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ABSTRACT

By applying linear perturbation theory to the radiation
transport equation, the inverse problem of optical diffusion
tomography can be reduced to a set of linear equations,
Wu = R, where W is the weight function, p is the cross
section perturbations to be imaged, and R is the detector
readings perturbations. The quality of reconstructed images
depends on the accuracy of W and R, and was studied by
corrupting one or both with systematic error and/or random
noise. Monte Carlo simulations (MCS) performed on a
cylindrical phantom of 20 mean free paths (mfp) diameter,
with and without a black absorber located off-axis, were
used to compute R and W (i.e., matched W). Additional
MCS computed Ws for cylinders of 10 mfp, 40 mfp, and 100
mfp diameters (i.e., unmatched W). R and/or W also were
corrupted with additive white noise. A constrained CGD
method we developed was used to reconstruct images from
the simulated R and Ws. The results show that images
containing few artifacts and the rod accurately located can be
obtained when the matched W is used. Comparable image
quality was obtained for unmatched Ws, but the location of
the rod becomes more inaccurate as the mismatch increases.
The noise study shows that W is much more sensitive than R
to noise. The rod can be reasonably located with 100% noise
added to R, while addition of 5% noise to W totally destroys
the image. The impact of noise increases with the number of
iterations.

I. INTRODUCTION

There has been sufficiently extensive development of optical
diffusion tomography in recent years that some applications
are ready for clinical testing [1]. Two types of tomographic
schemes have been used. In cross section imaging, first
proposed by our group and later also adopted by many other
teams [2], one tries to map the perturbations of physical
properties such as the scattering and absorption cross
sections relative to a reference state, as a function of
physiological or pathological conditions, e.g., brain tumor or
breast cancer. The newly developed luminescence imaging
[3] uses a similar idea, by assuming that the presence of
fluorophore/phosphor  slightly perturbs the background
absorption cross section and taking advantage of the
difference between the excitation and emission spectra of the
fluorescence or phosphorescence phenomena in order to
image the fluorophore/phosphor concentration and mean
lifetime as a function of physiological or pathological
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condition. In either case, the inverse problem reduces to a
system of linear equations [3,4] of the form Wu = R when it
is based on a perturbed transport equation. Here, W is the
weight matrix, whose elements are proportional to products
of forward (from source to voxel) and adjoint (from voxel to
detector) intensities; p is the quantity to be imaged; and R is
the detector readings.

Because both imaging techniques employ perturbation
methods, the quality of reconstructed images is a function of
modeling error, that is, the accuracy of the weight matrix
calculated based on the reference medium (cross section
imaging) or on the background medium (luminescence
imaging). We have studied two methods for estimating the
physical properties of the reference or background medium
in the (realistic) case in which they are not known a priori.
In the first [5], one begins with a simple preselected
medium, typically in a homogeneous state, and repeatedly
alternates between solving the perturbation equation for p
and computing a new W based on the current estimate of p.
This is similar to the iterated Born approximation used in
microwave imaging [6] and is generally very computation
—intensive because multiple forward calculations are needed
to update the weight matrix. The second method [7] assigns
the average physical properties of the various tissue types
known to be present in a given sample to an anatomically
accurate map obtained from some other imaging modality,
eg, CT, MRI. This requires image segmentation and
registration techniques to process the anatomical images, but
these are generally much faster than updating the forward
calculation. In the best case, a single step of solving the
forward and inverse problems would suffice. If it should still
prove necessary in practice to repeat the process, the number
of iterations required would be much smaller under this
approach than by starting from an assumption of
homogeneity. ~ The probability of the iterative process
diverging would likewise be much smaller.

Previous studies [8,9] also have shown that W is an
ill-conditioned matrix; thus, the reconstructed result is very
sensitive to mnoise. In general, two types of noise are
encountered in an optical imaging system. The first one is
Poisson noise due to the inherent statistical variations in the
mechanisms of photon generation and interaction with the
target medium, and can be reduced by increasing either the
source intensity or the detector acquisition time. The second
is independent additive noise that manifests as dark current
in the counter and electronics, and also arises as a
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consequence of numeric errors. Its effect can be lessened by
proper filtering,

Since the exact structure of the reference medium is not
known in most cases, it is important to study the impact of
modeling error and random noise on reconstructed images.
In this study, systematic mismatches were introduced in the
weight matrices by reconstructing images of a simple
phantom using weight matrices from reference media with
different physical properties. In addition, random Gaussian
noise at different levels was added to the detector readings
and/or weight matrices to examine its effect on the
reconstructed images.

II. THEORY

The inverse problems for absorption cross section imaging or
fluorescent imaging reduce to a system of linear equations,

Wp=R, n

where W is the weight matrix, p is the vector of unknown
absorption cross sections or products of fluorophore
concentration and quantum yield, and R is the vector of
detector readings. In absorption cross section imaging [4],
Eq. (1) is a discretized version of an integral equation,

AR = J; w,Ap,dr (3]

where aAu is the macroscopic absorption cross section
perturbation [mm-!], AR is the detector reading perturbation,
and w, is the weight function,

=
I

2= —(dy —3-07) farx, 3)

where

b=, g2,  I=] 40,

gi=] ¢4, I =-[ gado,
and gand ¢* are forward (from a source to a voxel) and

adjoint (from a voxel to a detector) angular intensities,
obtained by solving a transport equation [4]. In the
fluorescence imaging case [3], Eq. (1) is a discretized
version of

R = [ wy(W,)dr, )

where R is the emitted fluorescence intensity, 5 is the
quantum yield, N, is the fluorophore concentration, and

wo = I, 0000 fan, )

where Z;,,, is the microscopic total cross section [mm?]

introduced by the fluorophore, and ¢) and ¢2° are,
respectively, the forward and adjoint integrated intensities of
the exciting and emitted light. Because J-J* is generally

much smaller than ¢,4;, w, for the cross section imaging

problem can be well approximated by including only the first
term in the numerator of Eq. (3). In this sense, the weight
matrix in both the cross section imaging and fluorescence
imaging cases are essentially the same, and the findings of
studies of one imaging modality will also apply for the other.

III. METHOD

Two sources of error were introduced in this study. The first
is a systematic error, produced by varying the total cross
section of the reference medium. Monte Carlo simulations
(MCS) modeled light propagation in a cylindrical phantom
of 20 mean free paths (mfp) diameter, as shown in Figure 1,
with and without a black absorber at an off-axis location.
The perturbed detector readings, R, were obtained by
calculating the differences, at all detector locations, between
the detected intensities in the absence and presence of the
black rod. The matched weight matrix W was calculated
from the forward and adjoint collision densities in each
voxel. The simulated R and W are essentially noiseless
except for Poisson noise arising from the MCS, which is
negligible since O(10%) photons were simulated and
correlated sampling was used for variance reduction. MCS
were also performed to get unmatched weight matrices from
media of 10 mfp, 40 mfp, and 100 mfp diameter. This is
equivalent to varying the total cross section while keeping
the physical dimensions of the phantom constant. The
matched and unmatched matrices were also used for image
reconstruction from experimental data. Figure 2A shows a
sketch of the tissue phantom and Figure 2B shows face—on
and edge—on views of the disk that anchors the absorbing
rods at the bottom. An 8 cm (i.d.) cylinder was filled to a
height of 35 cm with a suspension of Intralipid® fat
emulsion diluted with water. Measurements were performed
on suspensions containing 2% lipid by volume, which was
prepared by performing a 1:5 dilution of the commercially
available 10% stock solution. The transport—corrected
scattering length for the 2% medium at 720 nm was
estimated at 0.3-0.5 mm. One rod was inserted into the
cylinder as a heterogeneity, halfway between the center and
boundary. The sources were normally incident at 6 different
locations around the phantom and the detectors were located
at 20 different locations (10° separation in angle) for each
source (Figure 2C). Escaping photons were collected using
a Hamamatsu CCD camera and the readings were
normalized according to the lens aperture, exposure time,
camera gain, and intensity of the laser source. The
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differences between the reference and target media readings
were then calculated for image reconstruction.

To study the effect of random error, different levels of
Gaussian white noise — 1%, 5%, 10%, 50%, 100%, and
500%, where the noise level is defined as 100 times the ratio
of noise variance to average signal power — were generated
using a random number generator [10]. The generated noise
was then added to the detector readings, the weight matrix,
or both. The detector readings and weight matrices were
then used for image reconstruction, using a constrained
CGD method [11], and the reconstructed images were
compared. As a control, reconstructions were also
performed using only generated Gaussian white noise as the
detector readings, and the noise-free matched weight matrix.
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Figure 1. (A) Tissue phantom used for Monte Carlo simulations.
(B) Source configuration. (C) Simulation detector configuration for
each source. The detectors were located every 10° about the
boundary of the phantom
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Figure 2. Tissue phantom used for experiments: (A) side view, (B)
top view, and (C) experimental source and detector configuration.

IV. RESULTS

Figure 3 shows the reconstructed images from
MCS-generated data using the constrained CGD method
after 1,000 iterations. Figure 3A is the target image and
Figure 3B is the reconstructed image using the matched
weight matrix. Figures 3C-E demonstrate the reconstructed
images using unmatched weight matrices for media of 10,

40, and 100 mfp diameter, respectively. Figure 4 shows the
reconstruction results for experimental data.

Figure 5 shows the images reconstructed from simulation
data with 5%, 10%, 100%, and 500 % white noise added to
the detector readings. Figure 6 illustrates the reconstruction
results for the 10% added noise case after 10, 100, and 1,000
iterations.  Figure 7 demonstrates the results for the
noise—free detector readings with 1%, 5%, and 10% white
noise added to the matched weight matrix, and Figure 8
shows the reconstructed images for the 5% noise case after
10, 100, and 1,000 iterations. Figure 9 illustrates
reconstruction results from the simulation data with 1%, 5%,
and 10% added white noise in both the detector readings and
weight matrices. Figure 10 shows the results from the pure
noise data after 100 iterations, where the indicated 1%, 10%,
and 100% noise levels are the same as those added to the
detector readings.

V. DISCUSSION AND CONCLUSIONS

Currently applicable image reconstruction schemes in optical
tomography require a priori knowledge of the physical
properties of the reference or background medium, which is
generally difficult to obtain. The use of other image
modalities, e.g., CT or MR, provides a convenient way to
estimate the physical properties but introduces a mismatch in
the weight matrices. Our analysis of a simply structured
phantom shows that good quality (i.e., few artifacts, size and
shape of image peak nearly correct, sharp edge detection)
images (Figure 3B) can be obtained, and the rod can be
accurately located, when the reconstruction is based on
noiseless detector readings and the matched weight matrix.
Good image quality was also obtained for unmatched weight
matrices (Figure 3C, 3D, 3E), but the location of the rod in
the image becomes increasingly inaccurate as the mismatch
increases. Examination of the experimental data results
reveals a similar trend. Images with a clear rod-like
structure and some artifacts were obtained in all four
reconstructions (Figures 4B-E) while the locations of the
rods move from the border to the center of the cylinder as the
diameter (in units of mfp) of the cylinder increases.

The noise study shows that the reconstruction algorithm
is much more sensitive to noise in the weight matrix than to
noise in the detector readings. The location of the rod can be
identified with reasonable accuracy with as much as 100%
noise (noise variance over power of detector readings is 1.0;
Figures 5A, 5B, 5C) added to the detector reading, but 5%
(Figures 7A, 7B, 7C) noise added to the weight matrix is
sufficient to produce an image consisting of nothing but
artifacts. When the same amount of noise was added to both
detector readings and weight matrix, the noise added to the
weight matrix has the more dominant effect on the
reconstruction results (compare Figures 5, 7, and 9). The
impact of noise on an image increases with the number of
iterations of the reconstruction algorithm when noise is
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(A) Target

(B) 20 mfp (C) 10 mfp

(D) 40 mfp (E) 100 mfp

Figure 3. Reconstructed images from simulation data using CGD
method after 1,000 iterations, with matched weight matrix (B), and
unmatched matrices (C), (D), and (E). (A) is the target image.

(B) 20 mfp

(A) Target (C) 10 mfp

(D) 40 mfp (E) 100 mfp

Figure 4. Reconstructed images from experimental data using CGD
method after 1,000 iterations, with matched weight matrix (B), and
unmatched matrices (C), (D), and (E). (A) is the target image.

(A) 10 iterations (B) 100 iterations (C) 1,000 iterations

Figure 6. Reconstructed images from simulation data with 10%
added noise to detector readings after (A) 10 iterations, (B) 100
iterations, and (C) 1,000 iterations. The target is the same as shown
in Figure 3A.

(A) 1% (B) 5% (C) 10%

Figure 7. Reconstructed images from simulation data with noise
added to the weight matrix: (A) 1%, (B) 5%, (C) 10%, after 100
iterations. The target is the same as shown in Figure 3A.

(A) 10 iterations (B) 100 iterations (C) 1,000 iterations

Figure 8. Reconstructed images from simulation data with 5% added
noise after (A) 10 iterations, (B) 100 iterations, and (C) 1,000
iterations. The target is the same as shown in Figure 3A.

(A) 5% (B) 10% (C) 100%

Figure 5. Images reconstructed from
simulation detector readings after 100
iterations, with noise added to the
detector readings: (A) 5%, (B) 10%, (C)
100%, and (D) 500 %. The target is the
same as shown in Figure 3A.

(D) 500%

(A) 1% B) 5% (C) 10%

Figure 9. Reconstructed images from simulation data with added
noise in both the detector readings and the weight matrix: (A) 1%,
(B) 5%, (C) 10%, after 100 iterations. The target image is the same
as shown in Figure 3A.
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(A) 1%

(B) 10% (C) 100%

Figure 10. Reconstructed images from pure noise data to the
detector readings: (A) 1%, (B) 10%, (C) 100%, after 100 iterations.

added to the detector readings (Figures 6). There is not such
a clear trend, however, when noise is added to the weight
matrix (Figure 8).

There is a plausible, testable explanation for these
phenomena. When noise is added to the detector readings,
we can conveniently consider the reconstructed image as a
sum of a noiseless detector readings image and a pure noise
image (this is not strictly true, because positivity constraints
were imposed on the reconstruction results, and this makes
the inverse problem nonlinear). Because noise is randomly
added to the detector readings, it is evenly distributed in all
directions in the detector readings space. Because the CGD
algorithm updates voxels by moving the evolving solution in
the direction of the conjugate gradient, those voxels with the
highest weights will "respond” to noise in earlier iterations
due to their greater contributions to the gradient. Thus, the
spatial extent of the noise effect seen in early stages of the
reconstruction is quite limited, and the magnitude of the effect
is much smaller than that of the noiseless detector readings
(Figure 6A). As the number of iterations increases, the noise
effect spreads out over the entire volume involved in the
reconstruction and finally dominates the results (Figure 6C).
On the other hand, when noise is added to the weight matrix,
it causes a structural change in the imaging operator. Thus,
we can treat the addition of noise as the introduction of
random mismatches into the weight matrix. In comparison to
the results from systematically mismatched weight matrix in
Figures 3 and 4, the randomly mismatched weight matrices
causes more structural change than position change in the
reconstructed images (Figure 8).

The "images" obtained when pure noise (Figure 10) was
substituted for R have a randomized structure, with the
greatest image intensity in voxels near the cylinder axis. This
is consistent with the ill-conditioned structure of the weight
matrix, whose columns representing voxels near the axis
contain much smaller elements than those in columns
corresponding to peripheral voxels.

This study demonstrates the effect of mismatched weight
matrices and noise on the image reconstruction in optical
diffusion tomography. Ongoing research includes further
study of the quality of images reconstructed from
noise—corrupted data, using different source—detector
configurations, and incorporating regularization [12] and total
least squares [13] techniques to enhance image quality.
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