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Reconstructions of the absorption cross sections of dense scattering media from time-resolved data are pre-
sented. A progressive expansion (PE) algorithm, similar to a layer-stripping approach, is developed to cir-
cumvent the underdeterminedness of the inverse problem. An overlapping scheme, which uses detector read-
ings from several consecutive time intervals, is introduced to reduce the propagation of reconstruction errors
that occur at shallower depths. To reduce the sensitivity of the PE algorithm to noise, a regularized progres-
sive expansion (RPE) algorithm is proposed, which incorporates regularization techniques into the PE algo-
rithm. The PE and the RPE algorithms are applied to the problem of image reconstruction from time-resolved
data. The test media were isotropically scattering slabs containing one or two compact absorbers at different
depths below the surface. The data were corrupted by additive white Gaussian noise with various strengths.
The reconstruction results show that the PE and the RPE algorithms, when they are combined by proper over-
lapping, can effectively overcome the underdeterminedness of the inverse problem. The RPE algorithm yields
reconstructions that are more accurate and more stable under the same noise level. © 1997 Optical Society of
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America. [S0740-3232(97)01101-0]
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1. INTRODUCTION

Great interest has recently developed in recovering ana-
tomical or functional images from tomographic measure-
ments at near-infrared frequencies because the measure-
ment techniques are safe (nonionizing), potentially
inexpensive, and portable. Photons of near-infrared light
are intensely scattered by biological tissues. Several
measurement schemes, involving continuous-wave, time-
resolved (TR), or time-harmonic sources,' have been
proposed as potentially suitable for interrogation of
highly scattering media. In this paper we consider the
recovery of absorption cross sections of scattering media
that have optical properties similar to those of tissue from
TR near-infrared optical measurements.

For imaging methods such as x-ray computed tomogra-
phy, in which the path of the detected signal is a straight
line, the inverse problem can be accurately formulated as
a system of linear equations of the form y = Ax, where y
is the measured data, A is an imaging operator, and x is
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the unknown.* In the case of strong scattering the imag-
ing problem becomes difficult because the photons propa-
gate through the tissue in a highly diffused manner and
because the relation between the measured signal and the
properties of the media is nonlinear. There is generally
no direct method for solving the inverse problem. One
way to attack this difficulty is to use the perturbation
approach,’™® which simplifies the inverse problem to a
system of linear equations. The derived image operator,
or the weight matrix, is generally underdetermined and
ill conditioned. The underdeterminedness results from
the fact that the number of detector readings M is less
than the number of unknowns N. Even if M = N, the
weight matrix may well be rank deficient, which also
leads to an underdetermined system. The cause of the ill
conditioning is that the weight matrix contains many col-
umns that are nearly proportional. Small variations in
detector readings can result in large deviations in recon-
struction results.
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To overcome the underdeterminedness problem Chang
et al.'® developed a layer-stripping algorithm that pro-
gressively evaluates the data in a way that decreases the
depth component of the weight gradients. This algo-
rithm uses the detector readings in different portions of
the temporal profile separately and in a progressive man-
ner. In each time interval it considers only the region
that may contribute to the detector readings and that is
not yet fixed on the basis of the preceding stages of the
reconstruction. The contribution to the detector reading
in this time interval from the volume elements (voxels)
solved previously is first subtracted. The new unknowns
are then solved by means of a perturbation equation.
For further improvement of the stability of the progres-
sive expansion (PE) algorithm, we have now incorporated
Tikhonov—Miller regularization 2 into the solution of
the subsystem in each time interval. This regularization
method can deal with a large-scale system because it is
based on an optimization technique that can be solved it-
eratively. In contrast, regularization based on singular-
value decomposition (SVD), in which a small constant is
added to all the singular values,'® is not suitable for
large-scale problems because of the rate at which the com-
putation time that it requires grows with increasing prob-
lem size'* (see Section 5 below).

The arrangement of this paper is as follows. In Sec-
tion 2 we describe the mathematical derivation of the per-
turbation model and of the PE and the regularized pro-
gressive expansion (RPE) algorithms. The experiments
are described in Section 3, followed by the reconstruction
results in Section 4. Finally, we discuss and conclude
this study in Section 5.

2. PROGRESSIVE EXPANSION AND
REGULARIZED PROGRESSIVE EXPANSION
ALGORITHMS

A. Perturbation Equation

In the past few years iterative perturbation approaches
have been developed for solving the inverse problems as-
sociated with propagation of light from continuous-
wave,>® time-harmonic,® and TR'%!® sources through tis-
sue. These approaches require the solution of a linear
perturbation equation at each iteration:

WAx = Al (1

where Ax is a vector of absorption cross-section differ-
ences between a reference and a test medium, Al is a vec-
tor of changes in detector readings between the two me-
dia, and W is a weight matrix describing the influence of
each voxel on the detector readings, which are essentially
the first partial derivatives of the detector readings with
respect to the absorption coefficients in the reference me-
dium.

B. Progressive Expansion Algorithm

The PE algorithm evaluates increasing depths within the
medium by successively considering signals entering the
detector at increasing times following an incident pulse.
Instead of solving Eq. (1) directly, the algorithm solves a
subsystem represented by
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WZAXZ = AIZ (2)

at each time interval /. Here Ax; is a subset of Ax con-
sisting of those elements that correspond to voxels that
can contribute signals in this time interval but not ear-
lier, AI; is the vector of residual detector readings after
the contributions from voxels whose absorption cross sec-
tions were fixed during earlier stages of the reconstruc-
tion have been subtracted, and W, consists of the weights
for only the elements of Ax;. As long as the early-
arriving signals can be reliably detected, the subsystem
for each time interval will be determined or overdeter-
mined. In this case W,”W, is invertible, and there exists
a unique least-squares (LS) solution for each subsystem,

Ax; = (W, W) "'W,"AL, 3)
which minimizes the error
E(Ax) = [W,Ax, — AL 4)

More specifically, for a time interval £; the algorithm is as
follows:

Step 1. Find all the detectors that may receive signals
during ¢;. We accomplish this by examining the weights
of all the voxels for each detector. Only the detectors
that have at least one nonzero weight associated with
them are considered. Here the number of detectors
found is denoted m;. The set of detector indices is de-
noted D, .

Step 2. Find all the nonfixed voxels that may contrib-
ute signals to any of the detectors determined in step 1.
We accomplish this by including all the voxels that have
nonzero weights for at least one of the selected detectors.
Here the number of voxels found is denoted n; ; the set of
voxel indices is denoted V;.

Step 3. From the detector readings and voxels found
in steps 1 and 2, form the following set of linear equa-
tions:

> WiipAx; = Al — >

WiipAx;,
ieV; ieVy,...,Vi1

j,k € Dl or WZAXZ = AI[, (5)

where Al consists of the detector readings minus the con-
tribution from the voxels that were fixed in previous re-
construction stages, Ax; consists of the absorption cross-
section perturbations in the voxels to be solved, and W, is
an m; X n; matrix composed of the weights of voxel i for
detectors jk in time interval [,i € V;,jk € D;.

Step 4. Find the LS solution, as given by Eq. (3), for
the n; voxels in V;. In our study the conjugate gradient
descent (CGD) method %7 is used to minimize the error
given by Eq. (4). The principal reason that this algo-
rithm was selected is its relatively fast convergence.

Step 5. Apply a positivity constraint to the recon-
structed value. We accomplish this by setting Ax;
= 0if Ax; < 0. This is appropriate for the test case that
we considered for this paper, wherein every element of Ax
was known a priori to be nonnegative. In general, a less
restrictive range constraint would be employed instead.

Step 6. Fix Ax; for all i € V;. Go to the next time
interval and repeat steps 1-5.
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The PE algorithm is highly effective in circumventing
the underdetermined nature of the inverse problem.
However, because of the ill conditioning of W, , the LS so-
lution in each time interval is sensitive to noise. The er-
rors in shallower regions that are solved by use of data
from the early portion of the TR detector readings can
also propagate into deeper regions. This error propaga-
tion effect can become especially severe when the algo-
rithm probes deeply beneath the surface. To overcome
this problem an overlapping scheme has been developed.
In this method a voxel’s absorption cross-section pertur-
bation is not fixed the first time that it is solved for.
Rather, it is considered in several subsequent time inter-
vals. In each time interval, new voxels that first contrib-
ute signal in this time interval as well as a certain num-
ber of old voxels (those that were also considered in the
previous time interval) are considered. After the pertur-
bation equation that includes all these voxels is solved, a
partial set of the old voxels is fixed, and the next time in-
terval is considered. However, overlapping will increase
the number of unknowns to be solved in each time inter-
val, and consequently the computation time will increase.
Too much overlapping can even make the problem under-
determined in some early time intervals, which will make
the reconstructions computed in the subsequent intervals
less reliable. Therefore we need to select the overlap in-
terval properly to reach a good compromise. In our ex-
periments we chose an overlap of three time intervals.
For convenience we omit the subscript / in the following
discussion.

C. Regularized Progressive Expansion Algorithm

Regularization is a well-established technique for dealing
with instability in inverse problems and can convert an
ill-posed problem into a well-posed problem by incorporat-
ing a priori knowledge about the image to be recovered.
With the Tikhonov—Miller regularization approach the
idea is to choose an approximate solution from a set of ad-
missible solutions according to some defined criterion.
The class of feasible solutions is defined as the set
Sayar(AX) = {Ax:[WAx — AI|? < €2}. The bound € de-
pends on the noise level of the observed data. Tikhonov
defined the regularized solution to be the one that mini-
mizes a stable functional |CAx|? subject to the constraint
that [WAx — AI|?2 = 2. Here, C is a regularization op-
erator and can be selected according to a priori knowl-
edge. If the solution is known to be bounded but fluctu-
ating, we can take C to be an identity matrix. If the
solution is known to be continuous, then we can take the
first-order differential operator as C. If we know that
the solution is smooth, then C can be chosen to be a
second-order differential operator. Then, by use of the
Lagrange multipliers method, the problem is to minimize

E(Ax) = [WAx — AI|2 + \||CAx]2, (6)

where the regularization parameter A can be found from
the previously described constraint. The regularized so-
lution is given by

Ax = (WI'W + ACTC) 'WTAL 7

Miller took a set-theoretic approach and constrained the
solution on both S,,x; and the set S, (Ax)
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= {Ax:||CAx||? < E?}, where E is a constant. The two
constraints can be combined into a quadratic formula.
The solution is identical to Tikhonov regularization with
N = €2/E?, the so-called Miller criterion. Numerically,
we can see that the solution of Eq. (6) is more stable than
that of Eq. (38) because W/'W + NCTC is better condi-
tioned than WTW.

Inasmuch as the dimension of W can be extremely
large, we do not perform matrix inversion directly to ob-
tain the solutions in Egs. (3) and (6). Rather, we mini-
mize the functional in Eq. (6), using the CGD method.
The nth iteration of the CGD algorithm can be described
by

AxHD = Ax(M) 4 Mg

where
a™ = g™ + (|g™|*/|g"VIHa" Y,
o™ = (d™,g™)/(|Wd™|* + N[Ca™|?),
g™ = WI(WAx™ — AT) + \CTCAx™),

and (u, v) denotes the inner product of vectors u and v.
In our current implementation we choose the regulariza-
tion operator C to be an identity matrix to make use of
the bounded nature of the solution. We further assume
that the upper bounds on |[WAx" — AI|? and |CAx|? can
be estimated from measurement data or from prior
knowledge, and we determine the regularization param-
eter \ by the Miller criterion.

3. METHODS

The source configuration and detector distribution used in
our tests are shown in Fig. 1. The medium without ab-
sorption perturbations was used as the reference. We
calculated the weights for this medium by using Monte
Carlo simulations.® Values for AI were first calculated
from Eq. (1). We then added Gaussian noise to evaluate
the algorithm’s sensitivity to noise. The ratio of the
noise’s standard deviation to the mean value of the differ-
ence in detector readings is used as the measure of the
noise level. In the first experiment, two closely juxta-
posed absorbers of size 1 cubic mean free path (mfp; 1 mfp
is the average distance that a photon propagates between
successive interactions with the medium), separated by 1
mfp, were buried between 4 and 5 mfp in a 10-mfp-thick
slab.’ In the second experiment, one single absorber of
size 8 cubic mfp was buried between 10 and 12 mfp in a
20-mfp-thick slab. In the third experiment, two absorb-
ers, one directly above the other, were buried at depths of
2—4 and 6-8 mfp in a 20-mfp-thick slab. In the fourth
experiment, one absorber of size 8 cubic mfp was buried
at a depth of 6—-8 mfp in the center, and three contiguous
absorbers of the same size were buried at a depth of
10-12 mfp in a 20-mfp-thick slab. In all the experiments
10% noise was added in the detector readings. In each
reconstruction the regularization parameter \ was chosen
according to the Miller criterion, because we usually
know the bound of the reconstructed image and noise
variance in the detector readings. The regularization op-
erator C was chosen to be an identity matrix. An over-
lapping interval of three mean free times (mft; 1 mft = 1



Chang et al.

mfp/c, where c is the speed of light in the medium) is used
in both PE and RPE algorithms.

4. RESULTS

The reconstructed results for the targets are illustrated in
Figs. 2-5. Figures 2(a), 3(a), and 5(a) are the original
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Fig. 1. (a) Source locations for the three-layer simulation; (b)
position and orientation of detectors about each source: the
source is placed in the center and O’s and X’s indicate positions
of detectors that are inclined 10° and 80° from the normal, re-
spectively. @’s, positions where measurements are made in both
orientations. The grid size is 3 mfp X 3 mfp.
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images; Figs. 2(b), 3(b), and 5(b) are the images recon-
structed by the PE algorithm after 17, 26, and 24 mft, re-
spectively; Figs. 2(c), 3(c), and 5(c) are the images recon-
structed with the RPE algorithm at the same times as in
Figs. 2(b), 3(b), and 5(b). To explain the stability of RPE
and to show how effective it is at suppressing noise, in
Fig. 4 we show the reconstructed images at different time
windows. Figure 4(a) is the original image, Figs. 4(b)
and 4(c) are the images reconstructed by PE at times 22
and 28 mft, respectively; Figs. 4(d) and 4(e) are the im-
ages reconstructed by RPE at times 22 and 28 mft, re-
spectively.

In all the figures the left-hand column is the X—Z cross
section of the medium and the right-hand column is the
Y-Z cross section. For display purposes the recon-
structed values are quantized into 10 levels. Further,
the images have been scaled individually, so the maxi-
mum intensity value in each image is represented by the
same darkness. Therefore the same gray level in differ-
ent figures may represent different absorption levels, es-
pecially in the reconstructed images without regulariza-
tion, in which the maximum values are usually much
greater than those in the reconstructed images with regu-
larization. In fact, the maximum value obtained without
regularization usually reaches the preset upper bound,
greatly exceeding the real value in the test medium.

5. DISCUSSION AND CONCLUSIONS

In this study Tikhonov—Miller regularization has been in-
corporated into the PE algorithm previously proposed for
image reconstruction from TR data. From the results
that we obtained we can see that the PE algorithm con-
verged to a solution containing numerical artifacts com-
parable in magnitude with the target. The RPE algo-
rithm, in contrast, yielded a solution much more closely
resembling the original medium. In fact, the PE algo-
rithm tends to diverge after a certain time interval be-
cause of error propagation in the presence of noise, as
shown in Fig. 4(c), whereas the RPE algorithm can suc-
cessfully suppress this effect for noise levels up to 10%.
The computation time of the RPE algorithm is increased
by ~10% over that of the PE algorithm. Thus the regu-

Fig. 2. Reconstruction of a 10-mfp-thick slab medium containing two 1-cubic-mfp absorbers separated by 1 mfp at a depth of 4—5 mfp.
Left, X—Z cross sections; right, Y—Z cross sections. (a) Original medium, (b) reconstruction by PE with an overlapping interval of 3 mft,

(c) reconstruction by RPE with the same overlapping interval.

The noise level was 10%. All the reconstructed images are obtained

after 17 time windows of width 1 mft. The maximum-values levels in (a), (b), and (c¢) correspond to 0.01, 0.1, and 0.0091, respectively.
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larization technique is highly effective in stabilizing the
PE algorithm and suppressing error propagation.

A critical problem in the use of regularization is the se-
lection of the parameter N when the upper bounds on
|[WAx — AI|? or |CAx|? or both are unknown. If only one
of the bounds is known, a constrained LS approach can be
followed.'®* When both bounds are unavailable, the
cross-validation method!® can be used. One disadvan-
tage of these two approaches is that they require an over-
whelming amount of computation when the weight ma-
trix is large. When incorporating regularization in our
PE algorithm, we would have to repeat this computation
for each time window. Recently an algorithm was devel-
oped by Kang and Katsaggelos?® that obtains the regular-
ized LS solution iteratively by a gradient descent method
and at each iteration calculates an updated regularization

(a) .

(b) s e
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parameter \ based on the previous solution. The algo-
rithm is powerful in that A on convergence does not de-
pend on the initial estimate of Ax. Because \ does not
need to be determined in a separate initial step, addi-
tional computational overhead is minimal.

Regarding issues of computational overhead, one may
ask what advantages an iterative algorithm for comput-
ing the LS solution, e.g., the CGD method used in this
study, has over the SVD method. When choosing a
linear-system solver, one should consider three major fac-
tors: (1) the number of operations, (2) storage require-
ments, and (3) the degree of useful information obtained
during intermediate stages of the reconstruction. In the
ideal case when round-off error is absent, the CGD
method converges in N iterations for a fully determined
N X N linear system. Because there are two vector—

Fig. 3. Reconstruction of a 20-mfp-thick slab medium containing one absorber of size 8 cubic mfp at a depth of 10-12 mfp. Left, X-Z
cross sections; right, Y—Z cross sections. (a) Original medium, (b) reconstruction by PE with an overlapping interval of 3 mft, and (c)
reconstruction by RPE with the same overlapping interval. The noise level was 10%. All the reconstructed images are obtained after
26 time windows of width 2 mft. The maximum-values levels in (a), (b) and (c¢) correspond to 0.01, 0.1, and 0.01, respectively.
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Fig. 4. Reconstruction of a 20-mfp-thick slab medium containing two 8-cubic-mfp absorbers, one above the other, at depths of 2—4 mfp
and 6-8 mfp. (a) Original medium; (b), (¢) reconstruction by PE with an overlapping interval of 3 mft after 22 and 28 time windows of
width 2 mft, respectively; (d), (e) reconstruction by RPE with the same overlapping interval after 22 and 28 time windows of width 2 mft,
respectively. The noise level was 10%. The maximum-values levels in (a), (b), (¢), (d), and (e) correspond to 0.01, 0.01, 0.1, 0.01, and

0.01, respectively.
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Fig. 5. Reconstruction of a 20-mfp-thick slab medium containing one absorber of size 8 cubic mfp at a depth of 6—8 mfp and three
contiguous absorbers of the same size at a depth of 10-12 mfp. (a) Original medium, (b) reconstruction by PE with an overlapping in-
terval of 3 mft, (c) reconstruction by RPE with the same overlapping interval. The noise level was 10%. All the reconstructed images
are obtained after 24 time windows of width 2 mft. The maximum-values levels in (a), (b), and (c) correspond to 0.01, 0.1, and 0.01,

respectively.

matrix-product operations in each iteration, CGD re-
quires approximately 2N2 + 5N + 2 dot-product compu-
tations for convergence.2! For a sparse system the CGD
method can be highly efficient, in terms of both computa-
tional complexity and storage requirements, if an indexed
storage method is used.?? However, a previous study® of
the effect of truncating small weight-matrix elements on
the reconstructed image showed that at most 40% of the
elements can be set to 0. This is not sufficiently sparse to
produce substantial savings by use of an indexed storage
method for the weight matrix, because these techniques
require at least twice as many words of storage as there
are nonzero elements.?? For a dense matrix the CGD
method requires ~2N? scalar multiplications, because
there are ~N?2 scalar multiplications in each matrix—
vector operation. The major storage requirement for the
CGD method is just the N X N weight matrix. In con-
trast, the major computational effort for the classic SVD
method lies in the QR/QL iterations and needs ~6N?
scalar multiplications?® to yield the eigenvalues and the
eigenvectors of W/'W; the major storage requirement is
two N X N matrices needed for UV decomposition. Thus
the CGD method saves ~67% in computation time and
~50% in storage space relative to the SVD method.

For imaging an object whose size and optical properties
are of practical interest, e.g., a human breast or brain,
there typically are ~2,500 unknowns (for a 10.0
cm X 10.0 cm breast with u,’~1 mm™' and g,
~ 0.01 mm ! and a pixel size of 2.0 mm X 2.0 mm) in a
two-dimensional reconstruction. The number of un-
knowns can easily increase by a factor of 10 or more if a
fully three-dimensional reconstruction is attempted. For
a full-ranked linear system, i.e., when at least 2500
source—detector pairs are used, the weight matrix would
occupy 25 Mbytes of random access memory for single-
precision storage, which would exceed the storage capa-
bilities of most PC’s or workstations. This requirement
would make implementation of the CGD method very dif-
ficult, and the SVD method would be even more problem-
atic because an additional 25 Mbytes of random access
memory would be needed for UV decomposition. To re-
duce the computation time and the storage load we could
either reduce the number of source—detector pairs or ter-

minate the reconstruction before it has converged and use
an intermediate result. The first approach essentially
makes the weight matrix underdetermined and more ill
conditioned, so regularization methods and other tech-
niques that make use of a priori information are required
for useful images to be obtained. As for the second ap-
proach, the availability of reconstruction results obtained
after an intermediate number m (e.g., 10, 100, ...) of itera-
tions is a feature of iterative solvers that does not exist for
either Gaussian elimination (or an equivalent method) or
SVD. Although the intermediate results are usually
blurred, they do provide reasonably accurate information
about the locations and the magnitudes of perturbations
after a relatively small number of iterations. One more
advantage of the early-iteration reconstructed images, as
was pointed out in a previous study,?* is that they are less
sensitive than late-iteration images to noise. That is,
when noise is added, more iterations may not guarantee
better image quality because of the noise effects; the arti-
facts that result from the noise tend to grow as the num-
ber of iterations increases.

In conclusion, this study demonstrates that Tikhonov—
Miller regularization greatly improves the quality of im-
ages reconstructed from time-resolved data when the PE
algorithm is applied. Further studies are planned or are
under way to investigate the effect of updating the regu-
larization parameter \ in the RPE as suggested by Kang
and Katsaggelos?? and to compare the results obtained
with the zeroth-, first-, and second-order derivatives of
the image Ax as the regularization operator.
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