD age 26.0  ±  2.3 years, age range 23–
30 years; five female, two male) participated in this study. The 
experiment consisted of 16 episodes of finger tapping (eight 
left, eight right, alternating), each of 10 s duration, with 20 s 
rest periods between successive episodes. Before the experi-
ment began, the subject was required to sit quietly for the col-
lection of 4 min of resting-state data.

NIRS recordings were conducted with a NIRSport system 
(NIRx GmbH, Berlin, Germany), with sampling frequency 
7.81 Hz, at wavelengths 760 nm and 850 nm, with eight sources 
and eight detectors. Sources and detectors were placed into a 
cap (EASYCAP, Herrsching, Germany), arranged according 
to the International 10–20 system. The source-detector dis-
tance was 2.5–3 cm, to form 20 channels evenly distributed 
between the hemispheres. A spatial sensitivity profile was 

calculated based on the Monte Carlo photon migration mod-
eling available in the AtlasViewer software [31], to prove that 
the probe design was selective for the regions relevant to the 
finger tapping task (underlying the 10–20 positions FC3/FC4 
and C3/C4). The Monte Carlo modeling was performed with 
106 photons. Figure 4 shows the probe arrangement and the 
resulting sensitivity profile. Additional details about the probe 
arrangement can be found in the supplementary material 
available at stacks.iop.org/JNE/15/045001/mmedia.

2.2.2. Data analysis. The data analysis aims at identifying 
which channels are significantly activated by the motor task and 
can therefore be labeled ‘active’, as opposed to the ‘not active’ 
channels that are not significantly activated by the task. For this 
reason, no distinction was made between left and right-hand 
finger tapping. The data was analyzed with the GLM analysis 
and the LDA-based method described in the previous section.

2.2.2.1. Analysis with GLM. For the GLM analysis, the stim-
ulus times of the task were convolved with a canonical hemo-
dynamic response function (peakTime  =  6 s) to produce the 
single column (‘Task’ condition) of the design matrix. A GLM 
was applied using the autoregressive iteratively reweighted 
least squares algorithm available in the fNIRS toolbox [8].

2.2.2.2. Analysis with LDA. For the LDA analysis, ampl-
itudes and slopes were computed for each episode of finger 
tapping. For the ‘Rest’ condition, an equal number (n  =  16) of 
time intervals were produced by randomly sampling the initial 
4 min of resting-state data of each measurement, and features 
were extracted. The sampling of ‘Rest’ trials and the classifi-
cation Task versus Rest was iterated 2000 times for each chan-
nel and for each subject, to ensure robustness of the analysis. 
Ten repetitions of four-fold cross validation were conducted 
and each of the 32 trials (16 task and 16 rest) was assigned a 
classifier output via equation (2).

Figure 4. (A) Probe setup. The arrangement of optodes follows the 10–20 standard and the placement is analogous in the other hemisphere. 
Red dots indicate the sources, blue dots indicate the detectors, and yellow lines indicate the formed channels. (B) Sensitivity profile of the 
probe setup.
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2.2.3. Statistical analysis. The results of the GLM analysis 
were statistically assessed by computing the channel-wise 
t-statistics (equation (1)) from the resulting ß values, then 
testing them via two-tailed t-tests. The outputs of the LDA 
analysis were divided into ‘Task’ and ‘Rest’, then averaged 
over folds and over repetitions, and tested by comparing the 
two distributions (Task and Rest). The rationale of this pro-
cedure is that, if the task elicited a hemodynamic response 
and the classifier had a good discrimination between ‘Task’ 
and ‘Rest’, then the distributions of the outputs should be well 
separated and the channel will be labeled as ‘active’. If, on 
the contrary, the two distributions are not well separated, it 
means that for that channel the execution of the task did not 
elicit a response substantially different from the resting state, 
and the channel will be labeled as ‘not active’. As explained 
in section 2.1.2, the class label ‘active’ is assigned to positive 
outputs, while ‘not active’ to the negative outputs. Therefore, 
the channel-wise p-value in this case was computed as the 
fraction of ‘Rest’ outputs equal or greater than the mean value 
of the distribution of the ‘Task’ outputs [32].

3. Results

3.1. Theoretical formulation

3.1.1. Performance of the algorithms: overall classification 
accuracies. Our first goal was to theoretically compare the 
two algorithms in terms of overall classification accuracy, both 
on synthetic and on real data. The other important objective 
was to evaluate whether, with real data, the achieved results 
are consistent across subjects, and to evaluate the impact of 
inter-subject variability on the performance of each algorithm.

Figure 5(A) shows the ROC curves obtained using synth-
etic and real resting-state data. In both cases the LDA classi-
fier based on HbO  +  HbR features outperforms GLM applied 
to either HbO or HbR, with results tabulated in figure 5(B). A 
difference between GLM results for synthetic and real resting-
state data is also seen, in that GLM(HbO) is more accurate 
than GLM(HbR) in the former case, while GLM(HbR) is 

more accurate than GLM(HBO) in the latter. We speculate 
that this difference indicates that the synthetic data do not 
entirely represent the properties of the real physiological data. 
For example, it certainly does not reflect the frequency struc-
ture of the resting-state signal, or its spatial dependence across 
the different channel positions. In addition, the temporal cor-
relation in the synthetic data was imposed by using an autore-
gressive model of fixed order (N  =  30) [8], which does not 
account for the variability that can be found in real data from 
different subjects.

To further investigate the performances of the three 
methods, we computed the classification accuracies for each 
subject individually (figure 6(A)). The barplots indicate the 
classification accuracy as computed from the individual sub-
jects’ ROC curves at p  =  0.05, and the red line indicates the 
mean accuracy over all subjects, respectively (mean  ±  SD) 
78.76  ±  5.1% for LDA(HbO  +  HbR), 65.76  ±  10.2% for 
GLM(HbO) and 70.29  ±  8.9% for GLM(HbR), the standard 
deviation being computed across the 15 subjects. The indi-
vidual errorbars represent the standard error of the mean across 
the 5000 repetitions. Finally figure 6(B) shows the classifica-
tion accuracies computed on two separate sets of data: data for 
all the channels that did not have Mayer waves modeled (i.e. 
no ‘double bumps’ (figure 1(A))) and data for all the channels 
that did have them. In this case, for the data without Mayer 
waves we found that LDA achieves an acc uracy of 79.1  ±  6%, 
GLM(HbO) 77.8  ±  9.3% and GLM(HbR) 82.4  ±  8.2%, 
while for data with Mayer waves, the accuracy decreases 
to 77.0  ±  11% for LDA, 62.4  ±  7.5% for GLM(HbO) and 
64.8  ±  6.8% for GLM(HbR).

3.1.2. Correlation between classification accuracies and  
individual measures. The goal of this analysis was to quanti-
tatively assess the impact of individual characteristics (hair 
color, gender, age), and of the measurement time of day, 
on the individual classification accuracy. Table  1 shows the 
results of the LME analysis. The model shows a significant 
correlation between Hair Color and individual accuracies for 
GLM(HbR), but not for any of the other fixed effects in the 

Overall mean classification accuracy at p = 0.05

Synthetic 
resting state

Real resting 
state

LDA(HbO+HbR) 85.25 % 78.76%

GLM(HbO) 79.08 % 65.76%

GLM(HbR) 67.75 % 70.29%

Overall mean classififf cation an ccuruu acy at p = 0.05

Synthetic 
resting state

Real resting
state

LDA(HbO+HbR) 85.25 % 78.76%

GLM(HbO) 79.08 % 65.76%

GLM(HbR) 67.75 % 70.29%

Figure 5. (A) ROC curves for GLM and LDA, using HbO, HbR and HbO  +  HbR features (only for LDA). The curves for the real resting-
state data (solid lines) are obtained by averaging the individual curves across subjects, while dotted lines refer to the completely synthetic 
dataset. (B) The table reports the mean classification accuracies, over all iterations, of the three algorithms applied to synthetic and real 
resting-state data. The classification accuracy is computed from the ROC curves at the false positive rate of 0.05.
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model, and there are no significant correlations for either LDA 
or GLM(HbO). Figure  7 reports distributions of individual 
accuracies grouped by hair color. More plots of accuracy dis-
tributions grouped by the other effects used in the model can 
be found in the supplementary material.

3.2. Experimental results

Results from the experimental-data study are reported in 
figure 8, as t-statistic values for GLM(HbO) and GLM(HbR), 
and classifier outputs for LDA, for p  ⩽  0.05 threshold. 
White cells indicate that the channel did not reach statistical 
significance.

To better understand the source of the variability in the 
results, plots of the block-averaged trials for those channels, 
and topographic images of the channel-wise output values 
(LDA output values, and βs for GLM HbO/HbR), were pro-
duced for each subject. The images were produced via the 
visualization tool available in nirsLAB v2017.06 [33]. Plots 
for all subjects and corresponding output values are available 

in the supplementary material, while here only the plots for 
subject 1 and subject 2 are reported.

3.2.1. Subject 1. Subject 1 results are non-significant at 
p  =  0.05 for every channel according to the GLM(HbO) anal-
ysis, and significant for channels 1, 4 and 16 in the GLM(HbR) 
analysis, while the great majority of channels are classified as 
‘active’ (p  <  0.05) by the LDA classifier.

In the plots of table 2, we observe that the HbO time traces 
are greatly affected by the double-bump typical of the 0.1 Hz 
systemic oscillation, and also that the first peak after stimulus 
occurs earlier than the onset-to-peak time of the theoretical 
model (6 s). An enlarged depiction of block-average behavior 
for Channel 16 is shown in figure 9, together with the plots 
of the HRF model used in the GLM analysis and the block 
averages of the resting-state trials used by the LDA classi-
fier. The resting-state HbO trace also includes a feature that is 
qualitatively similar to a hemodynamic response, but the task 
response is correctly discriminated from the resting-state time 
series nevertheless (p  <  0.001).

A B

Figure 6. (A) Individual classification accuracies for the real-resting-state datasets, for LDA(HbO  +  HbR), GLM(HbO), and GLM(HbR) 
(left, middle, right). The red line indicates the mean accuracy reached by each algorithm over all the subjects. The errorbars represent 
the standard error of the mean for each individual subject, over all the iterations performed. The individual mean accuracies achieved 
by the LDA method is significantly higher than those achieved by the GLM(HbO) (p  =  0.0002) and GLM(HbR) (p  =  0.01), but no 
significant difference was found between GLM(HbO) and GLM(HbR) (p  =  0.24, Repeated Measures ANOVA 1-way with Fixed Effect: 
‘Analysis Method’). Also, the individual standard errors of the mean yielded by the LDA are significantly lower than those achieved by the 
GLM(HbO) and GLM(HbR) (p  =  0.021 and p  =  0.022, respectively), but no difference was found between those yielded by GLM(HbO) 
and GLM(HbR) (p  =  0.97). B) Classification accuracies computed on two subsets of the real-resting-state datasets, one completely free 
from Mayer-wave oscillations and the other one with all the HRFs tainted by double-bumps. For the LDA, there is no significant difference 
between the accuracies reached in presence and absence of Mayer waves (paired t-test, p  =  0.44), while for the GLM the difference was 
statistically significant (GLM(HbO), p  <  0.001, GLM(HbR), p  <  0.001).

Table 1. Results of the linear model fitted to the individual classification accuracies, with fixed effects: age, hair color, gender and time of 
measurement.

LDA: HbO  +  HbR GLM: HbO GLM: HbR

ß p-value ß p-value ß p-value

Age 0.0042 0.1762 0.0010 0.8734 0.0068 0.1120
Hair color 0.0361 0.1875 −0.0936 0.1020 −0.1408 0.0052
Gender 0.0038 0.1476 −0.0077 0.1552 −0.0026 0.4904
Time of measurement −0.0187 0.5109 0.0573 0.3308 −0.0072 0.7540
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3.2.2. Subject 2. All channels of Subject 2 are classified as 
‘active’ (p  =  0.05) in the GLM(HbO) analysis, while six of 
20 are classified as ‘active’ by the GLM(HbR) analysis, and 
19 of 20 by the LDA classifier (table 3, figure 10). A depiction 
of Channel 5 is presented in figure 10. While the activation is 
correctly classified by the GLM(HbO) analysis, the same does 
not happen for the HbR. We speculate that the reason may 
be that the peak of the response is quite delayed (around 14 s 
post-stimulus) with respect to the 6 s assumed by the model. 
Nevertheless, the response is quite different from the resting 
state and the LDA picks up this difference, classifying the 
channel as ‘active’.

Corresponding results for all subjects can be found in the sup-
plementary material. For each subject, a table is reported with:

 – Topographic images of channel-wise GLM β values and 
LDA classifier outputs. Large positive(negative) β values 

indicate a good fit of the GLM model to the HbO(HbR) 
data, and a correspondingly better chance of that channel 
having a statistically significant hemodynamic response. 
LDA outputs are negative if the channel is classified as ‘not 
active’ and positive is the channel is classified as ‘active’. 
Therefore, a large positive classifier output value indicates 
a good chance that the channel is labeled as ‘active’.

 – Block averages of the signal in response to the stimulus 
(read and blue curves for HbO and HbR, respectively). 
The shaded error bars indicate the standard error com-
puted over the experimental trials. The GLM plots are 
accompanied by the canonical basis function used by 
the model; the LDA plots are accompanied by the block 
averages of the resting-state trials. The block averages 
are shown only for the channels covering the motor 
cortex.

Figure 7. Distribution of individual classification accuracies within the two hair color (six blond and nine brown) subject classes. The 
accuracies reached by the GLM(HbR) are significantly higher for blond-haired subjects than brown-haired. More distributions for the other 
modeled effects can be found in the supplementary material. The central red marks represents the median values, the blue boxes extend 
from the 25th to the 75th percentiles, and the black whiskers extend to the most extreme data points not considered outliers (which are 
marked with red crosses).

Figure 8. Classifier results for the finger-tapping experimental data, for the three different analyses. GLM t-statistic values and LDA 
classifier outputs (the latter derived from application of the separating hyperplane formula) are thresholded at p  ⩽  0.05. Blank cells indicate 
non-significant values (i.e. that the corresponding channel was classified as ‘not active’). The individual minimum value for statistical 
significance for the results of the LDA classifier varied across channels, ranging from 0.12 to 1.18. The numbers of channels classified as 
‘active’ by the three analyses are significantly different (p  =  0.01, 1-way repeated measures ANOVA).
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Table 2. Topographic images and block averages for all the analyses on Subject 1.

SUBJECT 1

GLM-HbO                GLM-HbR LDA

β-value 
images for 
GLM;

     

Classifier 
outputs for 
LDA

Block 
averages 
for the 
‘motor’ 
channels:
3: s1-d3
5: s2-d3
8: s3-d3
9: s4-d3

13: s5-d7
15: s6-d7
18: s7-d7
19: s8-d7
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4. Discussion

Statistical analysis of fNIRS data is often complicated by 
serial correlations, inter-subject variability of the hemody-
namic response, and the presence of systemic oscillations and 
possibly motion artifacts. The study presented in this paper 
demonstrates that a data-driven approach (linear discriminant 
analysis, LDA) to data analysis is more robust than the most 
commonly employed model-based approach (general linear 
model, GLM) to many of these issues, and can therefore 
improve the detection of the hemodynamic activation.

Advantages of the proposed LDA approach are that no 
assumptions on the structure of the noise are necessary, and 
that no prior knowledge of the shape of the expected hemo-
dynamic response is assumed. The LDA method compares 
data from different temporal segments of the same recording; 
namely, it compares, within the same subject, time intervals 
corresponding to the resting state and to execution of the task. 
Thus it constitutes a self-referencing approach, and in other 
fNIRS imaging contexts it has been shown that this data-anal-
ysis strategy can enhance detectability of effects that are small 
in comparison to other sources of intra- and inter-subject vari-
ance [34]. As such, LDA can generate information potentially 
superior, or at least complementary, to the information yielded 
by a model-based approach. For example, if LDA recognizes 
activation where the GLM does not, it could mean that the 
GLM model does not accurately represent the real HRF, and it 
might be worth investigating why this is so.

An additional strength of the multivariate LDA classifier 
proposed in this study is that it combines features from the 
simultaneous variations in HbO and HbR time series, while 
the GLM approach analyzes them independently. This results 
in the former yielding a univariate channel-wise metric for 
‘activation,’ while the latter yields separate beta coefficients 

for HbO and HbR. Performing statistical tests on a single 
metric is highly desirable, especially for group-level studies.

To quantify and compare the classification performances 
of the three methods, we made use of both synthetic and real 
resting-state data. The use of synthetic data, for which the 
ground truth is known with certainty, also allowed us to bench-
mark our methodology against recent literature regarding 
GLM classification accuracy [9].

The multivariate LDA classifier yielded greater classi-
fication accuracy than GLM, for both the synthetic and real 
resting-state data (78.7% for LDA, 65.76 for GLM(HbO) 
and 70.3% for GLM (HbR), in the real resting-state data case 
(figure 5(A))). Moreover, we demonstrated that the LDA had 
less inter-subject variability, as illustrated in figure  6(A), 
where the standard deviation of individual results was 5.1% 
about the mean for LDA, as opposed to 10.2% for GLM(HbO) 
and 8.9% for GLM(HbR). In addition, the linear mixed model 
fit of individual-subject accuracies to predictors Age, Hair 
Color, Gender, and Time of Measurement revealed a sig-
nificant effect only for Hair Color and only on the accuracy 
achieved with GLM(HbR) (blond-hair accuracy  >  brown-hair 
accuracy). The latter findings show that the observed differ-
ences between accuracies of the model-based and data-driven 
approaches is not simply accounted for by obvious (and easily 
absorbed into the classification model) demographic or phys-
ical characteristics of either the subject (e.g. gender) or the 
measurement (e.g. time of day).

The LDA results also are less sensitive than those for GLM 
to the ‘double bumps’ that were used to approximate Mayer 
waves synchronized with hemodynamic task responses (in 
the presence of double bumps, classification accuracy falls 
from 79.1  ±  6% to 77.0  ±  11% for LDA, from 77.8  ±  9.3% 
to 62.4  ±  7.5% for GLM(HbO), and from 82.4  ±  8.2% to 
64.8  ±  6.8% for GLM(HbR) (figure 6(B))). These results 

Not active for GLM – HbO (p = 0.5326)
Active for GLM – HbR (p = 0.0006)

Active for multivariate LDA classifier
(p < 0.001)

Figure 9. Block-average data for Subject 1, Channel 16. On the left the plot of the averaged signal is accompanied by the plot of the model 
used by the GLM analysis, namely a canonical HRF with peak time  =  6 s. On the right, the same plot is accompanied by the plot of an 
example of average of resting state trials against which the task trials are classified.
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Table 3. Topographic images and block averages for all the analyses on Subject 2.

SUBJECT 2

      GLM-HbO                GLM-HbR LDA

β-value 
images for 
GLM;

     

Classifier 
outputs 
for LDA

Block 
averages 
of the 
motor 
channels:
3: s1-d3
5: s2-d3
8: s3-d3
9: s4-d3

13: s5-d7
15: s6-d7
18: s7-d7
19: s8-d7
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confirm that the GLM, at least when used with a fixed basis 
function for all subjects, as was the case here, is less suc-
cessful than LDA at picking up individual variability and 
atypical activation patterns, and is at risk of false negatives. 
These results suggest the possibility that the model used does 
not accurately represent the real hemodynamic responses and 
that therefore a different model would need to be designed. In 
this respect, the results of the one analysis can be used in sup-
port of interpreting the results of the other.

As a control study, additional simulations were performed 
to identify the classification performance of the LDA-based 
method when applied to data that did not actually contain any 
task-induced responses (either real or simulated) in the ‘Task’ 
time intervals. The classifier performed at chance level in 
these cases (results not shown), suggesting that the possibility 
of false-positive results in the analyses of simulated and real 
task-response data is not an important concern.

To further understand and characterize the performance 
of the two pipelines in a real application, we used the two 
methods to analyze data from a motor experiment. The optode 
array covered the motor cortex and its vicinity on both hemi-
spheres. Eight out of twenty channels were placed over the 
scalp positions most likely to cover the motor area. In this 
scenario we could verify that the LDA-based classifier is less 
susceptible to than GLM to 0.1 Hz systemic oscillations. This 
is illustrated for the subject considered in table 2: due to the 
systemic oscillations, the block-average HbO and HbR traces 
in the eight channels over the motor cortex differ from the 
hemodynamic response modeled in the GLM computations. 
Consequently, the GLM recognizes none of these channels as 
‘active’. Conversely, by contrasting ‘Task’ temporal segments 
with ‘Rest’ temporal segments, the LDA classifier finds sig-
nificant differences in all of these channels, regardless of the 
presence of Mayer waves.

On the other hand, the LDA-based method generally clas-
sified more channels as ‘active’ in response to the motor task 
than the canonical GLM analysis did. Because no established 
ground truth exists in the real data, this classification result 
warrants cautious interpretation. Especially for channels that 
extend beyond the center of the motor cortex, the activations 
found cannot be unambiguously attributed to neural activation 
caused by the motor task. However, the resting-state data clas-
sification results, and inspection of the experimental hemo-
globin time traces, show that these classification results also 
are not easily dismissed as false positives.

In fact, as shown in recent literature [35], the fNIRS signal 
is not composed exclusively of cerebral task-evoked signal 
but also includes cerebral non-evoked signal (‘cerebral resting 
state’), extracerebral task-evoked signal (‘extracerebral con-
found’), and extracerebral non-evoked signal. Quantitative 
characterization of the three latter components is still an open 
research question [36], which is why they could not be mod-
eled separately in our simulations. However, they are likely 
to be present in the motor experiment data and offer a plau-
sible explanation for the classification results: when a differ-
ence is found between ‘Task’ and ‘Rest’, not only the cerebral 
response to the task, but also all the systemic hemodynamic 
changes provoked in the extracerebral compartment by the 
execution the task (e.g. changes in heart rate, blood pressure, 
respiration rate), is discriminated from the resting state. These 
changes involve the whole extracerebral layer, and therefore 
their effect extends beyond the probes that specifically illu-
minate the motor cortex [35]. To exclusively associate the 
found activations with cerebral recruitment, a step that would 
be necessary, but is beyond the scope of the present work, 
would be to remove from the data the physiological comp-
onent measured in the extracerebral layers before the analysis, 
for example with multi-distance NIRS measurements [37].

Active for GLM – HbO (p = 0.0001)
Not active for GLM – HbR (p = 0.5625)

Active for multivariate LDA classifier
(p < 0.001)

Figure 10. Block-average data for Subject 2, Channel 5.
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Finally, it is worthy of note that the experimental data, 
in agreement with the results of the theoretical simulations, 
reveal great inter-subject variability in the comparative sen-
sitivities of GLM(HbO) and GLM(HbR). That is, some 
subjects’ hemodynamic patterns are better interpreted, and 
hemodynamic task responses more detectable, using HbO 
data, while others’ are better explained using HbR. This is 
a manifestation of the highly subject-specific hemodynamic 
fingerprint that has been reported [9]. A classifier, such as the 
one proposed, that takes into account simultaneous variations 
of both hemoglobin components has the potential to overcome 
this limitation and offer a more flexible analysis that adapts 
to the individual’s own hemodynamic characteristics. In this 
respect, the proposed approach would be of especial appli-
cation for populations, such as young children, that exhibit 
‘atypical’ patterns of hemodynamic responses, such as uncou-
pled HbO and HbR or inverted response direction [38, 39].

Nevertheless, in the current form the proposed approach 
only classifies ‘activations’ versus ‘non-activations’. As a 
future development, a non-parametric framework can be 
formulated in order to test more complex hypotheses on the 
distributions of classifier outputs, such as the comparison of 
amplitudes of the responses induced by different conditions, 
within subjects or between groups of subjects.
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