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In the present study we investigate the communication of different large scale brain sites
during an overt language production task with state of the art methods for the estimation
of EEG functional connectivity. Participants performed a semantic blocking task in which
objects were named in semantically homogeneous blocks of trials consisting of members
of a semantic category (e.g., all objects are tools) or in heterogeneous blocks, consisting of
unrelated objects.The classic pattern of slower naming times in the homogeneous relative
to heterogeneous blocks is assumed to reflect the duration of lexical selection. For the
collected data in the homogeneous and heterogeneous conditions the imaginary part of
coherency (ImC) was evaluated at different frequencies. The ImC is a measure for detect-
ing the coupling of different brain sites acting on sensor level. Most importantly, the ImC
is robust to the artifact of volume conduction. We analyzed the ImC at all pairs of 56 EEG
channels across all frequencies. Contrasting the two experimental conditions we found
pronounced differences in the theta band at 7 Hz and estimated the most dominant under-
lying brain sources via a minimum norm inverse solution based on the ImC. As a result of
the source localization, we observed connectivity between occipito-temporal and frontal
areas, which are well-known to play a major role in lexical-semantic language processes.
Our findings demonstrate the feasibility of investigating interactive brain activity during
overt language production.
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INTRODUCTION
Electroencephalographic measures have long played only a minor
role in the investigation of language production. A major reason
for avoiding the recording of the electroencephalogram (EEG)
during overt speech was the suspicion that articulation-related
artifacts such as facial muscle activity, lip and eye movements, glos-
sokinetic potentials, and head movements may severely disrupt the
signal early on (e.g., Brooker and Donald, 1980; Wohlert, 1993;
Grözinger et al., 1975). To avoid articulation-induced artifacts,
some EEG studies of language production employed paradigms in
which overt speech was either delayed (e.g., Jescheniak et al., 2002)
or replaced by silent naming (e.g., Eulitz et al., 2000) or manual
responses (e.g., van Turennout et al., 1997, 1998; Schmitt et al.,
2000, 2001; Abdel Rahman and Sommer, 2003; Abdel Rahman
et al.,2003). One of the disadvantages of such approaches,however,
is the difficulty of directly relating behavioral measures and elec-
trophysiological correlates. Furthermore, it has been argued that
meta-linguistic button-press tasks may not include all processes
involved in natural language production (but, see Abdel Rahman
and Aristei, 2010).

Recently, several studies have demonstrated the feasibility of
combining EEG measures with overt articulation (for reviews,
see Ganushchak et al., 2011; Indefrey, 2011; Strijkers and Costa,
2011). These studies have provided valuable information about

the precise temporal unfolding of different processes involved in
language production. For instance, semantic context effects in
classic speech production paradigms such as the picture-word-
interference (PWI) paradigm (Hirschfeld et al., 2008), the seman-
tic blocking paradigm (Aristei et al., 2011, see also Maess et al.,
2002 for evidence from magnetoencephalography) or the cumula-
tive semantic interference paradigm (Costa et al., 2009) have been
shown to elicit modulations in the event-related brain potential
(ERP) within a latency range of well-below 300 ms post-stimulus
onset. These semantic context effects are assumed to reflect the
selection of an appropriate lexical candidate for a semantic con-
cept (pre-verbal message) to be expressed. For instance, in the
blocking paradigm participants name objects that are presented in
blocks of trials that consist of a homogeneous group of category
members (e.g., all objects belong to the category of animals; homo-
geneous blocks) or blocks that consist of semantically unrelated
objects (heterogeneous blocks). When the pictures are repeat-
edly named (but typically not when they are named for the first
time), a semantic interference effect is observed that reflects slower
naming times in the homogeneous relative to the heterogeneous
condition. Aristei et al. (2011) reported ERPs elicited by semantic
contexts around 200 ms after stimulus onset at occipito-temporal
and frontal scalp regions (see also Costa et al., 2009 for similar
findings).
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To summarize, a growing number of studies has revealed the
feasibility of combining EEG measurements with overt speech pro-
duction, yielding fine-grained temporal information on various
aspects of speech production, such as bilingualism (Christoffels
et al., 2007), lexical-semantic access (e.g., Hirschfeld et al., 2008;
Costa et al., 2009; Strijkers et al., 2010; Aristei et al., 2011), and error
monitoring (Ganushchak and Schiller, 2008, 2009). However, in
contrast to this recent development concerning electrophysiolog-
ical evidence on the temporal unfolding of language production,
the identification of the functional networks and correlated brain
dynamics associated with electrophysiological brain activity dur-
ing overt speech are largely unknown. The aim of the present study
was to investigate lexicalization with electrophysiological mea-
sures of functional connectivity and oscillatory brain dynamics,
as described below.

Another aspect of the EEG is that its high temporal resolu-
tion in the millisecond range provides a means to capture and
investigate rhythms generated by large neuronal populations in
different compartments inside the brain at different points in time.
Furthermore, functional synchronization of these oscillations is
assumed to play a key role as a communication mechanism in the
brain (Singer, 1999; Engel et al., 2001; Varela et al., 2001; Fries,
2005). Outside the area of language production the investigation
of the interplay between neuronal populations has, hence, become
a growing field of research in order to gain a deeper understanding
of functional information processing within the brain in different
experimentally controlled tasks.

The purpose of the present study was twofold. First, we wanted
to identify the brain dynamics associated with the functional
networks involved in semantic-lexical access during language pro-
duction. To this end, we analyzed brain connectivity measures
elicited during overt object naming in a semantic blocking par-
adigm, as detailed below. Second, we aimed to demonstrate the
feasibility and the procedure of applying reliable connectivity
measures.

In contrast to the good temporal resolution, EEG measure-
ments suffer from a poor spatial resolution. As brain activity is
measured non-invasively on the scalp, the electric fields generated
by neuronal sources propagate through the head and even a single
source can be recorded by many of the EEG electrodes depending
on the location and orientation of the source (e.g., Nunez et al.,
1999). Therefore, in presence of many macroscopically measur-
able brains sources, the EEG captures a mixture of these sources
in each channel. This effect, most often termed volume conduction
or field spread, is known to be crucial especially in the context of
analysis of brain connectivity. A functional relationship between
the signals measured at two EEG sensors can generally not be
interpreted as a relationship between underlying sources due to
the mixing of sources into sensors. One way to tackle this prob-
lem is to first calculate the time series of the brain sources and
then apply an appropriate connectivity measure. Unfortunately,
the solution of the so called inverse problem, i.e., the calculation of
source activity from EEG measurements, is not uniquely solvable,
and hence, every estimate is error prone (Baillet et al., 2001). Fur-
thermore, volume conduction can play an important role within
the estimation procedure of connectivity on source level. Even
the application of quite robust and widely used inverse methods

(e.g., beamformers) can lead to substantial misinterpretation of
the results (Schoeffelen and Gross, 2009).

To overcome the introduced limitations we apply a different
approach for the calculation of functional connectivity. Within
the present study we use a connectivity measure on sensor level
with a special treatment for volume conduction, namely the imag-
inary part of coherency (ImC) introduced by Nolte et al. (2004).
We shortly recover the basic concept and the special role of the
imaginary part. For a more detailed review and a discussion of
the relationship to other methods such as phase-locking (Lachaux
et al., 1999), please consider the original research paper. The key
feature of the ImC is its “robustness to the artifact of volume con-
duction” indicating that a significant deviation from zero of the
applied measure cannot be due to independent sources that are
mapped simultaneously in different EEG channels. As the inter-
pretation of sensor level connectivity in terms of brain sources is
not unique, we also apply a weighted minimum norm inverse solu-
tion on the most dominant subspace of the imaginary part of the
cross-spectrum and demix the corresponding brain sources with
the assumption of spatially distributed sources (Marzetti et al.,
2008). Hence, we obtain a rough but reliable picture of interacting
brain sources.

Evidence of language related brain oscillatory activity, even
though lacking for language production, is available for different
sub-processes of language comprehension. Previous findings sug-
gest the involvement of two frequency bands in lexical-semantic
operations, the theta (4–7 Hz) and alpha (8–12 Hz) band. Theta
oscillations have been shown to reflect processes involved in
lexical-semantic retrieval. For instance, theta event-related syn-
chronization (ERS) responses increase for words relative to pseu-
dowords in lexical decision tasks (Krause et al., 2006). Similarly,
during lexical decision tasks noun semantic properties, that is,
nouns with either visual or auditory properties (e.g., colors or
sounds) affect theta oscillatory activity at different scalp regions
corresponding to brain areas typically associated with visual or
auditory processing (e.g., Bastiaansen et al., 2008). Furthermore,
in reading tasks, left-lateralized temporal theta activity is mod-
ulated by lexical factors such as word category class (e.g., open
vs. close class words; Bastiaansen et al., 2005). Finally, oscilla-
tory theta activity changes have been reported in association with
syntactic number violations, grammatical gender violations, and
semantic violations in reading, suggesting an association with lex-
ical information processing (e.g., Bastiaansen et al., 2002; Hagoort
et al., 2004). In addition to oscillation changes in theta frequen-
cies, power decrease in alpha frequency band has been associated
with enhanced semantic processing (e.g., Klimesch et al., 1997;
Rohm et al., 2001; for a review, see Klimesch, 1999). Together,
these findings suggest that brain oscillations in the alpha and theta
band reflect the retrieval of lexical-semantic information in lan-
guage comprehension (e.g., Bastiaansen et al., 2005; for the role
of oscillations at low frequency bands in language processing, see
also Arnal et al., 2011). Because lexical and semantic represen-
tations and/or operations may be shared at least to some extent
by the language production and perception system (e.g., Inde-
frey and Levelt, 2004), we expected similar effects in the alpha and
theta frequency range at temporal and frontal regions to reflect the
functional networks involved in semantic–lexical retrieval during
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language production. We tested these assumptions with a seman-
tic blocking paradigm in which pictures of objects are named in
categorically homogeneous or heterogeneous blocks of trials (e.g.,
Kroll and Stewart, 1994; Damian et al., 2001; Belke et al., 2005),
assuming that this task taps into lexical-semantic processing stages
during language production.

MATERIALS AND METHODS
PARTICIPANTS
Seventeen females and seven males, aged 20–34 years (N = 24),
were paid for their participation in the experiment or received
partial fulfillment of a curriculum requirement. All partici-
pants were native German speakers and reported normal or
corrected-to-normal visual accuracy and normal color vision.

MATERIALS
The picture set consisted of 125 color photographs of common
objects from 25 semantic categories. All pictures were presented
in semantically homogeneous blocks (all objects were category
members, e.g., insects, beverages, kitchen utensils, etc.) or in het-
erogeneous blocks consisting of semantically unrelated objects.
The size of the photographs was 3.5 cm × 3.5 cm at an approx-
imate viewing distance of 90 cm from the monitor. All picture
names span a broad range of lexical frequency (normalized lemma
frequency: from 0.016 to 102.68; as per DLex database) and word
length (from 2 to 13 letters). Because all pictures (and thus, all
names) appeared equally often in all conditions, stimulus charac-
teristics can be excluded as a source for experimental effects and
matching procedures are thus not necessary.

PROCEDURE
Prior to the experiment, participants were familiarized with all
objects and their names as follows: first, all photographs were pre-
sented in random order on the screen, and participants were asked
to name each object. If necessary, they were corrected or the pic-
ture name was provided by the experimenter. Then participants
were given a printed color sheet with all objects and their names
printed below.

Stimulus presentation and response recording was controlled
by Presentation software (Neurobehavioral Systems). Each trial
began with a fixation cross in the center of a light gray screen.
After 500 ms, a picture was presented until vocal response, with a
maximum duration of 2 s. Vocal responses were recorded with a
microphone and naming latencies were measured with a voice-key.
The voice-key, connected to the microphone, was triggered when
the sound pressure reached a predefined level, indicating the onset
of the naming response. Naming accuracy and voice-key func-
tioning were monitored online by the experimenter. All pictures
were presented five times in semantically homogeneous blocks
that consisted of sub- or superordinate-level category coordinates
(e.g., insects or animals, respectively), and heterogeneous blocks.
Throughout the manuscript, we focus on the strongest compar-
ison between subordinate-level homogeneous blocks consisting
of closely related objects and heterogeneous blocks of unrelated
objects. Participants were instructed to name each object as fast
and accurately as possible.

The order of semantic blocking conditions and the order of
the individual categories was counterbalanced across participants.

The session was subdivided by short breaks during which partici-
pants could rest and execute eye and small body movements. The
whole session with 1875 trials lasted about 95 min.

EEG RECORDING AND ANALYSIS
The continuous electroencephalogram (EEG) was recorded with
sintered Ag/AgCl electrodes from 56 sites according to the
extended 10–20 system, referenced to the left mastoid, and at a
sampling rate of 500 Hz (bandpass 0.032–70 Hz). The horizontal
and vertical electrooculogram was measured with external elec-
trodes attached to the left and right canthi of both eyes and beneath
and above the left eye. Electrode impedance was kept below 5 kΩ

for all scalp electrodes and below 10 kΩ for peripheral sites.
For the analysis, the data were down sampled to 250 Hz and

filtered with notch filter at 50 Hz for the removal of electrical com-
ponent noise. Additionally, the data were re-referenced to linked
mastoids. All 56 head electrodes were used for the spectral and
the connectivity analysis. According to the experimental setup, the
data were split into epochs belonging to the two blocking condi-
tions (homogeneous and heterogeneous; a detailed description of
the parameters can be found in section Electrophysiological Data),
and certain epochs were not taken into account due to a variance
based artifact rejection procedure. For the artifact removal, first
the median of the maximal absolute value for all epochs and chan-
nels is calculated. Then any epoch in which at least one channel
has a maximal absolute value above threshold, set to three times
the median, is removed. The automated artifact removal proce-
dure excluded 17.15 and 17.51% epochs for the homogenous and
heterogeneous condition respectively (analyzed epochs: 9115 for
homogeneous and 9088 for heterogeneous blocks). Furthermore,
because semantic interference develops across repetitions and is
absent for the first stimulus presentation (e.g., Damian et al.,
2001), epochs belonging to the first stimulus presentation in each
condition were excluded (see also Behavioral Data). Hence, we
focused our analyses on the effects emerging during the last four
repetitions (from two to five). Finally, the analysis of the data in
terms of connectivity was performed as a grand average over all
participants.

As an initial view on the data we inspected the power in each
EEG channel. Based on the analysis of power in dependence on
frequency and time we determined parameters needed for further
proceeding, such as the relevant time interval for the calculation
of coherency (see Electrophysiological Data). The power over time
and frequency was calculated based on the cross-spectrum in sev-
eral time intervals. The cross-spectrum between channels i and j
is defined as

Sij( f ) =
〈
xi( f )x∗

j ( f )
〉

, (1)

where xi(f ) denotes the complex Fourier transform in a certain
time interval, ∗the complex conjugate1 and 〈·〉 denotes the expec-
tation value that is usually approximated by averaging over a
sufficiently large number of trial (Bendat and Piersol, 1971). If

1As the FFT is complex valued we obtain xi(f ) = a + ib. The complex conjugate is
defined by inverting the imaginary part: x∗

i ( f ) = a − ib.
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we set i = j, we obtain the auto spectrum Sij(f ) and, hence, the
power of channel i.

For the inspection of the individual channel power over fre-
quency and time we constructed epochs around each stimulus
lasting from 1 s before to 2 s after each picture presentation. These
epochs were divided into segments of 1 s length and the center
of each segment was shifted by 100 ms. Within these segments a
Hanning windowed fast Fourier transform (FFT) was computed.
By averaging the absolute square over all epochs we obtain a spec-
trogram for each channel as shown in Figure 2. The grand average
over all participants for the calculation of the spectrogram and
for the ImC was carried out by averaging the individual cross-
spectra for each subject at each frequency and in each experimental
condition.

As stated shortly in the introduction we applied a coherency
based approach with a special treatment for volume conduction
to detect true functional connectivity on sensor level. The complex
quantity coherency2 is defined as the normalized cross-spectrum:

Cij( f ) = Sij( f )√
Sii( f )Sjj( f )

. (2)

Essentially, coherency is a measure of the consistency of a phase
relationship between two signals with respect to distinct stimuli. In
many EEG applications coherence is shown as the absolute value
of coherency. But as a single brain source is mapped into many
channels, a consistent phase relationship between the channel sig-
nals can arise without truly interacting brain sources. To overcome
this problem and to diminish the effect of these spurious interac-
tions, Nolte et al. (2004) proposed to focus on the ImC. We shortly
recover the basic concept and the special role of the imaginary part.
For a more detailed review and for the relationship to other meth-
ods such as phase-locking (Lachaux et al., 1999), please consider
the original research paper.

The linear mixture of sources to EEG channels is mathemati-
cally expressed in the frequency domain as

xi( f ) =
K∑

k=1

aik sk( f ), (3)

with xi(f ) being the FFT of the measured signal in channel i in
which K sources sk(f ) are linearly mapped. Assuming an instan-
taneous mapping, the mixing coefficients aik are real valued as the
phases of the source signal are not distorted. If we further assume
independent, i.e., non-interacting sources sk(f ) and insert Eq. 3
into Eq. 1 we obtain for the cross-spectrum

Sij( f ) =
〈
xi( f )x∗

j ( f )
〉
=

∑
kk ′

aik ajk ′
〈
sk( f )s∗

k ′( f )
〉

=
∑

k

aik ajk
〈
sk( f )s∗

k ( f )
〉 =

∑
k

aik ajk

〈∣∣sk( f )
∣∣2

〉

2The terminology alters in different publications. With coherence most often the
absolute value of coherency is meant. To distinguish these two quantities clearly, we
refer to the complex quantity as coherency.

and we observe that the quantities Sij(f ) are real valued. As the
normalization for the computation of coherency, as shown in Eq.
2, is also real valued, coherency is real valued for independent
sources. Note that this holds for an arbitrary number of sources
and regardless of whether the source dynamic is linear or non-
linear. The assumption of an instantaneous mapping holds for the
frequency of interests in EEG, as the quasi-static approximation
of the Maxwell equations appears to be valid up to 2 kHz (Plonsey
and Heppner, 1967; Stinstra and Peters, 1998).

To test the results of the analysis in terms of significance and
correct for multiple comparison we applied the false discovery
rate (FDR; Benjamini and Hochberg, 1995; Storey, 2002). In our
case of bivariate interactions on sensor level, the FDR controls for
the rate of false detections of interacting pairs. Analyzing the out-
come of coherency based measures of functional connectivity, the
FDR, with a certain q-level given, states that (1 − q) × 100% of the
observations (interacting pairs) can be expected to be true obser-
vations. The FDR has been successfully applied in neuroimaging
(Genovese et al., 2002) and is, generally spoken, less conserv-
ative than other correction procedures such as the Bonferroni
method.

As connectivity patterns on sensor level do not necessarily pro-
vide interpretable information about the locations of the sources
inside the brain, we, furthermore, applied inverse calculations.
These are based on the imaginary part of the cross-spectrum as a
reliable measure for neuronal interactionsrobust to volume con-
duction. Please note that we do not claim to provide a full and
exact picture of source activity but focus on the main interac-
tions differing in the two experimental conditions. The aim is to
yield a qualitative estimate of which sources give rise to the pre-
viously determined connectivity pattern on sensor level. To focus
on the most prominent interaction at a given frequency, we per-
formed a subspace decomposition of the imaginary part of the
cross-spectrum via a singular value decomposition (SVD). This
leads to

Im(S( f )) = U ( f )D( f )V T ( f ), (4)

where U and V are orthonormal matrices and D is a diagonal
matrix with positive elements in the diagonal. The eigenvectors u1

and u2 belonging to the largest singular values smax,1 and smax,2

can be seen as the topographies of two sources describing the
major interaction at a particular frequency f. Here, they serve as an
input for a weighted minimum norm estimate (WMNE) inverse
solution (Hauk, 2004) to calculate the sources giving rise to the
topographies u1 and u2. In addition to the pure inverse calcula-
tion, the sources have to be demixed. The problem arises as we
deal with interactions and antisymmetric cross-spectral matrices,
Hence, the singular values are degenerate (see Nolte et al., 2006;
Ewald et al., 2011). In particular, this means that the two eigen-
vectors u1 and u2 belong to one singular value smax,1 = smax,2 and
each linear combination of the two eigenvectors is again an eigen-
vector. In other words, u1 and u2 are not unique and have to be
determined using additional assumptions. In order to demix the
estimated brain sources we apply Minimum Overlap Component
Analysis (MOCA) which is based on the assumption of spatially
separated sources (Marzetti et al., 2008).
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RESULTS
BEHAVIORAL DATA
Mean response times (RTs) for correct trials, standard errors of
means, and mean percentages of errors in the experimental con-
ditions are presented in Table 1. Trials with incorrect naming,
disfluencies, mouth clicks, or vocal hesitations and trials with
voice-key failures or malfunctioning were discarded from the RT
analysis. Trials with naming latencies that deviated from the par-
ticipant’s mean by more than 3 standard deviations were also
excluded from the analysis.

Analyses of variance (ANOVAs) on RTs were performed with
the within-participants factors semantic blocking (semantically
homogeneous, heterogeneous), and repetition. All ANOVAs were
calculated with participants and items as random factors (F 1

and F 2, respectively). Where necessary, the reported p-values
are corrected for the degrees of freedom using the Huynh–Feldt
procedure (Huynh and Feldt, 1976).

Analyses of variance yielded significant main effects of seman-
tic blocking, F 1(1, 23) = 11.2, MSE = 2755, p = 0.003; F 2(1,
124) = 55.4, MSE = 3004, p < 0.001, repetition, F 1(4, 92) = 223.6,
MSE = 335, p < 0.001; F 2(4, 496) = 304, MSE = 1380, p < 0.001,
and an interaction between semantic blocking and repeti-
tion, F 1(4, 92) = 35.5, MSE = 390, p < 0.001; F 2(4, 92) = 82.5,
MSE = 1020, p < 0.001 that reflects the observation that semantic
blocking effects are not present in the first naming trials. Because
it has repeatedly been shown in the blocking paradigm that inter-
ference is typically not observed for the first picture presentation
(see for instance Damian et al., 2001; Belke et al., 2005; Abdel
Rahman and Melinger, 2007), we conducted an additional analy-
sis on the data excluding the first naming trials. Furthermore,
because interference effects typically stabilize after the first presen-
tation, and because we are mainly interested in the basic effects of
semantic interference in brain oscillations, we confined all further
behavioral and electrophysiological analyses to the collapsed pre-
sentations two to five. As expected, these analyses revealed a highly
significant main effect of semantic blocking in RTs, t 1(23) = 3.7,
p = 0.001; t 2(124) = 7.9, p < 0.001.

ELECTROPHYSIOLOGICAL DATA
As described in the introduction we conducted EEG analyses in
terms of functional connectivity on the sensor level. In a first step
we investigated the power in each channel as a function of fre-
quency and time in the two blocking conditions (homogeneous

Table 1 | Mean response times, standard errors of means, and mean

error rates in semantically homogeneous and heterogeneous naming

conditions.

Presentation Mean RT (ms) SE ER (%)

Hom. Het. Hom. Het. Hom. Het.

1 738 777 12 14 7.8 9.7

2 685 656 11 12 4.2 3.8

3 681 650 12 11 4.3 3.5

4 694 648 13 12 3.8 3.7

5 691 645 12 11 3.3 3.4

and heterogeneous). A grand average of the power spectrum over
all participants for each individual EEG channel is shown in
Figure 2 in the upper part for both conditions. The lower part
of Figure 2 exemplarily magnifies the power spectrum over time
for channel “Pz.” The choice of “Pz” is arbitrary and for illustra-
tion purposes only and representative for the temporal evolution
of different rhythms observed at many EEG channels.

Visual inspection of the spectrograms reveals changes in sev-
eral frequency bands. Rhythms in the gamma (broad band around
35 Hz) and theta band (around 3–7 Hz) develop in the 1-s time
interval after stimulus onset. In the same time interval a desyn-
chronization of the alpha rhythm (8–12 Hz) is observed. In a
slightly later interval (about 1000 ms after stimulus onset) weak
oscillation changes in the beta range (around 17 Hz) can be also
detected.

Please note that we do not aim to provide a profound or
exhaustive interpretation of all ongoing oscillatory activity dur-
ing the presented experiment. The main purpose of this paper is
the investigation of reliable effects of functional connectivity and,
therefore, no statistical analysis is performed for the presented
spectrograms. Hence, the reason for inspecting the spectrograms
is the coarse investigation of the temporal evolution of oscillations
in order to determine a proper time interval t for the calculation
of the ImC. Previous ERP studies of semantic blocking effects
(e.g., Maess et al., 2002; Aristei et al., 2011) revealed that the
time interval of interest includes approximately the first 500 ms
post-stimulus (see Figure 1). However, because oscillations need
more time to develop a stable state, we chose a larger time interval
of t = (0. . .1 s) for the epochs (see EEG Recording and Analysis)
which are tested for phase consistency over trials and participants.

After having determined an appropriate time interval we
inspected the ImC as a measure for functional connectivity on
sensor level, robust to the artifact of volume conduction. Figure 3

FIGURE 1 |The plot represents the global field power for the ERPs

(grand average over all participants) elicited in the two blocking

conditions collapsed across the last four presentations. The plot is to
show the quality of the ERP data which entered the frequency analyses.
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FIGURE 2 |The two plots on the top represent the spectrogram for the

homogeneous (left) and heterogeneous (right) blocking condition. For a
more detailed view, the spectrogram at Pz (bottom) is exemplarily magnified.

In both conditions ongoing oscillations in theta, alpha, beta, and gamma
frequency bands evolving after stimulus onset can be observed. Furthermore,
the spectrograms are similar in both conditions.

shows the ImC for each channel pair over frequency separately for
the two blocking conditions as well as for their difference.

The examination of power spectra over time reveals remarkable
similarities between the two conditions (see Figure 2). Similarly,
in the ImC values the two conditions also share a common pattern,
with a pronounced peak in the alpha (10 Hz) and theta (around
4–5 Hz) bands. Although having applied an artifact correction
procedure, we take a conservative view point and consider activity
in the lowest frequency band (about 1–2 Hz) as a not trustworthy
interaction as artifacts related to eye movements occur in this
frequency range (e.g., Woestenburg et al., 1983). Furthermore,
activity in a very broad gamma band between only a few electrode
pairs are likely to correlate with muscle activity (e.g., Brunner
et al., 1996) generated during articulation. Nevertheless, this effect
vanishes with respect to the difference of both conditions.

In contrast to the rather similar ImC in both conditions, a dif-
ferent scenario emerges from the inspection of the ImC difference
between the two blocking conditions (Figure 3 right). A peak at

7 Hz can be observed in the single conditions (Figure 3 left) and
it becomes evident after averaging over the absolute value of all
individual channel differences (Figure 3 bottom right). This pat-
tern suggests that in terms of connectivity the most prominent
difference between homogeneous and heterogeneous blocking
conditions occurs at a frequency of 7 Hz.

In order to validate this effect statistically and to test for signif-
icance, we applied a permutation test (Moore and McCabe, 2003).
In N = 2000 runs, the epochs were randomly assigned to one of
the two experimental conditions. In a second step, we recalcu-
lated on these permuted data the average over all channel pairs
of the absolute value of individual channel differences in ImC.
The results are illustrated in Figure 4. The upper plot shows the
results of the permutation test as a box plot for all frequencies up
to 30 Hz. The bar inside the box indicates the median of all permu-
tations and the outer borders of the box the respective quartiles.
The whiskers show all permutation results outside of the quartile
range. Furthermore, the originally measured values are overlaid
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FIGURE 3 |The imaginary part of coherency is represented as a butterfly

plot over frequency for the two different conditions on the left and for

their difference on the upper right. The plot of the mean absolute value of
the ImC over all channel differences (bottom right) reveals a prominent peak

at 7 Hz, which is less visible in the individual condition plots due to
overlapping modulations common to both conditions. Please note that the
ImC is an antisymmetric measure meaning that the ImC of channel A to
channel B equals minus the ImC of channel B to channel A.

in blue. In the lower plot the permutation test results for 7 Hz
are displayed. One can see in both plots that the observed result
at 7 Hz lies at the tail of the permutation distribution indicat-
ing that the measured effect unlikely occurred by chance. In fact,
the p-value for 7 Hz was calculated to be p = 0.0029 as only 5
out of 2000 permutation runs returned a higher result than the
one observed. A Bonferroni correction for multiple comparisons
at frequencies between 1 and 30 Hz yields a corrected alpha-level
of α = 0.05/30 = 0.0017. Only correcting for a smaller range of
frequencies, i.e., 1 Hz ≤ f ≤ 15 Hz, would lead to an alpha-level of
α = 0.0033. In any case, the permutation test suggests the observed
effect at 7 Hz to be reliable.

To further examine the ImC at 7 Hz spatially, we employ so
called head-in-head plots to visualize bivariate interactions on
channel level (Figure 5). The topographies at each electrode posi-
tion represent the strength of connection (here the ImC) between
that given electrode and all other electrodes. For the interpretation
of our data it is important to notice that as the ImC is antisym-
metric, the connections shown are also antisymmetric, that is,
inferences about the directionality of information flow cannot
be made.

Despite the reduced effect size of the differences between
the two conditions, statistical analyses yielded distinct coherency

pattern in theta oscillatory activity (Figure 5 bottom left). Gen-
ovese et al. (2002) motivate FDR correction with q-thresholds as
high as 0.2. We here employ statistical testing with an FDR correc-
tion procedure at a q-level of 0.1 (i.e., 90% of the detections are
expected to be true detections) which confirmed significant differ-
ences between the blocking conditions. The uncorrected p-values
at this level were below 0.00003. We also note, that the differ-
ence in the coherency between the two experimental conditions (a
value of imaginary coherency around ±0.05) is about two times
smaller than the coherency for the single conditions. Differences
between conditions are small compared to common effects. Fur-
thermore, the statistical correction procedure is applied for many
comparisons as we deal with interactions (56 × 56 − 56 = 3080).
To summarize, we consider a classical Bonferroni correction as too
conservative and an FDR q-level of 0.1 as appropriate.

As the obtained results on sensor level are not uniquely inter-
pretable in terms of interacting brain sources, we estimated the
underlying sources based on the imaginary part of the cross-
spectrum (see EEG Recording and Analysis). Figure 6 shows
the results of the source localization as the two mainly inter-
acting sources differing in the two experimental conditions. The
source distributions are shown in four different views. Further-
more, the scalp topographies demixed by the MOCA algorithm
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FIGURE 4 |The results of the permutation test. In the upper plot the
results are presented for 1 Hz ≤ f ≤ 30 Hz as box plots showing the median
and upper and lower quartiles. The whiskers indicate all permutation

results outside of the quartiles. The results of the true class memberships
are displayed in blue. The lower plot shows histogram of the permutation
results for 7 Hz only.

are illustrated (Marzetti et al., 2008). For the first source we
mainly observe a fronto-central and an occipital activation. The
second source shows predominantly left but also right-lateralized
deep occipital activation and in addition right temporal activ-
ity. Although the inverse solution only gives a coarse picture of
the involved brain regions it supports the statistically significant
results obtained by the investigation of the ImC at sensor level.

To summarize, our findings provide evidence that semantic
interference effects in language production are reflected in theta
oscillation changes and in altering connectivity involving mainly
frontal and occipital-temporal brain regions.

DISCUSSION
In the present study we investigated the communication of differ-
ent large scale brain sites during an overt language production
task with state of the art methods for the estimation of EEG
functional connectivity. Up until now electrophysiological inves-
tigations of overt speech production, rare in general, are confined
to ERP research (see, e.g., Indefrey, 2011 for a review). There
is, to our knowledge only one (very recent) study that reports
oscillatory activity during overt language production (Piai et al.,

2012), and not a single study on functional connectivity. Thus,
the present study was designed to yield first evidence synchroniza-
tion dynamics during overt speech production using a paradigm
that taps into lexical-semantic processing components. We used
a semantic blocking task in which objects were named in seman-
tically homogeneous or heterogeneous blocks of trials. As shown
before, a semantic interference effect was found with slower nam-
ing times in the homogeneous relative to the heterogeneous blocks.
This effect is assumed to reflect the duration of lexical-semantic
processing during speech planning.

We applied a measure for functional connectivity on sensor
level, the ImC which is robust to artifacts of volume conduc-
tion in the sense that non-vanishing imaginary parts cannot be
explained by independent sources. The converse, however, is not
true. From a zero ImC one cannot explicitly conclude that no
interacting sources are present. In fact, it is conceivable that true
interactions occur at zero phase lag and are then missed by this
measure. We here take a conservative viewpoint: since zero phase
relations are ambiguous and can be explained equally by interact-
ing and non-interacting sources we make no attempt to interpret
the respective quantities in terms of brain connectivity. We also
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FIGURE 5 | Head-in-head plots for the imaginary part of coherency at

7 Hz for the two conditions (top row) and for their difference (bottom

left). The bottom right graph reports the FDR corrected p-values for the ImC

difference (p = 0.1 after correction). The tiny black dots represent the position
of the reference electrode in terms of connectivity. Hot as well as cold colors
code strong connectivity.

FIGURE 6 | Source localization of the main interaction of the difference

in the two experimental conditions based on the imaginary part of the

cross-spectrum. The two topographies (Topo View) are the eigenvectors of

the subspace decomposition demixed by MOCA. The corresponding sources
obtained by a weighted minimum norm estimate (WMNE) are shown in four
different views.

www.frontiersin.org June 2012 | Volume 3 | Article 166 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Language_Sciences/archive


Ewald et al. Brain oscillations during language production

emphasize that by projecting the complex quantity coherency on
the imaginary axis it becomes impossible to differentiate for a
change of ImC between a change of the magnitude of coherency,
i.e., the absolute value of coherency (=coherence), and a change of
the phase relationship. Demanding to observe this difference and
still retaining the robustness to volume conduction would require
the application of non-linear methods, which is subject to ongoing
research.

We here showed and explained a step by step scheme to deter-
mine necessary parameters and to estimate reliable macroscopic
interaction of brain sources. We demonstrated the applicability of
reliable connectivity measures such as the ImC (Nolte et al., 2004)
as well as the estimation of the main interacting sources based on
this measure.

To display the bivariate connections at a specific frequency on
sensor level, we applied head-in-head plots. These plots provide
a first view on the data in terms of connectivity and serves as a
pre-processing before applying inverse calculations to obtain the
underlying network of interacting sources. This has the advan-
tage of diminishing artifacts and focusing on previously estimated
robust and true interactions. The source estimation procedure we
presented is based on subspace decomposition and, hence, focuses
on the most prominent interacting brain regions differing in the
experimental conditions.

The choice of a 1-s interval for our connectivity analyses (see
above) may pose a potential problem. Because mean naming laten-
cies are around 700 ms, the interval includes not only planning
stages but also articulatory processes which may contaminate the
signal. However, we are confident that the length of the interval is
not critical for two reasons. First, identical words were produced
in the experimental conditions. Since the shape and topographi-
cal distribution of articulation-induced EEG artifacts are mainly
determined by the phonetics of the utterance (e.g., Aristei et al.,
2011; for a review, see Ganushchak et al., 2011), artifact-related
activity should not contribute to condition-specific effects. Sec-
ond, eye movement and muscle artifacts (that can be effectively
removed with a 10- to 12-Hz low-pass filter) are typically reflected
in higher frequency bands and should therefore not affect theta
activity (e.g., Goncharova et al., 2003; Yuval-Greenberg et al.,
2008). Thus, connectivity at theta frequencies is unlikely due to
articulatory muscle artifacts. Overall, the ImC pattern was very
similar in homogeneous and heterogeneous blocks, suggesting
that these global interactions during word retrieval in the two
blocking conditions involve overlapping functions and functional
networks. Contrasting overt object naming in the homogeneous
and heterogeneous condition we found small but reliable differ-
ences in interactions between left temporal and frontal areas and
frontal and occipital areas in the theta band at 7 Hz. Thus, differ-
ences in theta coherence are associated with semantic interference
during language production. The associated frontal and tempo-
ral areas are known to play a role in lexical-semantic language
processes (see below). Based on the general similarity of the ImC
patterns, we speculate that the changes observed in the homoge-
neous condition may reflect quantitative differences in terms of
task load or difficulty, rather than qualitative differences. Thus,
we suggest that our data most likely reflect an enhanced effort of
selecting a candidate from among competing alternatives in the

mental lexicon. This selection process is known to be affected by
semantic blocking, reflected in a semantic interference effect.

Our study presents, to our knowledge, the first report on theta
oscillations and theta coherency changes in language production.
However, our findings are in line with higher theta synchroniza-
tions at frontal–central and temporal regions reported in lan-
guage comprehension tasks (c.f. Introduction). In comprehension,
changes in theta oscillations and in theta coherency have been cor-
related with lexical-semantic retrieval. For instance, an increase in
theta coherency at frontal electrodes was observed for semantic
and syntactic violations in sentence processing (e.g., Bastiaansen
et al., 2002). In line with assumptions that the language perception
and production systems share lexical and semantic representations
and, to some extent, processes in reversed order (Indefrey and
Levelt, 2004; Indefrey, 2011), we suggest that the present findings
reflect lexical–semantic processes during speech planning.

In line with this, our data seem compatible with recent fMRI
and tDCS studies using the semantic blocking paradigm that have
reported frontal (Wirth et al., 2011) and fronto-temporal acti-
vation patterns. The frontal activation has been taken to reflect
selection from among competing alternatives stored in temporal
regions (e.g., Schnur et al., 2005a,b, 2006). However, in these stud-
ies the frontal activation was found in the left inferior prefrontal
cortex whereas in the present study we found connectivity pat-
terns predominantly between right frontal and occipito-temporal
sites. While a stronger involvement of left frontal sites would have
been predicted, we can only speculate about the role of the right
frontal regions in semantic blocking. Possibly, and converging with
the hypothesis that repeated semantic blocking produces a refrac-
tory period of the activated items in semantic memory (e.g., Belke
et al., 2005), and in line with studies showing right frontal activa-
tion for memory encoding of pictures (for a review, see Buckner
et al., 1999), the right frontal distribution might reflect differences
in the memory load between homogeneous an heterogeneous
blocks, being higher for the homogeneous condition. This acti-
vation would be then transferred to the temporal regions where
semantically related competitors become active. This would also
be in line with previous studies showing a link between frontal
theta oscillations and long term or working memory load (e.g.,
Klimesch et al., 2001; Bastiaansen et al., 2002).

Alternatively, theta oscillatory activity and theta coherency may
reflect differences in long term or working memory (e.g., Klimesch
et al., 2001; Bastiaansen et al., 2002; see Belke et al., 2005 for a
compatible proposal based on behavioral interference effects in
the semantic blocking paradigm). Furthermore, the data may be
related to differential effects of top-down predictions induced by
the semantic blocking contexts (e.g., Arnal et al., 2011). Future
research should be performed to distinguish between functional
networks related to more general processes and language – specific
networks. Moreover, besides coherency analyses that convey infor-
mation about “long range” interstructural connections, power
spectral changes should be investigated in order to identify local
neuronal oscillatory responses associated with lexical-semantic
activation and selection during language production.

Interestingly, the estimation of source localization revealed an
additional contribution of the cerebellum. Several prior studies
have shown cerebellar activation and connectivity with frontal
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and prefrontal areas in different language production tasks (e.g.,
Desmond et al., 1998; Murdoch and Whelan, 2007). However, the
precise role of the cerebellum in language production remains
unclear. Thus, cerebellar activation has been associated with
early production components such as semantic processing (e.g.,
Papthanassiou et al., 2000) and lexical retrieval (e.g., Marien et al.,
2001) but also with late articulatory processes (e.g., Ackermann
et al., 1998; see Murdoch, 2010 for a review). Cerebellar acti-
vation has also been reported in a recent study by Spalek and
Thompson-Schill (2008) using the picture-word-interference par-
adigm (PWI) that is assumed to reflect similar semantic interfer-
ence effects as the blocking paradigm. The authors interpreted
the observed enhanced activation of the cerebellum by categor-
ically related relative to unrelated word distractors in terms of
lexical competition. Our results converge with these reports and
may reflect lexical-semantic or articulatory aspects of language
production.

To summarize, our results complement ERP evidence on
lexical-semantic retrieval during language production. While ERPs
provide precise temporal information about the different com-
ponents of the speech production system, coherency analyses of
neuronal oscillatory activity provide insight into functional con-
nections within a broader time interval and at a specific frequency.
Thus, coherency analyses complement the ERP data by shedding
light on the “long distance” connections between large – scale
neuronal assemblies involved in language production, namely,
interactions between frontal and left occipito-temporal regions
and the cerebellum. Thus, brain connectivity and event-related
brain responses can provide an integrated picture on how language
production is implemented in our brain.
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