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Luminescence optical tomography of dense
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Using a set of coupled radiation transport equations, we derive image operators for luminescence optical to-
mography with which it is possible to reconstruct concentration and mean lifetime distribution from informa-
tion obtained from dc and time-harmonic optical sources. Weight functions and detector readings were com-
puted from analytic solutions of the diffusion equation and from numerical solutions of the transport equation
by Monte Carlo methods. Detector readings were also obtained from experiments on vessels containing a bal-
loon filled with dye embedded in an Intralipid suspension with dye in the background. Image reconstructions
were performed by the conjugate gradient descent method and the simultaneous algebraic reconstruction tech-
nique with a positivity constraint. A concentration correction was developed in which the reconstructed con-
centration information is used in the mean-lifetime reconstruction. The results show that the target can be
accurately located in both the simulated and the experimental cases, but quantitative inaccuracies are present.
Observed errors include a shadowing effect in regions that have the lowest weight within the inclusion. Ap-
plication of the concentration correction can significantly improve computational efficiency and reduce error in
the mean-lifetime reconstructions. © 1997 Optical Society of America. [S0740-3232(97)01901-7]
1. INTRODUCTION
The use of perturbation methods in optical imaging of tis-
sues has attracted significant and increasing interest in
recent years.1–3 This approach involves applying the dif-
ference between measurements obtained at the boundary
of reference and test media to reconstruct a cross-
sectional image. The difference signal is usually small
relative to the two quantities that are being compared
and is sensitive to noise. This situation represents an in-
trinsically more difficult measurement than, for example,
the case of fluorescence measurements, for which the in-
crease in signal that is due to the added fluorophore is
usually much larger than the background signal. Fluo-
rescence measurements also offer the distinct advantage
that fluorophores that are reactive to their immediate
chemical environments can be synthesized. A broad
range of probes has been developed for use in studying a
range of biochemical and cellular processes, the emission
properties of which are dependent on, among other
things, local pH, metal ion concentration, or potential dif-
ference.
Recently several groups of researchers have reported

the use of luminescence techniques in a tomographic im-
aging mode.4–7 This application is potentially appealing
and has similarities to more-traditional radioscinti-
0740-3232/97/010288-12$10.00 ©
graphic imaging methods such as single-photon emission
computed tomography and positron emission tomography.
There are, however, many potential advantages to lumi-
nescence tomography. As mentioned above, in contrast
to radioactivity, luminescence can be environment sensi-
tive. Luminescence measurements can be vastly more
sensitive than measurements involving radioisotopes,
and the radiation emitted is not damaging to tissue. The
former is especially true at near-infrared wavelengths, at
which autofluorescence levels are very low.
In this paper we extend recent studies4,5 and describe

the use of perturbation methods to produce lifetime and
concentration images of lumiphores added to a homoge-
neous dense scattering medium. A transport-theory-
based imaging operator is also derived that contains a
correction for lumiphore saturation and represents a
more general formulation than previously reported.6,7

The final form of this operator is a system of linear equa-
tions that can easily be solved by iterative methods. We
have studied excitation and emission in the luminescence
phenomenon, using two coupled one-speed transport
equations. Two modulation frequencies, dc and 100
MHz, were applied to yield required information for the
reconstruction of the product of concentration, micro-
scopic cross section, and quantum yield, and of mean life-
1997 Optical Society of America
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time, respectively. We performed numerical simulations
to calculate the diffusion-regime limiting form of this op-
erator for a specific test medium. Experimental data
were collected with a computed tomography–type laser
scanning system. Images were reconstructed by the con-
jugate gradient descent (CGD) method8 and the simulta-
neous algebraic reconstruction technique (SART).9,10 A
concentration correction technique was also developed to
make use of the concentration information reconstructed
from the dc data to improve computational efficiency and
reduce errors in the mean-lifetime reconstructions.

2. THEORY
The excitation light and the emission light associated
with a luminescence process are governed by a set of
coupled time-dependent radiative transfer equations11,12:
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where the subscripts 1 and 2 denote, respectively, the ex-
citation and the emitted light; c is the speed of light;
dV is the differential solid angle (sr); f1 and f2 are the
angular intensities (cm22 s21 sr21); q1 and q2 are the
angular source strengths (cm23 s21 sr21); ms(V8 • V)
is the macroscopic differential scattering cross section
(cm21 sr21); mT is the macroscopic total cross section
(cm21); and mT,1→2 5 Ng (T,1→2 is the change in total
cross section after the lumiphore is added, where (T,1→2
is the microscopic total cross section (cm2) of the lumi-
phore and Ng is the concentration of lumiphore in the
electronic ground state. In addition, it is convenient to
define the following quantities for later use: ms,i
5 *4p ms,i(V8 • V)dV8 is the macroscopic scattering
cross section (cm21), ma,i 5 mT,i 2 ms,i is the macroscopic
absorption cross section (cm21), and ms,i8 5 (1
2 f1,i)ms,i is the reduced scattering cross section
(cm21), where f1,i 5 *4p ms,i(V8 • V)V8 • VdV/
*4p ms,i(V8 • V)dV is the first moment of the differen-
tial scattering cross section; i51, 2 in all cases.
In this paper we assume either that there is no signifi-

cant overlap of the absorption and emission spectra or
that the total lumiphore concentration N0 is low through-
out the medium under investigation. In either case there
are two important consequences. First, we can consider
only a single frequency in the emission spectrum without
loss of generality, as the transport equations for light
emitted [Eq. (2)] at different wavelengths will be coupled
with the transport equation for the excitation light [Eq.
(1)], but not with one another. Second, the absorption
rate for excitation light by the lumiphore is much greater
than that for emission light, and the rate for spontaneous
emission greatly exceeds that for induced emission.
Then the coupling between the two transport equations is
governed by

dNg

dt
5 2 ( T,1→2 f̄1Ng 1

1
t
Ne , (3)

where Ne 5 N0 2 Ng is the concentration of excited lu-
miphore, N0 is the total lumiphore concentration (ground
and excited states), f̄1 5 *4p f1dV is the intensity
(cm22 s21) of the excitation light, and t is the mean life-
time of the fluorescent probe’s excited states (see Appen-
dix A). Thus the emission source term q2 in Eq. (2) is

q2 5
g

4pt
Ne , (4)

where g is the (dimensionless) quantum yield of the lumi-
phore.
Let R be the reading of a given detector for the emitted

intensity and r2 be the corresponding detector sensitivity
function, i.e., r2 5 r2(r, V, t). Then R is the time con-
volution of r2 and the intensity of the luminescent emis-
sion. The latter is in turn a time convolution of the emis-
sion source and the Green’s function. By appropriately
reordering the integrations and applying a well-known
reciprocity theorem,12 we obtain
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where ^ denotes a convolution in time, Ne is the concen-
tration of lumiphore in the excited state at r,
G2(r, V; r8, V8; t) is the Green’s function at r in direc-
tion V with the source located at r8 in direction V8, and
f̄2

1 5 *4p *v8 *4p r28 ^ G2(r, 2V; r8, 2V8; t)dV8d3 r8 dV
is the adjoint intensity, which can be interpreted as the
intensity at r that arises from a source whose distribution
in space, direction, and time is r2.
In the frequency domain one obtains detector readings

by Fourier transforming Eq. (5):

R̃ 5
1
4p E

v

g
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1 d3r, (6)

where ˜ denotes the Fourier transform. Let N0 be the
total lumiphore concentration; the Fourier transform of
Eq. (3) then becomes

~1 1 jvt!Ñg 1
t(T,1→2

2p
f̃̄1 ^ Ñg 5 2pN0d~v!, (7a)

Ñe 5 2pN0d~v! 2 Ñg , (7b)

where j 5 A21, and ^ now denotes a convolution in fre-
quency.
Under a time-varying excitation the lumiphore ground-

state concentration is not constant because of the continu-
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ous shifts in the rates of population and depopulation of
that state. Consequently a time-harmonic excitation will
produce an anharmonic periodic signal containing the
fundamental frequency and all its overtones; this occurs
when the population of the excited state becomes appre-
ciable, i.e., when the lumiphore is partially saturated.
This situation is problematic because subsequent analysis
to infer properties of an unknown medium would require
consideration of all these frequencies. The excitation in-
tensity at which saturation effects would need to be con-
sidered is greater than the intensities currently used for
most biological studies5 (i.e., up to ;1020 photons
cm22 s21). However, for long-lived fluorophores (t ; 1
ms) or even longer-lived phosphors (t ; 1 ms) saturation
may become significant.
Let f̃̄1 be a time-harmonic excitation. That is, let f̃̄1

be equal to 2pf̄1
0@d (v) 1 h8d (v 2 v0) 1 h9d (v

1 v0)#, with h8 5 h exp( 2 jw)/2 and h9 5 h exp( jw)/2
5 h8, where h is the modulation and w is the phase.
Then Eqs. (7) can be solved by means of the following ap-
proximations. When the saturation level is insignificant,
i.e., Ng ' N0, we have

Ñg~0 ! 5 2pN0~1 2 t(T,1→2f̄1
0!d ~0 !, (8a)

Ñg~v0! 5 2Ñe~v0! 5 2
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1 1 jv0t
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These equations, which are essentially zeroth-order ap-
proximations to the solutions of Eqs. (7), are applicable
when t(T,1→2f̄1

0 ! 1.5 For a typical fluorophore with t
5 1029 s and (T,1→2 5 5 3 10217 cm2, this criterion cor-
responds to an allowable excitation of f̄1

0 5 2 3 1023

photons per unit area (cm2) and unit time (s); a more de-
tailed discussion of this calculation is available
elsewhere.5 When the saturation level is more signifi-
cant, coupling between dc and the fundamental frequency
and its first overtone should be considered, but the contri-
bution of higher-order harmonics can be ignored, permit-
ting the following first-order approximations to the solu-
tions of Eqs. (7):
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See Appendix B for detailed derivations of Eqs. (9a) and
(9b) and the procedure for generating higher-order ap-
proximations.
The goal of the inverse problem is to solve Eq. (6) for

mT,1→2, g, and t under different source and detection con-
ditions. Doing this requires two reconstruction steps.
In the first step we solve for the background absorption
and scattering coefficients, ma and ms , respectively, of the
medium for the excitation and the emission photons sepa-
rately, using previously developed techniques.13 The sec-
ond step is to reconstruct mT,1→2, g, and t with estimates
of f̃̄1 and f̃̄2

1 that are calculated with the coefficients ob-
tained from the first step. The following are two pro-
posed methods for this second step.

A. dc Source

If we use dc sources, that is, if h8 5 0, then we have f̃̄1

5 2pf̄1
0d(0), f̃̄2 5 2pf̄2

0d(0), and
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0
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Equation (6) becomes
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where w [ wdc 5 f̃̄1f̃̄2
1 /4p is the weight function. If

f̃̄1and f̃̄2
1 can be precalculated under the assumption

that lumiphore is not present, then we can compute the
unknown quantity g(T,1→2Ng or g(T,1→2N0 /(1
1 t(T,1→2f̄1

0) by solving a linear system obtained by
discretizing Eq. (10). If the saturation level is insignifi-
cant, then g(

T,1→2Ng ' g(T,1→2N0, and if (T,1→2 is
known, then gN0 can be obtained. Here, only the prod-
uct of quantum efficiency and lumiphore concentration is
found, and they cannot be directly separated.

B. ac Source
If modulated sources are used, and we adopt the approxi-
mation in Eq. (8b) and solve for g(T,1→2N0 by analyzing
the dc component of the response as described above, then
Eq. (6) becomes

R̃ 5 E
v
w

1 2 jv0t

1 1 v0
2t2

d3r, (11)

where w [ wac 5 g(T,1→2N0f̃̄ f̃̄2
1 /4p. Equation (11)

can be discretized, and the real and the imaginary parts
of the detector readings give rise to a system of linear
equations from which the real part, 1/(1 1 v0

2t2), the
imaginary part, 2v0t/(1 1 v0

2t2), and their ratio,
2v0t, of the unknowns can be reconstructed. Because v0
is known, t can also be deduced. If the approximation in
Eq. (9b) is adopted and g(T,1→2N0 /(1 1 t(T,1→2f̄1

0) is
solved from the dc signal, we get

R̃ 5 E
v
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0 2 jv0t!#d3r
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(12)
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where w is the same as in Eq. (11). When t(T,1→2f1
0

! 1, Eq. (12) reduces to Eq. (11). Otherwise, the ratio of
the imaginary to the real parts of the unknown,
2v0t/(1 1 t(T,1→2f1

0), can be reconstructed, and t can
be subsequently deduced.

3. SIMULATIONS AND EXPERIMENTS
A. Simulations
Analytic solutions of a three-dimensional diffusion equa-
tion for an infinite homogeneous medium, f(rs , r)
5 S0 exp(2jkur 2 rsu)/(4pDur 2 rsu), where D 5 1/
@3(ma 1 ms8)# is the diffusion coefficient (in centimeters),
k2 5 2ma /D 2 jv/cD is the square of the complex wave
number, S0 is the source strength, and rs is the source lo-
cation, were calculated to yield the detector readings and
weight functions for reconstruction. For detector-
reading computations the excitation field in each volume
element (voxel) was calculated by means of the above for-
mula for f(rs , r) and multiplied by the cross-section per-
turbation to yield the equivalent emission source. We
then used the same formula, with r substituted for rs ,
rd for r (where rd is the detector location), and the
equivalent emission source for S0, to calculate the detec-
tor readings. The detector readings were corrupted with
multiplicative Gaussian white noise at a level of 1% [i.e.,
(noise variance)/(signal amplitude) 5 0.01]. Similarly,

Fig. 1. Sketches of (A) the source–detector ring and (B) the
phantom structure used for the diffusion computations.
for the weight-function computations we used the formula
for f(rs , r) to compute the forward intensity, and the for-
mula for f(rd , r) with S0 5 1 to compute the adjoint in-
tensity, in every voxel. Figure 1 is an illustration of the
phantom structure wherein an 8.0 cm 3 8.0 cm 3 0.2 cm
square region of interest (ROI) was selected in an other-
wise infinite medium. The target and the surrounding
medium both have the same scattering and absorption
cross sections for the excitation and emission fields; that
is, ms,18 5 ms,28 5 1 mm21 and ma,1 5 ma,2 5 0.003
mm21. The diffusion constant and the diffusion length
(L, which is equal to AD/ma; 2L22 is the real part of k2)
for this medium are, respectively, 0.33 and 5.74 mm. Lu-
miphore was uniformly distributed in a 1.2 cm 3 1.2 cm
3 0.2 cm region of the ROI [Fig. 1(B)], with mT,1→2
5 0.00001 mm21, t 5 1029 s, and g 5 1. Two sets of
simulations were performed, with the lumiphore located
in the center of the ROI in one case and in the lower half
of the ROI in the other. Sources were located every 15°
on a circle of 6.0-cm diameter about the center of the ROI.
For each source, 39 detectors positioned every 9° on the
same circle were used to collect emitted photons. Two
modulation frequencies, dc and 100 MHz, were simulated
to generate the required information for both gmT,1→2 and
mean-lifetime reconstructions, as described in Eqs. (10)–
(12).

B. Experiment
Figures 2(A) and 2(B) are, respectively, illustrations of
the experimental tissue phantoms and the source and de-
tector configurations. The experiment was performed
with one balloon and added dye in the background. The
8-cm inner-diameter cylindrical vessel was filled with
0.33% Intralipid containing 0.1 mM Rhodamine 6G dye
[t ' 4 ns (Ref. 14) and (T,1→2 ' 3.71 3 10216 cm2].
The balloon’s volume was 0.5 mL, and it contained dye
at a concentration of 10 mM. A 0.75-W multiline (aver-
age wavelength ;500 nm) beam from a Coherent In-
nova 200–10 argon-ion laser source was used to irradiate
the phantom. This corresponds to a photon energy
of (6.63 3 10234 J s) (3 3 108 m s21) / (5 3 1027 m)
' 4 3 10219 J, for a photon emission rate of ; 2
3 1018 s21. For this combination of excitation level,
mean lifetime, and total cross section there is no appre-
ciable saturation of the fluorophore.5 The 0.75-W excita-
tion level was used only for the purpose of ensuring out-
put stability of the laser and not because of any dearth of
signal; in fact, for some measurements it was necessary
to attenuate the measured fluorescence to avoid satura-
tion of the detector. A Newport FS-1 RG.610 filter
blocked excitation light from entering the detector. The
detector was a Hamamatsu C3140 CCD camera directed
normally to the phantom to collect the emission light. A
limited illumination angle was used. The detectors were
located every 30° about the cylinder, and the source was
positioned every 30° from 90° to 270° counterclockwise
relative to the source. Eighty-four detector readings
were taken. The source intensity was recorded for each
measurement by a Coherent Labmaster-E laser measure-
ment system with a Model LM-3 detector head. Each
measurement was then corrected for dark current, source
intensity, and lens aperture. At least two measurements
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were taken and averaged to yield the detector readings
for each source–detector pair.
The optical thickness of the phantom medium was ;40

transport mean-free-path lengths (mfp) in diameter for
both the excitation and the emission light.15 Weight
functions for the corresponding reference media were
computed by Monte Carlo simulations, which assumed an
optical thickness of 20 transport mfp. We are aware that
use of these weight functions for studies involving the
concentration of Intralipid used in these experiments in-
troduces a systematic error. Nevertheless, we adopted
them both as a means of testing the robustness of the im-
aging scheme and because in previous studies involving
elastic scatter imaging we showed that systematic errors
of this type for simply structured media do not apprecia-
bly influence the qualitative accuracy of the
reconstruction.16

Fig. 2. (A) Tissue phantom for the experiment; one balloon
was suspended in the cylinder. (B) Source and detector configu-
rations.
C. Image Reconstruction
Image reconstructions were performed with the CGD and
SART algorithms, with positivity constraints on the re-
construction results and a matrix rescaling technique.17

Each column of the weight matrix is normalized so that
its largest element is equal to one; we observed that this
can have the effect of accelerating convergence.17 We
performed two-dimensional reconstructions in the x–y
plane of the target [Fig. 1(B)], using the simulation data.
The targets were sampled every 2 mm in both the x and
the y directions, for a total of 41 3 41 or 1,681 voxels.
For the experimental data we performed the reconstruc-
tions [Fig. 3(A)] by assuming that the target’s properties

Fig. 3. (A) Schematic of two-dimensional reconstruction with
translational invariance assumed along the z axis. The cylin-
drical coordinate system used to discretize the phantom is shown
in (B).
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Fig. 4. (A) gmT,1→2 images reconstructed from the first set of computed data at the dc frequency. (B)–(D) Reconstructed images of the
mean lifetime derived from the parts of the unknowns in Eq. (11) from the first set of computed data as labeled, after 10, 100, and 1000
iterations. The reconstruction algorithm used was CGD, the modulation frequency was 100 MHz, and concentration correction was
used.
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were invariant in the z direction for z between 23 and 3
mm, and we summed the weights of the voxels along the z
axis in this range to obtain integrated values. Only the
central planes of the reconstruction results are displayed.
Figure 3(B) is an illustration of the cylindrical coordinate
systems, where the r and the f coordinates are shown
and the z coordinate is normal to the plane of the figure.
There are 400 voxels in each plane. Reconstructions of
g(T,1→2N0 were performed for both simulation data and
experimental data, but mean-lifetime reconstructions
were attempted only for the simulation data.
The reconstructed g(T,1→2N0 were also used to guide

the mean-lifetime reconstructions. Inspection of Eqs.
(11) and (12) indicates that, in principle, the mean life-
time can be derived directly from the ratio of the imagi-
nary part to the real part of either equation’s unknown
and does not require any knowledge of g(T,1→2N0. How-
ever, for a numerical reason explained below (see Section
5) we adopted a concentration correction to make addi-
tional use of the g(T,1→2N0 information. The maximum
value of each g(T,1→2N0 map was first obtained, and any
value less than 0.01 times this was set to zero. This
modified g(T,1→2N0 map was then used in the calculation
of the weight matrix for the corresponding mean-lifetime
reconstruction.

4. RESULTS
Figure 4 shows reconstructed images of g(T,1→2N0 [Fig.
4(A)] and gives results of mean-lifetime reconstructions
derived from the reconstructed real part [Fig. 4(B)],
imaginary part [Fig. 4(C)], and ratio of imaginary part to
real part [Fig. 4(D)] of Eq. (11) from the first set of simu-
lated data (centered inclusion) after 10, 100, and 1000 it-
erations, by the CGD method with the concentration cor-
rection. Figure 5 shows the reconstruction results from
the second set of simulation data (off-centered inclusion)
after 10, 100, and 1000 iterations by the same method.
The reconstruction results obtained without the concen-
tration correction are presented in Fig. 6. Figure 7 shows
the reconstruction results obtained from the experimental
data by the SART method after 10, 100, 1000, and 10,000
iterations.

5. DISCUSSION AND SUMMARY
Inspection of Fig. 4(A) shows that the size and the loca-
tion of gmT,1→2 from the first set of simulation data are
successfully reconstructed. There is some error present
in that the central part of the inclusion is not recon-
structed. Comparison of the images after 10, 100, and
1000 iterations shows that this error grows with increas-
ing computation. This may be a consequence of the
structure of the weight function, which steadily decreases
with increasing depth such that the voxels with the small-
est weights (i.e., those in the center) are overshadowed by
surrounding voxels with larger weights. The same phe-
nomenon was observed in the mean-lifetime reconstruc-
tions [Figs. 4(B)–4(D)]. The spatial extent of the recon-
structed t is slightly larger than that of the reconstructed
gmT,1→2. We believe that this result is due to the addi-
tional numerical processing required for deducing t from
the complex quantity obtained directly from Eq. (11).
More specifically, the operation of computing the recipro-
cals of the real and the imaginary parts may produce
large errors in the determination of t, particularly in vox-
els for which the true value of the unknown is zero but
the numerical result is a small nonzero number.
In general, the reconstruction results for the off-center-

inclusion case (Figs. 5 and 6) are less accurate than those
for the centered inclusion (Fig. 4). Whereas the lumi-
phore is uniformly distributed in the inclusion, the recon-
structed image values are higher on the side facing the
center of the ROI. This may be an effect of the weight-
versus-depth relation, just as the central hole in the im-
age of the centered inclusion presumably is. Voxels lo-
cated on the interior edge of the target have much smaller
weights and thus can be assigned erroneous values in the
reconstruction without significantly influencing the mini-
mization of mean-squared error. This is one more illus-
tration of the ill-conditioned nature of the weight function
in optical tomography.
The error that can result from computing the recipro-

cals of small values becomes apparent when we compare
the mean-lifetime spatial distributions reconstructed
with (Fig. 5) and without (Fig. 6) the concentration cor-
rection. When this correction was not made the images
(Fig. 6) derived from the real part, the imaginary part,
and their ratio according to Eq. (11) contain large regions
of vastly overestimated t between the inclusion and the
border of the ROI. This finding is consistent with the hy-
pothesis described in the previous paragraph, that the re-
ciprocals of small residual values left over after imperfect
cancellations give rise to large errors in the mean-lifetime
reconstructions. It is important to note, however, that
the concentration correction described here is premised
on the assumption that the unknown reconstructed from
the dc data is proportional to N0, which is true only if lu-
miphore saturation is negligible. If saturation needs to
be considered, then the dc reconstruction yields a quan-
tity proportional to Ng , which could be significantly less
than N0. So a low value for Ng in a voxel does not nec-
essarily imply that there is little lumiphore present in the
voxel, and a more sophisticated concentration correction
than the one presented here must be developed.
It is also observed from Fig. 5 that all errors in the re-

constructed images gradually diminish as the number of
iterations increases. The images of both gmT,1→2 and t
are displaced toward the center of the ROI, relative to the
true location of the inclusion, after only 10 iterations, but
the location is much more accurate after 1000 iterations.
From the numerical gray scales we also see that, although
the quantitative value of gmT,1→2 in the inclusion (0.01
m21) is overestimated, the error decreases as the number
of iterations increases. The accuracy of the reconstruc-
tion would be expected to improve more if the number of
iterations were increased further.
The results from the experimental data (Fig. 7) show

that the balloon is located and artifacts are present on the
boundary. The inclusion is not clearly identifiable until
after 1000 iterations. When other reconstruction algo-
rithms, CGD and POCS, were used (results not shown), a
smaller number of iterations was required before the in
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Fig. 5. (A) gmT,1→2 images reconstructed from the second set of computed data at the dc frequency. (B)–(D) reconstructed images of the
mean lifetime derived from parts of the unknowns in Eq. (11) from the second set of computed data as labeled, after 10, 100, and 1000
iterations. The reconstruction algorithm used was CGD, the modulation frequency was 100 MHz, and concentration correction was
used.
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clusion was distinguishable, but the SART algorithm pro
vides the most accurate intensity mapping. Because dif-
ferent algorithms take widely different pathways in up-
dating the reconstruction and only a finite number of it-
erations is allowed, these differences among the
reconstruction results and convergence rates, especially
when range constraints are applied, are not surprising.
The intensity of the inclusion reconstructed by the SART
algorithm is relatively uniform, with the highest value lo-
cated in the center of the inclusion. This is unlike the
shadowing effect observed in the simulation reconstruc-
tions, in which the voxels lying closest to the geometric
center of the ROI usually have the largest image values.
As the size of the experimental phantom, ;40 transport
mfp in diameter, is smaller than that of the simulation
phantom, ;80 transport mfp, the shadowing effect plays
a less significant role in the experimental reconstruction.
In summary, we have presented a derivation of imag-

ing operators, based on two coupled transport equations,
for imaging luminescence in turbid media. Numerical
simulations and experiments were performed, and con-
centration and mean-lifetime images were reconstructed.
The proposed concentration correction proved to be cru-
cial for accurate reconstruction of mean lifetime. The re-
construction results from the experimental data are en-
couraging because they demonstrate that, with added
Fig. 6. Reconstructed images of the mean lifetime derived, without the concentration correction, from the parts of unknowns in Eq. (11)
as labeled, from the second set of computed data, after 10, 100, and 1000 iterations. The reconstruction algorithm used was CGD, and
the modulation frequency was 100 MHz.
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Fig. 7. Reconstruction results obtained from the experimental dc data by the SART after the number of iterations shown. The target is
also shown.
background lumiphore, reasonable reconstructions can be
achieved from tomographic measurement data.

APPENDIX A: JUSTIFICATION OF EQ. (3)
The luminescence phenomenon entails transitions among
(at least) three energy levels: the ground state g and two
excited states e1 and e2, with e2 having the highest en-
ergy. The three physical processes that are responsible
for interlevel transitions are absorption, spontaneous
emission, and induced emission. Thus we have

dNg

dt
5 2ST,1→2f̄1~Ng 2 Ne2

! 1
1
t
Ne1

2 ~Ng 2 Ne1
!E

v
ST,28 f̄2dv,

dNe1

dt
5

1
t8
Ne2

2
1
t
Ne1

1 ~Ng 2 Ne1
!E

v
ST,28 f̄2dv,

dNe2

dt
5 ST,1→2f̄1~Ng 2 Ne2

! 2
1
t8
Ne2

, (A1)

where (T,28 is the (frequency-dependent) microscopic ab-
sorption cross section of the lumiphore for the emission
light and t8 is the mean lifetime of a lumiphore molecule
in state e2.
We assume that the final right-hand side terms in the
equations for dNg /dt and dNe1

/dt can be neglected. This
assumption is valid if either of two criteria is satisfied,
namely, if (T,28 is essentially zero, i.e., there is insignifi-
cant overlap between the absorption and emission spectra
of the lumiphore,14 or if N0 is small at all points in the
medium. The first two terms on the right-hand sides of
Eqs. (A1) decrease linearly with decreasing N0, but, be-
cause f̄2 is also proportional to N0, the terms containing
f̄2 decrease quadratically.
The lumiphore concentrations are constrained by the

relation Ng 1 Ne1
1 Ne2

5 N0. Thus only two of Eqs.
(A1) should be retained because the third contains no ad-
ditional information. Retaining the first and the second,
and substituting N0 2 Ng 2 Ne1

for Ne2
, we obtain the

following inhomogeneous system:

d
dt F Ng

Ne1
G 5 F22(T,1→2f̄1 ~t21 2 (T,1→2f̄1!

2t821 2~t21 1 t821!
GF Ng

Ne1
G

1 F(T,1→2f̄1N0

t821N0
G . (A2)

Equation (A2) reduces to a single equation, Eq. (3), if
we assume that induced emission from e2 makes a negli-
gible contribution to dNg /dt, i.e., if Ne2

! Ng . Suppose
that the lumiphore were subjected to constant-intensity
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illumination. From the third of Eqs. (A1), we find that
f̄1 5 (t8(T,1→2)

21@Ne2
/(Ng 2 Ne2

)# in the resulting
steady state. We have assumed a value of (T,1→2 5 5
3 1017 cm2, and we also assume that t8 5 1 3 10212

s.14 Then, for Ne2
5 0.001Ng , 0.005Ng , 0.01Ng , the re-

quired f̄1 is, respectively, 2.002 3 1025, 1.005 3 1026, or
2.020 3 1026 cm22 s21. At the same three excitation
intensities the respective degrees of lumiphore saturation
are ;50%, ;83%, and ;91% (for t 5 1 3 1029 s). Thus
it is easily possible to select f̄1 for which saturation of lu-
minescence is significant while emission induced by the
excitation light is negligible.

APPENDIX B: DERIVATION OF EQS. (9)
Let us substitute the expression given in Section 2 for
time-harmonic illumination, 2pf̄1

0@d (v) 1 h8d (v
2 v0) 1 h9d (v 1 v0)], for f̃̄1 into Eq. (7a). This gives
us

2pN0d ~v! 5 t(T,1→2f̄1
0@h8Ñg~v 2 v0!

1 h9Ñg~v 1 v0!#

1 ~1 1 tST,1→2f̄1
0 1 jvt!Ñg~v!.

(B1)

When v50, Eq. (B1) becomes

2pN0d~0 ! 5 ~1 1 tST,1→2f̄1
0!Ñg~0 !

1 t(T,1→2f̄1
0@h8Ñg~2v0! 1 h9Ñg~v0!#.

(B2)

By using the relations h8 5 h9* , Ñg(2v0)
5 @Ñg(v0)#* , a* b* 5 (ab)* , and a 1 a* 5 2 R(a),
from Eq. (B2) we obtain

R@h9Ñg~v0!# 5
2pN0d~0 ! 1 ~1 1 t(T,1→2f̄1

0!Ñg~0 !

2t(T,1→2f̄1
0 .

(B3)

When v 5 v0, Eq. (B1) becomes

~1 1 tST,1→2f̄1
0 1 jv0t!Ñg~v0! 1 tST,1→2f̄1

0@h8Ñg~0 !

1 h9Ñg~2v0!] 5 0. (B4)

If the second-order harmonic can be ignored, i.e.,
uÑg(2v0)u ! uÑg(0)u, uÑg(v0)u, then

Ñg~v0! '
2t(T,1→2f̄1

0h8Ñg~0 !

1 1 t(
T,1→2f̄1

0 1 jv0t
, (B5)

which when multiplied by h9 gives

R@h9Ñg~v0!#

'
2t(T,1→2f̄1

0~h/2!2~1 1 t(T,1→2f̄1
0!Ñg~0 !

~1 1 t(T,1→2f̄1
0!2 1 ~v0t!2

. (B6)

By equating the right-hand sides of Eq. (B3) and relation
(B6) and solving for Ñg(0) we get Eq. (9a). When Eq.
(9a) is substituted into Eq. (7b) and Ñg(v0) is solved for,
the result obtained is Eq. (9b).
This recursive procedure can be truncated at a higher-
order term, instead of the second-order harmonic as in
this derivation, for more-accurate expressions for the
saturation correction.
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