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Abstract

The investigation of functional neuronal synchronization has recently become a growing

field of research. With their high temporal resolution EEG and MEG are well suited mea-

surement techniques to identify networks of interacting sources underlying the recorded

data. The analysis of the data in terms of effective connectivity, nevertheless, contains

intrinsic issues like the problem of volume conduction and the non uniqueness of the

inverse solution. Here we briefly introduce a series of existing methods assessing these

problems. To determine the locations of interacting brain sources robust to volume con-

duction, all computations are solely based on the imaginary part of the cross-spectrum

as a trustworthy source of information. Furthermore, we demonstrate the feasibility of

estimating causal relationships of systems of neuronal sources with the phase slope index

(PSI) in realistically simulated data. Finally, advantages and drawbacks of the applied

methodology are highlighted and discussed.
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1. Introduction

Besides the pure location of neuronal sources, a distinct interaction pattern including

different brain regions is hypothesized to determine the function of the brain within a

particular task [37, 34, 38, 35]. Whereas the location of brain activity can be well deter-

mined with high spatially resolved functional imaging techniques like fMRI, the temporal

resolution makes it difficult to capture dynamics inside the brain. In contrast to fMRI,

non-invasive measurement techniques like EEG and MEG suffer from a poor spatial res-

olution. Nevertheless, the temporal resolution in the millisecond range makes them well

suitable to study neuronal synchronization which is understood as a mechanism of func-

tional communication (e.g. [8]).

One of the fundamental problems arising for the identification of interacting neuronal

sources from EEG or MEG data is the so-called problem of ’volume conduction’ or ’field

spread’ [28]. As the electric (EEG) or magnetic (MEG) field produced by a single source

propagates through the whole head, it is captured by at least a couple of sensors on the

scalp. Hence, an interaction, determined between two different sensors can arise only

due to a single source and does not necessarily reveal information about the underlying

network. To overcome this problem, Nolte et. al. proposed to use only the imaginary part

of the complex valued coherency as a robust measure of interaction on sensor level [23].

However, the interpretation of relationships between sensors in terms of brain sources

is quite difficult in many cases. Therefore, the final aim is to estimate the activity of

neuronal sources and then apply appropriate connectivity measures. It is often argued that

the procedure of first calculating the source activity also completely solves the problem

of volume conduction. But although the effect of volume conduction is most dominant

on sensor level, it also affects estimates of source activity, i.e. the determination of

synchronized neuronal sources from scalp recordings [33]. One more fundamental issue

is that the inverse problem is not uniquely solvable as it is highly underdetermined and,
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therefore, mathematically ill-posed. Many different source configurations could give rise

to the same EEG/MEG measurement. Therefore, additional information or constraints

are required for the determination of the underlying sources [3].

In the present paper, we describe two different methodological procedures to poten-

tially overcome these problems and to identify networks of directed information flow

within the brain. They are based on an appropriate pre-processing to diminish the ef-

fect of volume conduction and, in addition, to bound the search space for the estimation

of interacting neuronal sources. We utilize the properties of the imaginary part of the

cross-spectrum (ImCs) by using it as a basis to estimate neuronal source activity. Given

the time courses of the interacting brain sources, we finally apply the phase slope index

(PSI) to determine the directional coupling between them in order to obtain an inter-

pretable picture of neuronal interaction. In Section 2 an overview about the methodology

is given and the individual methods are described briefly. In Section 3, we specify how

we simulated EEG data in a realistic fashion and present results of the applied methods

to demonstrate the feasibility of the proposed procedure. Finally, results are discussed in

Section 4.

2. Methods

In this Section the applied methodology is introduced. In Section 2.1 an overview

about all used methods is given followed by a more detailed description of each individual

method.

2.1. Overview

A well established method to estimate a linear relationship between two time series in

the frequency domain is coherence (’coherence’ usually denotes the absolute value of the

normalized, complex valued cross-spectrum. To avoid confusion about the terminology we

call the complex valued quantity ’coherency’). To assess the problem of volume conduc-

tion, it was proposed to focus on the imaginary part of coherency (ImC), as independent
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sources do not contribute systematically to the imaginary part of the cross-spectrum [23].

Based on this finding we describe two different ways to estimate networks of brain sources,

as shown in Figure 1.

The left branch of this ’methodological tree’ starts with the determination of subspaces

containing interacting source pairs. To localize pairwise interacting sources from the

imaginary part of the cross-spectrum or coherency, respectively, two different methods

have been established. The Pairwise Interacting Source Analysis (PISA) decomposes

the imaginary part of the cross-spectrum into pairs of interacting sources [25]. It is

technically related to standard second order blind source separation methods while the

meaning is somewhat opposite as it decomposes only that part of the cross-spectrum which

is inconsistent with independent sources. The other method (MaxImC), which is used in

the present paper, determines spatial patterns such that the imaginary part of coherency

is maximized and, therefore, extracts major large scale interactions. Furthermore, it

is independent of the actual mapping from sources to sensors [5]. The result of both

methods is a subspace containing the scalp patterns of two interacting sources. These

patterns have to be demixed using further assumptions to estimate the truly interacting

sources. This is formulated within the Minimum Overlap Component Analysis (MOCA)

where linear source estimates are demixed assuming that the true source distribution

have minimal spatial overlap. In order to separate interacting sources a spatial rather

than a dynamical criterion has to be defined. We make the assumption that separate

sources occupy separate brain regions and hence do not overlap spatially. But even if

the true sources do not overlap the respective estimated distributed sources in general

will. To come as close to the true separation as possible we,therefore, minimize the

spatial overlap. This was tested extensively in [19] for dipolar sources reconstructed with

weighted minimum norm estimates (WMNE), which was also used here as an inverse

method [14].
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Figure 1: Methodological overview. Two different ways to estimate a causal network of neuronal sources
underlying measured EEG or MEG data, robust to artifacts of volume conduction. A blue box indicates
a method acting on sensor level and a red box a method in source space.

A different way to estimate interacting sources robust to volume conduction is to apply

RAP-MUSIC (see [21]) on a subspace determined by the imaginary part of the cross-

spectrum as also shown in [1]. At the end of each methodological branch, a beamformer-

like projection is used to determine the time courses of the estimated sources. Finally,

the phase slope index (PSI) is applied as an indicator for the direction of the information

flow between different time series [27]. In contrast to the original research paper, where

PSI is shown on sensor level, we use it here to identify the driver and the recipient from

the estimated time series of macroscopic neuronal sources. By analyzing the imaginary

part of the cross-spectrum prior to source reconstructions we focus on interacting sources

and, hence, diminish artifacts due to non relevant non-interacting or noise sources.

2.2. Robustness of volume conduction of the imaginary part of the cross-spectrum

A key idea of the present paper is to base the localization of interacting sources on

the imaginary part of the cross-spectrum (ImCs) as the only available reliable source of
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information. Therefore, we want to review the special role of the ImCs shortly. Let us

consider the Fourier transform xp(f) = rpe
iφp in a segment (e.g. an event-related epoch)

of measured EEG/MEG data in the sensor p. Then, the complex valued cross-spectrum

is defined for each frequency f and for each pair of sensors p and q by

Cpq(f) =
〈
xp(f)x∗q(f)

〉
=
〈
rprqe

i(φp−φq)
〉
, (1)

where ∗ denotes the complex conjugate and 〈.〉 describes the expectation value which is

usually approximated by averaging over a large number of trials [4]. Furthermore, the

signal in an EEG/MEG sensor p can be described as the linear superposition or mixture

of K brain sources sk(f), leading to

xp(f) =
K∑
k=1

apksk(f). (2)

If we assume an instantaneous mapping from sources to sensors, the mixing coefficients

apk are real valued and the signal phases φp in sensor space are not distorted. This can

be derived from the validity of the quasi-static approximation of the Maxwell equations

below 2kHz, and therefore in range of EEG/MEG frequencies of interest [31, 36]. Further

assuming only independent, i.e. non phase-locked or interacting sources, and plugging

Equation (2) into Equation (1), leads to

Cpq(f) =
∑
kk′

apkaqk′ 〈sk(f)s∗k′(f)〉 =
∑
k

apkaqk 〈sk(f)s∗k(f)〉 =
∑
k

apkaqk
〈∣∣sk(f)2

∣∣〉, (3)

which is purely real valued. Hence, independent brain sources are mapped only in the

real part of the cross-spectrum and all significant deviation from zero of the ImCs can be

interpreted as true brain interaction. Another point of view is that zero-phase interactions

are neglected or not interpreted as they are confounded by artifacts of volume conduction.

This line of arguments is also valid for complex valued coherency, the normalized cross-
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spectrum, as the normalization

Cohpq(f) =

〈
rprqe

i(φp−φq)
〉√〈

r2p
〉 〈
r2q
〉 (4)

is as well real valued for independent sources.

2.3. Maximizing imaginary coherency

One way of pre-processing to increase signal-noise-ratio in terms of the imaginary

part of coherency (ImC) is to determine spatial filters maximizing the ImC [5]. These

filters can be converted to spatial patterns (see [22]) that themselves can be interpreted

as mixed topographies of the most dominant interacting brain sources. Let us consider a

pre-whitened imaginary part of the cross spectrum

D(f) = CR(f)−1/2CI(f)CR(f)−1/2 ∈ CN×N×F (5)

for all N × N sensor pairs and F frequencies where CR(f) = <(C(f)) denotes the real

part of the cross-spectrum and CI(f) = =(C(f)) the imaginary part (for details of the

pre-whitening please refer to [5]). Let us furthermore consider the Fourier transform of

the data for all N channels x(f) = [x1(f) . . . xN(f)]T and its whitened form y(f) =

CR(f)−1/2x(f). Then, weights or spatial filters a ∈ RN×1 and b ∈ RN×1 can be defined,

such that the ImC between the two virtual channels za(f) = aT (f)y(f) and zb(f) =

bT (f)y(f) is maximized. The ImC between za(f) and zb(f) can be derived to be

ImCz(f) =
aT (f)D(f)b(f)

‖a(f)‖ ‖b(f)‖
(6)

and maximization of Equation (6) is achieved by solving the eigenvalue equations

D(f)TD(f)b(f) = λ2b(f) and D(f)D(f)Ta(f) = λ2a(f). (7)

According to the previous derivations, the eigenvectors belonging to the largest eigenvalues

of D(f)TD(f) and D(f)D(f)T are the spatial filters a and b that maximize the imaginary
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part of coherency. These filters could in general be converted into patterns by

ã(f) = CR(f)a(f) and b̃(f) = CR(f)b(f). (8)

as described in [5, 22] and, hence, being interpreted as topographies of interacting sources.

But the eigenvalues from Equation (7) are degenerate and occur in complex conjugate

pairs. Therefore, the eigenvectors are not unique up to a rotation and every linear com-

bination of the two eigenvectors is an eigenvector itself fulfilling Equation (7). In other

words, the calculated topographies in Equation (8) only span a subspace of the real to-

pographies of the underlying brain sources. Therefore additional constraints have to be

employed to demix the orthogonal topographies which is addressed in Section 2.4.

A further connectivity measure that can be derived by maximizing the imaginary part

of coherency as described above is the Global Interaction Measure (GIM) [5]. The GIM

itself is the frequency dependent maximized ImC, i.e. the value obtained in Equation (6),

and illustrates at which frequency we observe neuronal synchronization. In this paper,

the GIM is used to select the frequency bin of interest from the simulated EEG data.

As an additional remark, we would like to point out another method that determines a

subspace of topographies of interacting sources based on completely different assumptions.

Pairwise interacting source analysis (PISA) is an adaptation of common blind source

seperation techniques like ICA (e.g. [15]) with a focus on interactions [25]. Hence, PISA

is also well-suited as starting point to determine a subspace of pairwise interacting sources

and for further processing as shown in [26].

2.4. Demixing Sources with MOCA

The two spatial patterns ã(f) and b̃(f) from Equation (8) that are obtained by maxi-

mizing the ImC, are unique up to a rotation as described in Section 2.3. Therefore, further

constraints have to be applied to find a unique representation of underlying source distri-

butions. Here, we use a method called minimum overlap component analysis (MOCA),

introduced in [19]. As the idea of minimally overlapping sources can only be implemented
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in source space, source distributions belonging to the patterns in Equation (8) have to

be estimated. For simplicity, we employ a weighted minimum norm solution (WMN, see

e.g. [17] and [16]). The underlying source distribution sã giving rise to the spatial pattern

ã = Asã can be estimated by solving

sã = arg min
s
‖ã−Asã‖22 + λ ‖Wsã‖22 , (9)

with λ being a regularization parameter and W a weighting matrix, here chosen to penal-

ize deep sources. The matrix A denotes the lead field that describes the linear mapping

from given brain sources to measurement sensors. It is calculated using a realistic volume

conductor as described in [24]. Please note, that applying more sophisticated linear in-

verse solutions might help to improve the performance of using the phase slop index (PSI)

on source level. For example, the `2 norm used in Equation (9) leads to very smooth and,

therefore, often too extended source distributions whereas an `1 norm would generate an

often too sparse distribution. To resolve this trade-off, Haufe et. al. have proposed an

intermediate measure in [13]. However, an exhaustive discussion on particular inverse

solutions is out of the scope of this paper, and, to apply MOCA, it is necessary to use a

linear inverse method.

As stated in Section 2.3 the source distributions sã/b̃ have to be demixed as the re-

spective topographies are unique up to mixing within the respective two-dimensional

subspaces. After transforming to spatially uncorrelated source distributions, named ŝã/b̃,

a rotational ambiguitiy remains and the optimally demixed distributions can be expressed

as mã(j, ϕ)

mb̃(j, ϕ)

 =

 cosϕ sinϕ

−sinϕ cosϕ


ŝã(j)

ŝb̃(j)

 (10)

with ϕ being the rotation angle and j being all brain voxels on a pre-defined grid. Achiev-

ing minimum spatial overlap of the source distributions mã(j, ϕ) and mb̃(j, ϕ) can be
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realized by analytically minimizing the function

O(ϕ) =
∑
j

(mã(j, ϕ)mb̃(j, ϕ))2 (11)

defining the overlap [19].

2.5. RAP-MUSIC

A different way of estimating interacting source distributions based on the imaginary

part of the cross-spectrum is Recursively Applied and Projected Multiple Signal Classifi-

cation (RAP Music, [21]), a variant of the MUSIC algorithm [32]. The basic idea behind

MUSIC is to define a p � N dimensional low-rank subspace projection of data in N

measurement channels and an orthogonal noise space. The so called signal subspace S

is usually spanned by the first p eigenvectors of an eigenvalue (or singular value) decom-

position of the data’s covariance matrix C ∈ RN×N . The orthogonal noise subspace is

estimated by the span of the remaining N − p eigenvectors of C. Given the subspaces,

a scan over all pre-defined grid points in the brain is performed to determine whether

a source at grid point j is consistent with the signal subspace S which, for simplicity,

is assumed to be defined by normalized and mutually orthogonal columns of S. This

consistency can be expressed in terms of the angle ϑ between S and the forward model,

i.e. the projection of a dipolar brain source onto the scalp, at grid point j. If ϑ is small

or even zero, a source at grid point j is likely to be contained in the data subspace. With

the forward model Lj ∈ RN×1 the angle ϑ can be defined as

cos2 ϑ(Lj,S) =
LTj S

TSLj

LTj Lj
. (12)

Please note that the previous formulation is valid for given dipole orientations. For

unknown dipole directions, the forward model Lj can be expressed by Lj = L̃jαj where

L̃j is an N × 3 matrix for unit dipole directions in x, y and z direction and αj is 3 × 1

vector defining the dipole direction at grid point j. Now, the forward model Lj can be



2 METHODS 11

determined by optimizing over αj, which can be done analytically [1].

One drawback of the MUSIC algorithm is its failure in the presence of increasing

numbers of sources which leads to several maxima for a single scan. As this is the case

for interacting sources or even systems of interacting sources, we make use of a variant

of the MUSIC algorithm called RAP-MUSIC [21]. Here, the strongest source found in an

initial MUSIC scan is projected out and the MUSIC scan is repeated. Then the second

strongest source is projected out and so on. This procedure is repeated iteratively for all

p sources.

The major modification to RAP-MUSIC that is done for the work presented in this pa-

per is that we do not define the signal subspace in terms of the covariance matrix as stated

before. Instead, we apply RAP-MUSIC in the frequency domain on the imaginary part

of the cross-spectrum, defined in Equation (1). The reason is to focus on reliable interac-

tions robust to volume conduction and to diminish artifacts from non-interacting sources.

Please note, that the cross-spectrum is frequency dependent and hence, calculations in

this paper are done for a single frequency. In general, it is also conceivable to average

the cross-spectrum over frequencies and, therefore, to apply the proposed methodology

in a specific band. However, the determination of sender and recipient of information as

described in Section 2.6, is based on a broader frequency range. Therefore, also a distinct

frequency band is taken into account for the whole procedure described in this paper.

2.6. The Phase Slope Index

The phase slope index (PSI) is a method to estimate the direction of information flow

between two time series [27]. The fundamental concept behind PSI is that in general the

cause precedes the effect and interaction is accompanied by a certain time delay τ . Let’s

consider two time series x̂p(t) and x̂q(t) where one is the delayed version of the other

x̂q(t) = cx̂p(t− τ) (13)
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including an amplification (c > 1) or damping (0 < c < 1) constant c. With the defini-

tion of the cross-spectrum in Equation (1), the relation in Equation (13) of the Fourier

transformed signals xp(f) and xq(f) leads to

Cpq(f) =
〈
xp(f)x∗q(f)

〉
=
〈
r2pc e

i 2πfτ
〉
∼ ei 2πfτ ≡ eiφ(f). (14)

From Equation (14) we can observe that the phase spectrum

φ(f) = 2πfτ (15)

itself is linearly dependent on frequency and proportional to the time delay τ . Therefore,

a positive slope of the function φ(f) indicates a positive τ and according to the example

in Equation (13) an information flow from x̂p(t) to x̂q(t). A negative slope and, hence,

a negative τ would indicate a directed information flow from x̂q(t) to x̂p(t). Including

further requirements, such as statistical robustness and insensitivity to non-interacting

signal parts (see [27]), the final formulation of PSI is given by

Ψ(f) = =(
∑
f∈F

Coh∗pq(f)Cohpq(f + δf)) (16)

where Cohpq(f) is the complex coherency as defined in Equation (4) and δf is the fre-

quency resolution in the frequency band F in which the phase slope is estimated. As a

reasonable property, the value for PSI in Equation (16) fluctuates around zero. Includ-

ing the estimation of the standard deviation, e.g. with a Jackknife procedure [20], the

significance level of PSI can be evaluated. Hence, a result within a certain confidence

interval around zero would be neglected as not interpretable. In this way, robustness and

reliability of the method is enhanced.

As evaluating the direction of information flow with PSI is based on temporal as-

sumptions, the time series of the individual sources have to be determined. This can be

achieved by projecting the measured sensor data onto the topographies of the calculated
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sources. This procedure is formally equivalent to a beamforming with spatially white

noise.

3. Results

In this Section the results of the simulations are presented. In Section 3.1 it is described

how data were simulated to reveal EEG/MEG properties. Furthermore, the result of first

maximizing the ImC, then applying MOCA to demix topographies and finally, using PSI

to estimate the direction of information flow is illustrated. In Section 3.2 the simulation

of an interacting system of four sources is demonstrated and how RAP-MUSIC and PSI

are applied to determine the locations of neuronal sources and the causal relationships

among them.

3.1. Maximizing the imaginary coherency, MOCA and PSI

To realistically simulate EEG data of two interacting sources, we generated random

data according to an AR-model of order 10, with 60000 time points and additional noise

of 20 percent of the signal power. All Coefficients of the AR-model were randomly chosen

but coefficients on the respective off diagonal were set to zero such that the second time

course was simulated to be driven by the first one. The cross-spectrum was obtained

by segmenting the data in 512 data points long epochs and performing an FFT on the

Hanning windowed data. As the calculations described in Section 2 are performed in a

specific band in the frequency domain, we assured that minimum 30 percent of the signal

power of the two simulated time courses is contained in a specific band. This band, i.e.

the most dominant frequency bin, is then automatically selected with the GIM for further

processing (see Section 2.3). In general, the suggested procedure can be applied in any

frequency range below 2kHz and, therefore, in any band relevant for EEG/MEG analysis.

Although it is common in practice to analyze oscillations in the alpha range (9-13Hz) or

the beta range (17-25Hz) as strong brain oscillation occur in these bands, the investigation

of any EEG/MEG relevant band is conceivable as long as a prominent oscillatory signal
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is detectable. Hence, the choice of frequency in the presented simulations is arbitrary and

only the presence of a signal in a specific band matters.

In addition to the dynamics, source locations were defined by two dipoles, one in each

hemisphere. As a head model we used a standardized MNI head obtained from an average

of 152 subjects [6, 7]. According to the previous definition of the time courses, the source

in the left hemisphere drives the source in the right hemisphere. These resulting time

courses were projected to sensor space (59 EEG channels) by the randomly mixed patterns

of the two source dipoles. Again, noise was added with 10% of the size of the simulated

EEG signal. Figure 2 shows the simulated dipoles, the resulting EEG topographies for 56

sensors, the mixed topographies, the imaginary part of coherency for each channel pair,

and the GIM of the modeled source data.

One of the main motivations to apply measures of effective connectivity on source

level is the interpretability of the results. Figure 3 shows the results of the phase slope

index between each pair of sensors. At a particular frequency, here the one selected with

the GIM (see vertical line in Figure 2.D), these bivariate connectivities can be visualized

in a so called head in head plot. Each small circle inside the big schematic scalp shows

the connectivity of this particular EEG electrode to all other electrodes. For orientation

purposes, a small black dot is shown inside each small circle again indicating the position

of the particular reference electrode on the scalp. A cold color and a negative value of

PSI shows that the particular measurement channel receives information from a distinct

recording site whereas a warm color indicates that the channel is sending information.

One can observe that the result does not clearly reflect the underlying simulated source

structure. Even with simple interaction schemes these head-in-head plots are not easy

to interpret in terms of interacting brain sources. Furthermore, results on sensor level

always depend on the choice of reference which may distort locations of brain regions on

sensor level [12].
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Figure 2: The simulated system of two interacting sources. A: Two dipoles that are simulated in different
hemispheres. For displaying purposes only the relevant MRI slice is shown. Data was simulated such
that the source on the left drives the sources on the right. B: Topographies of the underlying sources.
C: Artificial mixture of the two topographies with a random mixing matrix. As the data were scaled
by the mean of the signal power, the scale of the topographies is irrelevant for this simulation and color
bars are neglected. D: The imaginary part of coherency for each channel pair and GIM over frequency.
By choosing the maximum value of the GIM a particular frequency band (or a single bin) of interest is
selected.

The results of the source localization and demixing can be found in Figure 4. Based

on the spatial patterns that are obtained by maximizing the imaginary part of coherency

(see Section 2.3), the underlying source distributions are calculated with a minimum norm

estimator and shown in Figure 4.A. Comparing with the initially simulated dipoles, one

can observe that the sources are not separated properly. This problem is addressed with

MOCA. The results in Figure 4.B demonstrate that the sources are being well demixed

in the present example and match the originally defined dipoles.

Given the sources, the time courses were estimated by projecting onto the source

topographies and PSI was calculated for the two time series. To estimate PSI, we used
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Figure 3: The results of the phase slope index on sensor level

the whole frequency spectrum of the data. Furthermore, the standard deviation was

approximated with a Jackknife estimator. We assume that PSI/StdDev is approximately

Gaussian distributed with unit standard deviation. Then a p value of .05 corresponds to

|PSI/StdDev| > 1.96 which was approximated by 2 for simplicity. Even though this is

not exactly true we consider this as reasonable. In Figure 7 we show results of a simulation

with 4% false detections for mixtures of sources, which is formally equivalent to zero delay,

indicating that our approach is slightly over-conservative. Table 1 shows the results for

this particular simulation case. A positive PSI of 0.4 indicates an information flow from

the first source (left one in Figure 4.B) to the second source (right one in Figure 4.B)

which resembles the way the data was simulated. The standard deviation is about an

order of magnitude smaller that the value for PSI itself. Hence, we would consider the

result as significant which is also indicated by the ratio of PSI and its standard deviation.

Table 1: The phase slope index and its standard deviation for the example of two interacting sources.

Phase Slope Index (PSI) Standard Deviation PSI/StdDev
0.39695 0.047187 8.4124
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Figure 4: Source localization and demixing. A: The resulting sources obtained with a weighted minimum
norm solution on the basis of the topographies found by maximizing the imaginary part of coherency. B:
The sources demixed with MOCA and the dipoles that have been initially simulated.

In an additional simulation we have varied the generation of noise. Here, only a

single time course is modeled by an AR model to generate data with a distinct frequency

component. The time course of the second source is obtained by shifting the first source

by 4 data points. Now, noise was randomly generated for each voxel inside the brain and

projected onto the scalp. Thus, way more noise sources are present than brain sources.

Finally, data and noise were normalized with their mean power and added. To investigate

the behavior of the proposed processing scheme, we run the simulation N=1300 times with

randomly chosen source dipole locations and orientations inside the brain. The results

are shown in Figure 5.

The upper left plot in Figure 5 shows the result of PSI divided by its standard deviation

over the source localization error for each run. If the run showed the correct causal

information flow is color-coded. Depending on which source is found as the first source

by the source localization procedure, PSI can either be negative or positive which can be

observed from the two centroids of the point clouds. To judge the correctness of a run

and to assign the sources, the distances between the modeled and the estimated sources
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Figure 5: The results of the statistics for PSI between the two modelled sources with a constant phase
shift of 4 data points.

have been calculated and minimized.

From the N=1300 runs, 74.46% turned out to be significantly (|PSI/StdDev| > 2)

correct and 23.45% significantly incorrect. The fairly large number of incorrect results is a

consequence of mislocalizations. Apparently, even if an estimated source is closer to, say,

the first true source, it is in general possible that it picks up more activity from the second

true source. Specifically, the randomly assigned sources could have been located too close

to each other such that MOCA’s assumptions of minimal spatial overlap does not hold

for respective source estimates. If the source locations remain fixed and well separated,

i.e. as in the previous simulation shown in Figure 4, the described methodology always

returns the correct result. Figure 6 shows the histogram for this simulation.

As a kind of sanity check for the statistical properties of the imaginary part of the

cross-spectrum, we have executed the same simulation but with zero phase delay between

the modelled sources. As expected, PSI returned mostly no significant result as shown in

Figure 7.
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Figure 6: Histogram for PSI over the standard deviation with two causally connected sources modelled
in somatosensory areas as shown in Figure 8.A

3.2. RAP-MUSIC and PSI

A further simulation consists of a system of four interacting sources. The location

of the sources, again modeled as dipoles, are shown in Figure 8.A. Time courses of the

individual brain sources are simulated by an autoregressive model of order 10 with the

same noise structure as described in Section 3.1. The information flow goes from the left

source to the second left source, from the second left source to the second right source

and from the second right source to the right source. Hence, the source on the right only

receives information.

The EEG data was simulated the same way as before: The modeled time series were

projected to 59 EEG sensors by the topographies of the four sources. Again, noise was

added. Figure 8.B shows the imaginary part of coherency for all pairs of sensors. Fur-

thermore, the GIM is shown and used to determine the frequency of interest, i.e. the

frequency bin where the most prominent interaction is present. A couple of peaks are

visible that exceed the present noise level and the one with the maximum GIM is selected

for further processing.

Figure 8.C illustrates the phase slope index (divided by its standard deviation) on

sensor level at the chosen frequency bin. The plot shows that there is significant directed

interaction present in the data. Concerning the location of the underlying interaction one
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Figure 7: Statistical results for two modeled brain sources with zero phase delay. Almost no statistical
significant result is obtained due to the properties of the imaginary part of the cross-spectrum.

would interpret this head-in-head plot as information passing from frontal to occipital

brain areas. According to the simulated sources and the simulated information, the picture

provided on sensor level is not correct. As in the example before, the need for reliable

calculations in source space is motivated.

Figure 9 shows the results of the RAP-MUSIC scan. Please note, that results from a

MUSIC scan do not necessarily represent source distributions as for every voxel

1

1− cos2(ϑ)
(17)

(ϑ beeing the angle between a source at a particular voxel and the data subspace, see

Section 2.5) is plotted and color coded. However, by plotting the results for all voxels

and not only the maximum, one can judge the quality of the source reconstruction. If, for

instance, a source would be distributed through the whole head and no clear maximum

is visible, the results would be questionable. In the example shown in Figure 9 one can

observe that especially for sources ’1’ and ’4’ the found locations coincide almost perfectly
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Figure 8: Simulated system of four interacting sources. A: The location of the sources simulated as
dipoles. The information flow is modeled from left to right, i.e. the left source sends to the next one on
the right and so on. The source on the right only receives information from its neighboring left one. B:
The imaginary part of coherency for all pairs of sensors and the selection of frequency with the global
interaction measure (GIM, red line). C: The bivariate phase slope index on sensor level visualized as a
head in head plot at the frequency selected with GIM.

with the previously modeled dipoles. For sources ’2’ and ’3’ it seems that the sources could

not be completely demixed, i.e. projected out in the process of the RAP-MUSIC iteration

(see Section 2.5). However, maxima are found close to the locations of the modeled

dipoles. We used the resulting dipoles of the RAP-MUSIC scan (as stated in Section 2.5,

dipole orientations are found by an optimization) to estimate the time series at these four

locations with an appropiate projection of the measured sensor data to source space.

Having calculated the time series of the individual sources found in the RAP-MUSIC

scan, the phase slope index was evaluated as a bivariate measure between all sources.

Table 2 shows the value of PSI over its standard deviation estimated with a Jackknife

procedure for all combinations of sources. The sources in the rows serve as references and
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Figure 9: The four sources found with RAP-MUSIC as color coded "distributions". To compare, the
originally simulated dipoles are also displayed.

denote the coupling of the particular source to all other sources listed in the columns. For

example, a positive value between source ’1’ (row) and source ’2’ (column) is interpreted

as source ’1’ being the driver and source ’2’ being the recipient of information flow between

these two sources. Please note, that the result table shows an antisymmetric structure:

If coupling between source ’1’ and ’2’ two is positive, the coupling between source ’2’ and

’1’ has to be equal in magnitude and negative.

The results shown in Table 2 reflect the dynamics that have been simulated. Source

’1’, the most left one (see Figures 8 and 9) is sending to its neighboring one on the right.

As information is passed further to the right, source ’1’ is sending to all other sources.

This effect is also visible as the first row in Table 2 only has positive values. According

to that, source ’2’, the one on the very right, receives information from all other sources,

and the second row only has negative values. The finding of the other sources are also in

line with the simulated dynamics: Source ’3’ receives information (negative value) from

source ’1’ and sends (positive value) to source ’2’ and ’4’. Finally, source ’4’ receives from

source ’1’ and source ’3’ and sends to source ’2’. One can also observe from Table 2 that

all values are highly significant concerning the ratio of PSI and its standard deviation. In



4 DISCUSSION 23

practice, it is suggested to consider a value of |PSI/StdDev| > 2 as significant [27].

Table 2: The phase slope index over its standard deviation for the simulated system of four interacting
sources.

PSI/StdDev Source 1 Source 2 Source 3 Source 4
Source 1 0 30.80 28.02 36.35
Source 2 -30.80 0 -54.17 -68.53
Source 3 -28.02 54.17 0 46.10
Source 4 -36.35 68.53 -46.10 0

4. Discussion

In the present study we introduced a combination of existing methods to estimate

directed coupling between neuronal sources from EEG or MEG data. The focus of the

applied processing scheme lies on reliability which is addressed in three different ways.

First, artifacts of volume conduction are avoided by using the imaginary part of the cross-

spectrum as a reliable basis for all further calculations. Second, subspace methods are

used to infer additional constraints for bounding the non-unique inverse problem. Third,

a method for calculating the directionality of information flow between brain sources is

used that incorporates the estimation of the standard deviation and the definition of a

confidence interval. Hence, certain findings of directionality can be easily neglected as not

interpretable [27]. Please note, that the central concept of causality behind PSI is that

the cause temporally precedes the effect. Hence, a signal feature observed earlier in signal

’A’ and later in signal ’B’ would lead to classify ’A’ as the driver. This temporal argument

doesn’t prove causality and one can construct counterexamples. However, using random

dynamical systems it can be seen that such counterexamples are extremely rare, and we

therefore consider a significant PSI as a strong argument for a causal relation.

In particular, we showed how to determine causal relationships between two sources

in a distinct frequency band that are obtained by maximizing the imaginary part of
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coherency. This procedure is generally extendable to more than two sources by using

more pairs of eigenvectors obtained by the maximization. However, this methodology is

bounded to determine pairs of interacting sources and no entire systems. As an inverse

method for this methodological approach we used a weighted minimum norm estimator

and the results shown are rather too smooth distributions centered around the modeled

dipole. Here we see some room for improvement by applying more sophisticated linear

inverse solutions. However, MOCA was able to demix the overlapping sources in the given

example. The question remains if MOCA introduces a bias towards remote interactions.

For very localized interactions the assumption of spatially non overlapping sources may be

violated. In combination with different inverse methods, e.g. based on the `1 norm, this

problem needs to be evaluated which is out of the scope of this paper. After estimating

time courses of the sources, the directionality of coupling was determined correctly and

significantly by PSI. Additionally, we have performed statistics to judge the performace

of the proposed methodology with a different noise structure. In contrast to dominatly

correct results on source level, the picture provided for bivariate connections on sensor

level was rather fuzzy and not interpretable in terms of brain sources. The comparison

between source and sensor level illustrates the urgent need for the application of analysis

methods on source level to obtain a clear picture if interacting brain sources.

The second approach also supports this finding. Here, RAP-MUSIC applied on a

subspace based on the imaginary part of the cross-spectrum was used to determine the

sources. Although RAP-MUSIC was not able to separate all four sources perfectly, the

estimation of causal relationships worked out accuratly. It seems that RAP-MUSIC can

be improved especially in the context of interacting sources which is an ongoing research

subject. A further issue is the definition of the numbers of sources for RAP-MUSIC that

has to be defined in advance. To our knowledge no feasible algorithm has been discovered

yet to answer this question. However, the causal relationships between more than two
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interacting sources can be estimated reliably by applying RAP-MUSIC on the ImCs and

PSI.

The aim of the study is to investigate the feasibility of applying the phase slope

index in source space and to use the imaginary part of the cross-spectrum as a trust-

worthy and fundamental information source for EEG/MEG connectivity analysis. To

further evaluate the practical applicability of the whole procedure it would be necessary

to evaluate the performance of both presented approaches in order to compare them with

other existing techniques such as (s/e)LORETA, DTF, PDC, DICS, Granger causality,

DCM, combinations among them and with combinations of methods used in this paper

[29, 30, 18, 2, 11, 10, 9]. Furthermore, the behavior of the presented approach in the

presence of more noise or different noise structures needs to be investigated and evaluated

by further statistics. In a final step, the proposed methodology needs to be evaluated on

real data with a known underlying causal structure of known brain sources. This can only

be achieved in comparison with invasively recorded data at relevant brain sites or even in

the entire brain.
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