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ABSTRACT

This study reports on results of our efforts to improve the efficiency and stability of previously developed
reconstruction algorithms for optical diffusion tomography. The previous studies, which applied regularization and a
priori constraints to iterative methods - POCS, CGD, and SART algorithms — showed that in most cases, good quality
reconstructions of simply structured media were achievable using a perturbation model. The CGD method, which is the
most efficient of the three algorithms, was, however, in some instances not able to produce good quality images because of
the difficulty in applying range constraints, which can cause divergence. In this study, a scheme is proposed to detect this
divergence while imposing range constraints on the previous reconstruction. Once divergence is detected, the conjugate
gradient vector is reset and the CGD reconstruction is restarted using the previous reconstruction as the initial value. In
addition, a rescaling technique, which rescales the weight matrix to make it more uniform and less ill-conditioned, is also
used to suppress numerical errors and accelerate convergence. Two criteria, rescaling the maximum of each column to 1
and rescaling the average of each column to 1, were applied and compared to results without rescaling. The results show
that, with properly imposed constraints, good quality images can be obtained using the CGD method. The convergence
speed is much slower when constraints are imposed, but still comparable to the POCS and SART algorithms. The
rescaling technique produces more stable and more accurate reconstructions, and speeds up the reconstruction
significantly for all three algorithms.

1. INTRODUCTION

In the previous studies [1, 2], we have successfully demonstrated the use of perturbation theory for optical diffusion
tomography. The inverse problem involves solving a system of linear equations, where the unknowns are the perturbed
absorption and scattering cross sections, and the coefficients, called the weight function, are the angular integration of the
product of the forward and adjoint solutions of the transport equation [1, 3]. Many methods have been developed to solve
systems of linear equations for medical imaging [4-6]. The developed strategies includes direct matrix inversion
(Gaussian elimination), singular value decomposition (SVD), Fourier slice theorem and Fourier diffraction theory, and
iterative methods. Direct matrix inversion and the SVD method are very efficient for small size problems, but are not
suitable for large size matrix inversions and are rarely used in practical image reconstruction. The filtered backprojection
algorithm, which uses the Fourier slice theorem and applies the fast FFT algorithm, is currently the most popular
reconstruction algorithm used in CT imaging. However, this algorithm require a parallel/fan beam illumination scheme
and assumes that the propagating wave front is not significantly perturbed while penetrating through the target medium.
This seems impractical in optical imaging because a point source and detector are preferred, and the targets are dense
scattering media. The iterative methods, which iteratively update the reconstructed images according to the detected
signal and a priori information, are well suited for large scale inverse problems because they can readily accommodate
any source-detector configuration. Moreover, unlike the direct matrix inversion and SVD methods, useful images can be
obtained even after a few iterations.

Previously, we have adopted three iterative algorithms - projection onto convex sets (POCS) [7], conjugate gradient
descent (CGD) [8, 9], and simultaneous arithmetic reconstruction technique (SART) [35, 10], for image reconstruction,
and have applied positivity constraints. The POCS algorithm is a sequential method, whereas CGD and SART evaluate
multiple projections simultaneously. In previous studies we have shown that the CGD method has difficulty incorporating
a positivity constraint [2]. The CGD method iteratively updates the reconstruction on the basis of the previous
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reconstruction and all the preceding conjugate gradient vectors. In some cases, applying constraints to the previous
reconstruction can lead to miscalculation of the conjugate gradient vector and result in divergence.

In this study, a scheme was developed to detect this divergence and a rescaling technique was also used to speed up
the reconstruction. The convergence behavior and the reconstruction results obtained from the constrained CGD,
unconstrained CGD, as well as other algorithms are compared.

2. THEORY
1.1 Perturbation model

The perturbation model [1, 3, 11] adopted for optical diffusion tomography relates differences between the
absorption and scattering cross sections of target and reference media, 6;1@. T Hy - Mg Apg = Mg - 1, 1o changes in
detector readings, AR, = R, - R/, by the following first order approximation:

D Waibltg + Y Wby =Ag,, =12, 1 (1
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Here, / is the total number of source-detector pairs, and Wai and Wy are called the weight, which is proportional to the
angular integration of the product of the direct (i.e., photons propagating from the source to voxel j) and adjoint solutions
(i.e., from the detector to voxel j). The above linear equation can be represented in matrix form as:
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where ] is the total number of voxels.
1.2 Iterative method

The least squares solution to a system of linear equations is obtained by iteratively modifying the unknowns, A, to
minimize the mean squared errors:

E=2-(W-0p= MDY -(W- 8= 80)= 1T -A-ap-bT -ap+ 1047 a9, 3)

where A=W’ . W, and b =W AR Any vector, Ap, minimizing E is a least squares solution. To minimize £, the
derivative of £ is calculated and set equal to 0:

g(&u)=d%pE=A-Au—b=0 )

where g(Ap)=A-Ap—b is the gradient of £. Three iterative algorithms - POCS [7], CGD [8, 9], and SART [5, 10],
previously described, were used for image reconstruction. Different combinations of regularization constraints were also
used: (1) unconstrained, (2) positive range constraint on reconstruction results, (3) positive range constraint on detector
readings and reconstruction results. Range constraints on the AR were imposed prior to reconstruction, with all the
negative readings set to zero:
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AR, =0if AR, <0. (5)

The range constraints on reconstruction results were imposed after each iteration:

Au’=0if Au’; <0. 6)

1.3 Constrained CGD

The CGD method iteratively updates the reconstruction on the basis of the previous reconstruction, and all the
preceding gradient and conjugate gradient vectors:
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where, Ap® is the initial guess, g" is the gradient vector and d” is the conjugate gradient vector. /' is the conjugate
gradient choice which makes d” A-orthogonal; i.e., the weighted inner-product, d"T A-d™" =0 ifn#m. o iscalled the

step—size which makes g" orthogonal; i.e., g”T -g™ =0 if n # m. Theoretically, this algorithm should converge after a

number of iterations less than or equal to, N, the number of unknowns, since {d", n =1, 2, .. N} expands the N-
dimension solution space. In practice, round-off error may prevent convergence so that a convergence criteria is needed.

Applying positive range constraints to the previous reconstruction, Ap"™', leads to miscalculation of the gradient,

g”, and conjugate gradient vectors, d', and results in the loss of the A-orthogonal properties. Consequently, the conjugate
gradient vectors do not expand the N-dimensional solution space so the reconstruction will not converge after N-iterations.
In some cases, the reconstruction may even diverge. In general, the mean squared error, {£"}, will converge to a

minimum, i.e., E° > E' >.> E" >.. From our experience, the divergence happens when the mean squared error, E”,
exceeds the previous one, £/, Once this occurs, the mean squared error will continue to increase and exceed the range of
the variables after only a few iterations (less than 10). This is not the case when using the POCS algorithm, whose mean
squared errors can increase and decrease during the reconstruction and ultimately converge to a minimum. To overcome
this difficulty, the subsequent scheme was used to detect this divergence.

Let the ratio of two consecutive mean squared errors be:

— E"
- Eﬂ—]

n

®

The reconstruction result becomes divergent when »* > 1. Once this happens, the conjugate gradient vector is reset, i.e.,

d” =0, and the CGD reconstruction is restarted using the previous reconstruction result, Ap"~, as the initial value.

3
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1.4 Weight Matrix Rescaling

A rescaling technique, which rescales the weight matrix W to make it more uniform and less ill-conditioned, was
also used to suppress numerical errors and accelerate convergence. Two criteria, rescaling the maximum value of each
column to 1, ie., wy'= %!axfﬂ{%}’ and rescaling the average value of each column to 1, i.e., w;'= ‘%{_,wg’
applied and compared to the results without rescaling,
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Figure 1. (A) Tissue phantom used for Monte Carlo simulations. (B) Source configuration. (C) Detector configuration for
each source. The detectors were oriented normal to the phantom in the plane of the source and located every 10°
about the boundary.

3. METHODS

The numerical studies employed Monte Carlo methods to compute the internal light distributions and the flux of
light re-emitted across the surface of a 3-D cylindrical, homogeneous, isotropically scattering media. The cylinder axis
was infinitely long, and its diameter was 20 mean free pathlengths (mfp; 1 mfp = lfp where B is the total cross
section). The heterogeneity was a single 2-mfp—diameter black rod whose axis was halfway between the cylinder axis and
the boundary (Figure 1A). The light source, a pencil beam directed normally to the surface, was sequentially located at 0°
, 90°, and 180° about the cylinder (Figure 1B). Detector readings were calculated for each location of the source. From
geometrical symmetry, it was assumed that the detector readings corresponding to the source located at 270° are
equivalent to those obtained for the 90° source. The detectors were spaced at 10° intervals about the cylinder (Figure 1C).
Only the readings of detectors located in the plane containing the source and normal to the cylinder were used by the
reconstruction algorithms. 5x107 photons were launched into the medium in each of these simulations. Internal light
intensities (forward and adjoint) were calculated in separate simulations, in which the cylinder was homogeneous and the
average collision density per incident photon was calculated in each of 16,400 voxels. These were arranged in 41,
1-mfp-thick layers perpendicular to the cylinder axis, with 400 voxels in each layer; each voxel's volume was /4 mfp’.
The output was reported in units of collisions/incident photon/unit volume. 2x108 photons were launched into the
medium in each of these simulations. The resultant 3-D weight functions were transformed to 2-D by summing the values
of the weight along the direction of the long axis of the cylinder. 2-D image reconstructions were accomplished using all
three algorithms and applying the appropriate positivity constraints. For each, a total of 144 source-detector pairs were
considered (4 source locations x 36 detectors per source). Thus, in all cases, the reconstruction problems were
underdetermined (400 unknowns). Image quality was evaluated for each combination of algorithm and rescaling
technique. Reconstructions using constrained CGD were also compared to the results using unconstrained CGD.
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4. RESULTS

Figure 2 shows the mean squared error vs. iteration number for different algorithms. Figure 2A is the results without
constraint and Figure 2B with constraint. Figure 3 shows the reconstructed images using the unconstrained and constrained
CGD algorithms. The unconstrained and constrained result, (positivity constraints on both detector readings and
reconstruction results), is shown in Panels A and B, respectively. The target is shown in Panel C. Results in Figure 4
demonstrate the reconstructed images obtained using the CGD algorithm after 100, 1000, and 10,000 iterations, with
different rescaling techniques - no rescaling, rescaling the maximum value of each column to one, and rescaling the
average value of each column to one. Figures 5-6 show the corresponding results obtained using the SART and POCS
algorithms, respectively.
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Figure 2. Mean squared error vs. iteration number for different algorithms: (A) unconstrained reconstruction, (B)
constrained reconstruction.

(A) Unconstrained (B) Constrained (C) Target

Figure 3. Reconstruction results obtained using the CGD algorithm with and without range constraints for 10,000
iterations.

5. DISCUSSION

In a previous study, we compared the quality of reconstruction results of simply structured phantoms using various
iterative algorithms [2]. With exception of CGD, in nearly all cases good quality reconstructions were obtained. In these
studies it was observed that, unlike the other algorithms, efforts to apply a range constraint to the CGD algorithm
frequently caused the solution to diverge. This indicates that applying positive range constraints to the previous
reconstruction leads to miscalculation of the gradient and conjugate gradient vectors and results in the loss of A-
orthogonal properties. In this study we have overcome this difficulty by detecting divergence and restarting the
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(A) No rescaling

100 iterations 1,000 iterations 10,000 iterations

(B) Rescaling the maximum of each column to |

100 iterations 1,000 iterations 10,000 iterations

(C) Rescaling the average of each column to 1

100 iterations 1,000 iterations 10,000 iterations

Figure 4. Reconstruction results using the CGD algorithm and (A) no rescaling, (B) rescaling the maximum of each
column to 1, or (C) rescaling the average of each column to 1, after 100, 1,000, and 10,000 iterations.

SPIE Vol. 2389 / 687



(A) No rescaling

100 iterations 1,000 iterations 10,000 iterations

(B) Rescaling the maximum of each column to 1

100 iterations 1,000 iterations 10,000 iterations

(C) Rescaling the average of each column to 1

100 iterations 1,000 iterations 10,000 iterations

Figure 5. Reconstruction results using the SART algorithm and (A) no rescaling, (B) rescaling the maximum of each
column to 1, or (C) rescaling the average of each column to 1, after 100, 1,000, and 10,000 iterations.
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(A) No rescaling

100 iterations 1,000 iterations 10,000 iterations

(B) Rescaling the maximum of each column to 1

100 iterations 1,000 iterations 10,000 iterations

(C) Rescaling the average of each column to |

100 iterations 1,000 iterations 10,000 iterations

Figure 6. Reconstruction results using the POCS algorithm and (A) no rescaling, (B) rescaling the maximum of each
column to 1, or (C) rescaling the average of each column to 1, after 100, 1,000, and 10,000 iterations.
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reconstruction using the previous result, Ap™/, as the initial value. The use of positivity constraints slowed down the
convergence of mean squared error significantly, as shown in Figure 2. With constraints, all three algorithms converge at
about the same rate. Without constraints, we observe that after 4,000 iterations, the mean squared error for the CGD
method is three orders of magnitude less than for SART and POCS. A reduced mean squared error, however, does not
ensure a better reconstruction result. This is demonstrated in Figure 3 where the unconstrained result, which has a much
smaller mean squared error, produces a significantly poorer quality image than does the constrained result.

A second method we have tested to improve the quality of the reconstructions is the use of a matrix rescaling
method. This idea was derived from the recognition that, in dense scattering media, the range of values of weight for a
particular voxel is strongly dependent on the source-detector configuration. This results in large variations in the
maximum value of the column vectors, w, of Eq. 2. Physically, w; is an expression of the importance that a particular
voxel has on the detector response. Voxels having larger values of w, will have a greater impact on a detector than voxels
with smaller values. Because of this, it is expected that the CGD method will preferentially update those voxels having
the greatest weight. This follows because column vectors that have the largest absolute weight will most strongly
influence the computed conjugate gradient. From previous studies we have determined that the largest values of weight
typically occur in the vicinity of the source and receiver. As these are located near the surface, at early iterations the
resultant image will be predominately localized to these voxels, as shown in Figure 4A. The effect of rescaling is to
mathematically minimize differences in importance between the weight vectors thus causing a more uniform update of the
reconstructed image.

Results shown in Figure 4B demonstrate that, with rescaling, a more accurate reconstruction is achieved after only
100 iterations. Figure 4C shows that an improved result is also obtained when the average value of the column vector is
set equal to one, but this result would appear inferior to the case when the maximum value is scaled to one (Figure 4B).
The corresponding results for the SART algorithm, shown in Figure 5, which is also a simultaneous method, reveals that
rescaling produces some improvement in image quality at early iterations, but the magnitude of this effect is less than
observed for CGD. We note that without rescaling, the SART result is more accurate at early iterations than that obtained
by CGD. Inspection of the SART algorithm shows that during the backprojection step, projections to each voxel are
divided by the sum of the elements of the column vector for that voxel. This is equivalent to rescaling the average value
of each column vector to one. The effect of rescaling column vector on reconstructions obtained using POCS is similar to
the results obtained from SART. In POCS, the angles between the constraint sets is a critical determinant of the
convergence rate. We believe that the effect of rescaling is to increase these angles, thereby increase the rate of
convergence.

In summary, we have demonstrated that improved reconstructions using the CGD method can be obtained by
implementing the described divergence detection method. We also show that additional improvements are achievable for
all algorithms tested by using matrix rescaling,
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