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Abstract

Experimental time-resolved data was used for direct reconstruction of images of laboratory phantoms in highly scattering media.
Using different time zones of the temporal profiles, computed images were calculated by solving a one-step linear perturbation
equation derived from transport theory. In nearly all cases tested, high quality reconstructions were obtained even for highly
underdetermined problems.
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1. Introduction

Over the past several years there is a surge of activities in two directions - using early (snake) light [1] and diffuse
light - to obtain images in highly scattering media. One way is to directly view the object using early (snake) light by time [1,
2] and space gating [2]. Early light imaging have also been accomplished using streak camera [3-5], stimulated Raman effect
[6], and holographic gate [7]. In the other direction, diffuse light imaging is accomplished by several approaches, such as cw
light [8], modulated photon density wave imaging [9-10], and forward and inverse image reconstructions [11-18].

In this paper we present, for the first time, tomographic reconstructions of opaque and partially absorbing phantoms in
highly scattering media using time-resolved data in various numerical algorithms. The numerical algorithms used here are:
projection onto convex sets (POCS), simultaneous algebraic reconstruction technique (SART), and conjugate gradient descent
(CGD), and a linear perturbation model [11, 13, 14]. A SART-type algorithm developed over the past few years [15] using the
relative changes instead of the absolute changes in the scattered signals in order to minimize the effect of imperfect detector
calibrations and source fluctuations is also used in this work.

In a linear perturbation model, the detected signal can be expanded in a Taylor series about an optical property x as
follows:
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where y is the signal with the phantom in the medium, y° is the reference signal without the phantom, and x is the optical
property that is varied. The sum is over all the voxels in the medium. If we ignore the voxel-voxel interaction, we can drop
the higher order terms, and this yields a first order linear perturbation equation:
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In matrix formulation it can be written as:
Ay=w"Ax, 3)

where wT is called the weight function. The weight functions for each voxel, as shown below, were obtained using transport
theory where Monte Carlo simulations were used to obtain the collision densities.
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The weight functions are defined as:
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where F,; is the number of collisions in V; due to a single photon launched from the source,
Fijis the number of collisions in V; due to a single photon launched from the detector,

S, 1s the source strength (photons/second),

and I, is the macroscopic total cross section in V;

- The expressions for the four reconstruction algorithms are given as follows:

1. Projection onto convex sets (POCS).

POCS [13] is a sequential projection method which reaches the intersection point of L constraint sets by projecting the current
estimate of the solution onto each set C; (a set which satisfies the It constraint), =1, 2, ..., L, sequentially and iteratively.

3y letting Ax'! represent the estimate at the n'h iteration, each step in POCS can be represemed by:
A P By Pi® ©)
ere, Pjrepresents the projection operator onto Cj, such that PjAx" is the element in C; that is closest to Ax™.

taneous algebraic reconstruction technique (SART).

e SART algorithm [11] is a simultaneous projection method that introduces two normalization factors into the
skprojection step that account for the particular source-detector geometry for each projection. The update is computed
ng to the following equation:
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and o is called the step-size, which must be chosen appropriately to guarantee CONVergence.

where g” is the gradient vector,
d converge after a number of iterations less than or equal to the number of unknowns.

Theoretically, this algorithm shoul

4. SART-type.

The SART-type algorithm considers the relative change in a detector response. It was developed in recognition that,
experimentally, it may be difficult in all cases to accurately determine absolute differences in detector readings [15]. The’
solution obtained is unitless, unlike those obtained based on an absolute detector differences whose units are inverse length.
We recognize that this could make efforts to update a solution difficult, but we consider this a useful tradeoff considering the
alternative, which in some cases might be no answer at all. The update is computed according to the following expression:
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2. Experimental Methods

The experimental set-up for our tomographic measurements is displayed in Figure 1. Time-resolved light

Mirror
Laser —r \
=
Triggering SB?,am
Photodiode e *

Figure 1. Experimental setup for tomographic measurements with a colliding pulse mode locked (CPM) dye laser and streak

camera.

tosecond CPM laser and a synchroscan streak camera coupled to
d to trigger the streak camera and another part was used as a
reference beam. Two cylindrical cells-a 75 mm diameter plastic cell (painted black) and a 89 mm diameter aluminum cell
(anodized black)- were filled with intralipid solution to a final concentration of 0.15% solids. The transport mean free path (I, =
1/Z(1-g)) under these conditions is 4.5 mm. The dimensions of the two sample cells are shown in Figure 2. Two aluminum
rods of 4.5 mm and 2 mm diameter were painted black to form two opaque phantoms. Glass tubes with 5 mm outer diameter
and 3 mm inner diameter were filled with a mixture of 0.15% intralipid and two different concentrations (1 and 0.5 ml) of a blue
dye DQOCI (Exciton) to form two partially absorbing phantoms. The absorption lengths (I, ) of these two phantoms were 2.3
and 4.6 mm, respectively. A 200 micron optical fiber was used to deliver ~ 100 fs laser pulses at 82 MHz repetition rate to

the scattering medium. Seven detector fibers (600 micron diameter) were arranged in a plane perpendicular to the cylindrical

axis at angles 6, = im/4, where i=1,2, ..., 7. surrounding the scattering object from the source direction (Fig. 2).

scattering measurements were performed at 625 nm using a fem
a cooled CCD camera. A part of the incident beam was use
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Figure 2. A schematic of the sample cell and the optical fiber connection from the source to the steak camera. Smaller
numbers listed with the sample cell refer to the dimensions of the smaller cell used.

Four different experiments were performed using the two cells with various opaque and partially absorbing phantoms.
A schematic diagram of various phantom locations is given in Figure 3. In the first experiment, the 4.5 mm opaque rod was
placed at the center of the scattering medium (75 mm cell).

Figure 3. A schematic display of the four different phantoms: (a) 4.5 and (b) 2 mm diameter aluminum rods painted black and
~ located at the center; (¢) 4.5 mm rod at an off axis position; (d) two-rod phantom.

A cooled CCD camera coupled to a computer was used to record the temporal profiles y;(t) of the scattered light entering the

seven detector fibers simultaneously arranged in a linear fashion in front of the streak camera slit. A part of the beam was used
as a reference to calculate the zero time and to keep track of power fluctuations. The temporal profiles y;°(t) for the reference
ium were recorded without the opaque rod inside the scattering medium. Similar measurements were performed with the
1 black rod at the center of the small cell. The third experiment was performed by measuring various temporal profiles with
e large opaque rod at a radial distance of 25 mm between the center and the source. This measurement was repeated after
itioning the rod at 90° and 180° on a 25 mm circle in order to accomplish 3 different source-detector configurations (SDC).
fourth experiment was done with the two partial absorbers placed at two diametrically opposite locations 25 mm from the
snter as shown in Fig. 3. The measurements were repeated after positioning the pair of absorbers at 90°, 180° and 270° to
mplish 4 different SDC. The reference measurements were obtained in this case by placing the same glass tubes filled with
0.15% intralipid in place of the partial absorbers.

Because of large differences in the signals from various detector fibers, each measurement was performed in two steps.
Signals from the 45° and 315° fibers were integrated for 30 seconds and that from the other fibers were integrated for about 120
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seconds to improve the signal to noise ratio. In order to avoid the influence of the strong signals from the 45° and 315° fi
on the others, these two fibers were notpmaentwhmtbeclmt‘ortheodiaﬁherswmmded. Each measurement
repeated five times for a particular SDC to check the repeatability of the data.

For each set of measurements, Ay; values were calculated. In all cases, the derived weight functions were comp

based on a nonabsorbing, isotropic scattering medium having a cylindrical geometry and a diameter of 20 transport mean
paths. A total of 2 x 10° histories were computed. Cross-sectional images were computed by dividing the cylinder into
voxels each having an area of T/4(/, )2. In all cases, the underdetermined data sets were analyzed and positivity constraints

applied both to the Ay; values and on the reconstruction results. The number of data values used varied from 56 to 4
depending on the particular experiment. In addition, the newly described matrix rescaling method was used for the CGD, S
and POCS algorithms [19].

3. Results
Table 1 lists the algorithms used to reconstruct images of the various phantoms using different time windows. The

fibers 1. 3, 2, 4, 5, 6, and 7 were located at 45°, 90°, 135°, 180°, 225°, 270° and 315°, respectively from the source. For the
SART-type algorithm, signals were integrated at time windows chosen at early, middle and later parts of the temporal profiles.
For the other algorithms, the signal was integrated over the largest detection window. The various time windows used for

image recovery are listed in Table 2.

Table 1. Matrix of algorithms and phantom studies.

Experiment SART Type (Ay/y°) CGD SART POCS
No. of Windows (Ay)
1 3 Largest time window
Large rod center

Small rod center

1 rod off-center

X
X
X
2 absorbers off X

Table 2. Temporal intervals in pico-seconds used in image recovery.

= =.=.—-_—__—-_-_——|
Single Rod Single Rod Two absorbers
Center Off-Axis Off-Axis
4 .

Fiber | Middle | Fiber | Early Middle Late Fiber | Early Middle Late
1.7 | 600-700 | 1,7 | 200-270 | 700-770 | 1530-1600 1 300-400 | 700-800 | 1300-1400
3
2

g

L1 [ B8

3.6 | 600-700 | 3,6 | 300-370 | 800-870 | 1530-1600 400-500 | 800-900 | 1500-1600
2.5 | 600-700 | 2,5 | 450-520 | 800-870 1530-1600 600-700 | 1400-1500 | 2000-2100
4 600-700 4 500-570 | 800-870 | 1530-1600 4 700-800 | 1400-1500 | 2200-2300

3

A typical set of temporal profiles for various fibers is displayed in Figure 4a-c. The computed coefficients of variation
for replicate measurements were less than 5%. Figure 4c displays two temporal profiles from the 180° fiber for the reference
medium and for the case with the phantom inside. In the presence of the phantom, a significant reduction in the signal

intensity occurs.

Figure 5(a)-(b) displays the reconstructed images of the large rod (4.5 mm) and small rod (2 mm) using the SART-type
algorithm. Reconstructed images were obtained using the time window listed in Table 2. In both cases the position of the
phantom is correctly identified. The diameter of the central disk (brightest) matches that of the large rod. For the small rod, the
voxel size is larger than the rod diameter. The quality of the reconstructed image in this case was significantly poorer than for

the large rod.

20/ SPIE Vol. 2389




x m' {au)

Time (ps)

Time (ps)

T

o 110" (an) , X10%(au)
(@) (®) 190 degrae fber ©
50 dogreo fber relarence
08
45 degree fiber o
135 L
= wilh phaniom
180
: " — e ——— 0 . . 0 5 2
000 (] 1000 2000 0 1000 2000

Figure 4. Examples of typical time-resolved temporal profiles: (a) detector fiber positioned at 45 dcgrees-gowrﬁ the source; (b)
detector fibers positioned at 90°, 135° and 180° degrees from the source; (c) temporal profile with and without large rod located
in the center.

Figures 6a,b show the reconstructed images of the large and small rod phantoms using the CGD, POCS and SART
algorithms for the largest time window (time-integrated). The quality of the images in all cases was good, though
reconstructions using the POCS algorithm produced the least edge artifact. A comparison of the ratio of the computed cross
sections (large/small rod) showed a good correlation with the ratio of the diameter of the rods. The latter value of 2.25
compares to ratios of 2.7 (CGD), 2.4 (SART) and 3.0 (POCS).

Figure 7a-c display reconstructions of the large rod using the SART type algorithm when located in an off-axis
position. Results in Figure 7a were obtained using three different time windows while Figures 7b and 7c were obtained using
an early and late time window, respectively. The results seen in Figure 7a are surprisingly noise free and represents a highly
accurate reconstruction. By comparison, the quality of reconstructions when only a single time window is used is significantly

POOrer.

_ Figure 8 shows reconstructed images for the above case using the CGD, SART and POCS algorithms for the time-
integrated data. In all cases the quality of the reconstruction is good and the position of the phantom is quite accurate.

] Figure 9a-c displays images for the case of two partial absorbers located on the line joining the source and the 180°
fiber (Fig. 3) using the SART-type algorithm and three time windows, and a single time window using early and late arriving
ht. Similar to the results obtained with the off-axis, the quality of the image obtained using multiple time windows is very
od and is significantly better than a single time window. A closer inspection of Figure 9a shows that the ratio of the peak
ights correlates closely with the ratio of the absorption cross sections.

Figure 10 shows the reconstructed images obtained using the time-integrated signal and the CGD algorithm. It is
‘evident that the quality of the reconstruction obtained is significantly poorer when compared to the case with multiple time

Discussion

We have investigated the quality of reconstructed images of various simply structured phantoms in highly scattering
media using the time-resolved data from tomographic measurements in various numerical algorithms. Results obtained have
shown that, in many cases, high quality reconstructions are achievable even for highly underdetermined data sets. These
adings support and extend previous reports from our group [11, 13-15, 20] demonstrating that, using a one-step linear
rbation model derived from transport theory, sufficient information exists at the boundary of dense scattering media to
it accurate recovery of internal structure, at least for simply structured media.

Use of perturbation methods requires specification of some type of reference medium. For our experiments, reference
detector intensities were directly measured simply by removing the target phantom from the medium. While this permitted an
accurate specification of the Ay; values, determination of the correct weighting functions is more difficult. Here, these were
computed using Monte Carlo methods. In the cases examined, the weight functions were computed assuming a cell diameter of
20 transport mean free pathlengths. As mentioned in the Methods, two different experimental vessels were used.
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Figure 5. 3-D display of computed cross sectional images of (a) the large (4.5 mm) rod, and (b) small (2 mm) rod located at the
center using time-resolved data and the SART-type algorithm.
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Figure 6. Gray scale display of computed cross-sectional images of (a) large rod and (b) small rod obtained using time-
smtegrated data and the CGD, SART and POCS algorithms.
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Figure 7. 3-D display of computed cross sectional images of the off-axis rod using time-resolved data and the SART-type
algorithm. (a) Three time windows: (b) early time window; (c) late time window.
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Figure 8. Gray scale display of computed cross-sectional images of the off-axis rod using the integrated data for the largest
detected time window, and the CGD, SART and POCS algorithms.
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9(a)-(c). 3-D display of computed cross-sectional images of the two-absorber phantom using time-resolved data and the

RT-type algorithm. (a) Three time windows; (b) early time window; (c) late time window. Please see the next page for 9(b)
9(c)
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Figure 9(a)-(c). 3-D display of computed cross-sectional image of the two-absorber phantom using time-resolved data and the
SART-type algorithm. (a) Three time windows; (b) early time window; (c) late time window.
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igure 10. Gray scale display of computed cross-sectional images of the two-absorber using time-integrated data and the CGD
rithm.

Bor the rod-in-the-center studies, the estimated diameter of the vessel, in transport lengths, is approximately 17 and 20 for the
pther studies. While this error may seem small (approx. 18%), it is worth noting that the weighting functions are spatially
gon-linear and time-dependent. While definitive evidence is lacking, we believe that this mismatch in the assumed and "correct”
ght function may have contributed for why a relatively poor image was obtained for the experiment using time-resolved
sasurements for the small rod phantom. The observation that the same data set, when analyzed as time-integrated data, yields
good quality image suggests that the influence of errors in the Ay, values and weight functions on the reconstructed image

geht well vary depending on the duration of the time window chosen. This suggestion is supported by the results obtained
¢ a single time window for the off-axis rod and two rod studies. Here we observed significantly better quality images when
e time windows are chosen rather than a single time window. It is worth noting that in an accompanying report [21] we
e a total least squares method that yields improved reconstructions when noise is present in both the Ay; values and the

ight functions.

The standing question to be answered is whether clinically useful images can be obtained from thick tissue structures

 optical sources. While the current studies has not answered this, we believe it is important to emphasize that the
P images were obtained using highly underdetermined data sets. We also note that with the exception of imposing
constraints, no special regularization techniques were used. These findings suggest, surprisingly, that the image
ery problem for dense scattering media may be much more stable than one might otherwise have considered.
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