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ABSTRACT

By applying linear perturbation theory to the radiation transport equation, the inverse problem of optical
diffusion tomography can be reduced to a set of linear equations, Wm5R, where W is the weight function, m
are the cross-section perturbations to be imaged, and R is the detector readings perturbations. We have
studied the dependence of image quality on added systematic error and/or random noise in W and R.
Tomographic data were collected from cylindrical phantoms, with and without added inclusions, using
Monte Carlo methods. Image reconstruction was accomplished using a constrained conjugate gradient de-
scent method. Results show that accurate images containing few artifacts are obtained when W is derived
from a reference state whose optical thickness matches that of the unknown test medium. Comparable image
quality was also obtained for unmatched W, but the location of the target becomes more inaccurate as the
mismatch increases. Results of the noise study show that image quality is much more sensitive to noise in W
than in R, and the impact of noise increases with the number of iterations. Images reconstructed after pure
noise was substituted for R consistently contain large peaks clustered about the cylinder axis, which was an
initially unexpected structure. In other words, random input produces a nonrandom output. This finding
suggests that algorithms sensitive to the evolution of this feature could be developed to suppress noise effects.
© 1998 Society of Photo-Optical Instrumentation Engineers. [S1083-3668(98)00902-2]
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1 INTRODUCTION

There has been sufficiently extensive development
of optical diffusion tomography in recent years so
that some applications are ready for clinical
testing.1 Two types of tomographic schemes have
been used. In cross-section imaging, first proposed
by our group and later also adopted by many other
teams,2 one tries to map the perturbations of physi-
cal properties such as the scattering and absorption
cross sections relative to a reference state, as a func-
tion of physiological or pathological conditions,
e.g., oxygenation/deoxygenation of hemoglobin
and myoglobin,3 brain hemorrhage,4 or breast
cancer.5,6 The newly developed luminescence
imaging7,8 uses a similar idea, by assuming that the
presence of fluorophore/phosphor slightly per-
turbs the background absorption cross sections. In
addition, it takes advantage of the difference be-
tween the excitation and emission spectra in the
phenomena of fluorescence or phosphorescence in
order to image the fluorophore/phosphor concen-
tration and mean lifetime as a function of physi-
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ological or pathological condition. In either case,
the inverse problem reduces to a system of linear
equations7–9 having the form Wm5R when it is
based on a perturbed transport equation. Here, W
is the weight matrix, whose elements are propor-
tional to products of forward (from source to voxel)
and adjoint (from voxel to detector) intensities; m is
the quantity to be imaged; and R is the detector
readings.

Because both imaging techniques employ pertur-
bation methods, the quality of reconstructed images
is a function of modeling error, that is, the magni-
tude of the discrepancy between the test medium
and the reference (cross section imaging) or back-
ground medium (luminescence imaging). We have
studied two methods for estimating the physical
properties of the reference or background medium
in the (realistic) case in which they are not known a
priori. In the first,10 one begins with a simple prese-
lected medium, typically in a homogeneous state,
and repeatedly alternates between solving the per-
turbation equation for m and computing a new W
based on the current estimate of m. This is similar to
the iterative Born approximation used in micro-
wave imaging11 and is usually very computation

1083-3668/98/$10.00 © 1998 SPIE
137OURNAL OF BIOMEDICAL OPTICS d APRIL 1998 d VOL. 3 NO. 2



CHANG, GRABER, AND BARBOUR
intensive because multiple forward calculations are
needed to update the weight matrix. The second
method5,6 assigns the average physical properties of
the various tissue types known to be present in a
given sample to an anatomically accurate map ob-
tained from some other imaging modality, e.g., CT
or MRI. This requires image segmentation and reg-
istration techniques to process the anatomical im-
ages, but these are generally much faster than up-
dating the forward calculation. In the best case, a
single step of solving the forward and inverse prob-
lems would suffice. If it should still prove necessary
in practice to repeat the process, the number of it-
erations required would be smaller under this ap-
proach than by starting from an assumption of ho-
mogeneity. The probability of the iterative process
diverging would likewise be smaller.

The quality of reconstructed images in optical to-
mography is affected by modeling error and by
noise in the detected signals. Two types of model-
ing error may occur. The first is systematic error or
systematic mismatch, by which we mean the error
introduced by either overestimating or underesti-
mating the optical thickness of the test medium. An
example would be that the initial guess is a homo-
geneous medium whose cross sections are system-
atically larger or smaller than those of the test me-
dium. Errors of this type could be expected to occur
if, for example, the reference medium is selected in
the absence of sufficient a priori knowledge of the
target medium or if optical cross section estimates
are assigned to pixels in an anatomical image of the
target medium on the basis of inaccurate literature
values. The second type of modeling error is ran-
dom mismatch, which refers to discrepancies be-
tween the reference and test media when they are
close to each other after a few steps of multistep
reconstruction, or that could be expected if the ref-
erence medium is derived from an anatomically ac-
curate map and the assigned literature values are
accurate, or that arise from positioning uncertainty
as described by Boas et al.12 The random mismatch
is typically much smaller than the systematic mis-
match and can be modeled as multiplicative noise.
Realistic noise levels for the random mismatch
caused by positioning error are at least 2% in am-
plitude and 0.3° in phase.12

Previous studies13,14 have shown that W is an ill-
conditioned matrix; thus, the reconstructed result is
very sensitive to noise in the detector readings. In
general, two types of noise are encountered in an
optical imaging system.15 The first is shot (Poisson)
noise due to statistical variations inherent in the
mechanisms of photon generation and interaction
with the target medium. Its magnitude is propor-
tional to the square root of the detected photon
count, and it can be reduced by increasing either
the source intensity or the detector acquisition
time.15 The second is independent additive noise
that manifests as dark current in the counter and
electronics, and also arises as a consequence of nu-
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merical errors (e.g., quantization error). Its effect
can be lessened by proper filtering.15

One way to overcome ill conditioning is to apply
constraints derived from a priori knowledge of the
target medium to the image reconstruction. This
will help confine the results within a feasible range
and avoid meaningless reconstructions. The disad-
vantage of imposing constraints is that it leads to a
nonlinear solution to a set of linear equations, i.e.,
the image recovered from a linear combination of
two sets of detector readings is not equal to the
corresponding linear combination of the individual
images. The techniques currently in use by ours
and other groups do not necessarily require a priori
information.16,17 However, as demonstrated in this
paper and other studies6,10 it is better to use it when
some is available.

Studies by Moon et al.18,19 used analytic expres-
sions for diffusing light to determine the achievable
resolution for imaging through turbid media. In
this work, the half-width of the point spread func-
tion of a single source was calculated for media of
different optical thicknesses, and it was found that
image resolution degraded linearly with the sample
thickness with a scale dependence of R(d)'0.2d ,
where R is the achievable resolution and d is the
sample thickness. They also point out that tomog-
raphic reconstruction may improve this limit be-
cause multiple sources and detectors are used.
More recently, Boas et al.12 performed an extensive
study of detection limits for multiple sources and
detectors, by analyzing different moments of the
diffuse photon density waves and comparing them
to the uncertainties caused by shot noise and posi-
tioning error. They concluded that the determina-
tion of size and optical properties is a function of
the optical cross sections of the background and tar-
get media and of the modulation frequency. Simul-
taneous determination of size and geometry can be
achieved for an inhomogeneity with diameter on
the order of 1.0 cm or larger, and if there is a priori
information about either the object’s size or optical
properties, the remaining unknown quantities can
be determined for diameters as small as 0.3 cm.
This last conclusion is consistent with Moon’s re-
sults.

In this paper, we expand upon results of an ear-
lier study originally presented in the 1995 IEEE
Nuclear Science Symposium and Medical Image
Conference.20 Unlike the studies cited above, which
looked for the detection limits, the purpose of this
study is to focus on the impact of modeling error
and random noise on reconstructed images. Here,
one-step reconstructed images of simple phantoms,
using detector readings generated by Monte Carlo
simulations and a previously developed con-
strained conjugate gradient descent algorithm, are
used to illustrate the dependence of image quality
on systematic errors in the imaging operator and on
noise. Systematic mismatches were introduced in
the weight matrices by reconstructing images of a
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simply-structured phantom medium using weight
matrices for reference media with different optical
thicknesses, and random mismatches were mod-
eled by adding multiplicative noise at different lev-
els to each element of the weight matrix. Random
Gaussian noise at different levels was added to the
detector readings to examine its effect on the recon-
structed images. The effect of positivity constraints
on the reconstruction of noisy data is taken up
again in the Discussion.

2 THEORY

The inverse problems for absorption cross section
imaging and fluorescence imaging reduce to sys-
tems of linear equations:

Wm5R, (1)

where W is the weight matrix, m is the vector of
unknown absorption cross section perturbations or
of products of fluorophore concentration and quan-
tum yield, and R is the vector of detector readings
(luminescence imaging) or detector readings per-
turbations (cross section imaging). In absorption
cross section imaging,9 Eq. (1) is a discretized ver-
sion of an integral equation:

DR5E
V

waDmad3r , (2)

where Dma is the macroscopic absorption cross sec-
tion perturbation (mm−1), DR is the detector read-
ing perturbation, and wa is the weight function:

wa52~f0f0
123J·J1!/4p , (3)

where

f05E
4p

fdV , J5E
4p

fVdV ,

f0
15E

4p
f1dV , J152E

4p
f1VdV ,

and f and f1 are forward (from a source to a
voxel) and adjoint (from a voxel to a detector) an-
gular intensities, obtained by solving a transport
equation.9 In the fluorescence imaging case,7 Eq. (1)
is a discretized version of

R5E
V

wfl~gN0!d3r , (4)

where R is the emitted fluorescence intensity, g is
the quantum yield, N0 is the fluorophore concentra-
tion, and

wfl5ST ,1→2f0
1f0

21/4p , (5)

where ST ,1→2 is the microscopic total cross section
(mm2) introduced by the fluorophore, and f0

1 and
J

f0
21

are, respectively, the forward and adjoint inte-
grated intensities of the exciting and emitted light.
Because J•J1 is usually much smaller than
f0f0

1 , wa for the absorption cross section imaging
problem can be well approximated by including
only the first term in the numerator of Eq. (3). In
this sense, the weight matrix in both the absorption
cross section imaging and fluorescence imaging
cases are essentially the same, and the findings of
studies of one imaging modality will also apply for
the other.

3 METHODS

3.1 MONTE CARLO SIMULATION

Two sources of error were introduced in this study.
The first was a systematic error, produced by vary-
ing the total cross section (mT5ma1ms) of the ref-
erence medium. The second, random error, is de-
scribed below in Sec. 3.3. Monte Carlo simulations
(MCS) modeled continuous-wave (cw) light propa-
gation in a cylindrical phantom of 20 mean free
paths (mfp) diameter, as shown in Figure 1, with
and without a black absorber at an off-axis location.
The absorber was a cylindrical inhomogeneity (i.e.,
a rod) of 1 mfp diameter located halfway between
the axis and the boundary of the cylinder. The pho-

Fig. 1 (A) Tissue phantom modeled in Monte Carlo simulations.
(B) Source configuration. (C) Simulation detector configuration for
each source. The detectors were located every 10° about the
boundary of the phantom.
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ton scattering was isotropic. The perturbed detector
readings, R, were obtained by calculating the differ-
ences, at all detector locations, between the detected
intensities in the absence and presence of the black
rod. The matched weight matrix W was calculated
from the forward and adjoint collision densities in
each voxel. The simulated R and W are essentially
noiseless except for Poisson noise arising from the
MCS, which is minimal since O(108) photons were
simulated and the correlated sampling was used for
variance reduction. MCS was also performed to get
unmatched weight matrices from media of 10, 40,
and 100 mfp diameter. This is equivalent to varying
the total cross section, mT , while keeping the physi-
cal dimensions of the phantom constant. The
matched and unmatched matrices were also used
for image reconstruction from experimental data.

3.2 NOISE

To study the effect of random error, different levels
of Gaussian white noise were produced by a ran-
dom number generator.21 The generated noise was
then added to the detector readings

Ri85Ri1ni , (6)

where Ri is the ith detector reading, ni is the noise,
Ri8 is the noise-added detector reading, and the
noise level is defined as

noise level ~% !5100
noise variance

average signal power
.

(7)

Noise was also added to the weight function

wij8 5~11nij!wij , (8)

where wij8 is the noise-added element of the weight
matrix, and the noise level is defined as

noise level (%)=100·(noise variance). (9)

The levels of noise added to the detector readings
were 1%, 5%, 10%, 50%, 100%, and 500%, while the
levels of noise added to the weight function were
1%, 5%, 10%, 50%, and 100%. To comply with the
physical necessity that the weight function be non-
negative for absorption cross section perturbations,
any negative noise-added weight matrix elements
were set to zero. The detector readings and weight
matrices were then used for image reconstruction
and the reconstructed images were compared to the
results with no added noise. As a control, recon-
structions were also performed using only gener-
ated Gaussian white noise as the detector readings,
and the noise-free matched weight matrix.

3.3 RECONSTRUCTION ALGORITHM

A previously developed constrained conjugate gra-
dient descent (CGD) algorithm with a rescaling
technique22 was used for image reconstruction. The
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CGD method iteratively updates the reconstruction
on the basis of the previous reconstruction and all
the preceding gradient and conjugate gradient vec-
tors:

mn5mn212andn, (10)

where

an5
~gn21!Tgn21

~dn!TAdn , dn52gn211bndn21,

bn5
ign21i2

ign22i2 , gn5Amn2b5gn212anAdn,

g05Am02b, d152g0, b150,

where A5WTW, b5WTR, m0 is the initial guess, gn

is the gradient vector and dn is the conjugate gradi-
ent vector. Range constraints on the R were im-
posed prior to reconstruction, with all the negative
readings set to zero:

DRi5max ~DRi,0 !, (11)

where DRi is the ith component of R. Range con-
straints were imposed on reconstruction results af-
ter each iteration:

Dm j
n5max ~Dm j

n,0 !, (12)

where Dm j
n is the jth component of mn. Applying

positivity constraints to the previous reconstruc-
tion, mn21, leads to miscalculation of gn and dn,
and this can cause the algorithm to diverge. To
overcome this difficulty, the following divergence
detection scheme was devised. Let the ratio of two
consecutive mean squared errors be

rn5
En

En21 , (13)

where E5 1
2 mTAm2bTm1 1

2 RTR is the mean
squared error. The reconstruction result will di-
verge if rn.1 for any n . Once this happens, the
conjugate gradient vector is reset, i.e., dn50, and
the CGD reconstruction is restarted using the pre-
vious reconstruction result, mn21, as the initial
value.

A rescaling technique, which sets the maximum
value of each column of the weight matrix W to 1.0
exactly, i.e., wij8 5wij /maxi51

I $wij%, to make W more
uniform and possibly better conditioned, was used
to suppress numerical errors and accelerate
convergence.22

4 RESULTS

Figure 2 shows the images reconstructed from
MCS-generated data without added noise, using
the matched weight matrix and the CGD method,
after 1000 iterations. Figure 2(A) is the target image;
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Fig. 2 Images reconstructed from simulation data, after 1000 it-
erations without added noise, with matched weight matrix, using
the CGD method with (B) and without (C) positivity constraints. (A)
is the target image.
Figure 2(B) is the image reconstructed with positiv-
ity constraints; and Figure 2(C) is the result ob-
tained without use of constraints. Figures 3(A)–3(C)
show the reconstructed images obtained by using
unmatched weight matrices for media of 10, 40, and
100 mfp diameter, respectively.

The images reconstructed from simulation data
with 5%, 10%, 100%, and 500% white noise added
to the detector readings are shown in Figure 4. The
reconstruction results for the 10% added noise case
after 10, 100, and 1000 iterations are shown in Fig-
ure 5. The results for the noise-free detector read-
ings with 5%, 10%, and 100% white noise added to
the matched weight matrix are shown in Figure 6,
and the reconstructed images for the 100% noise
case after 10, 100, and 1000 iterations are shown in
Figure 7. Reconstruction results from the simula-
tion data with 5%, 10%, and 100% added white
noise in both the detector readings and weight ma-
trices are shown in Figure 8. Figure 9 shows the
results from the pure noise data after 100 iterations,
using the CGD method without constraints, where
the indicated 1%, 10%, and 100% noise levels are
the same as those added to the detector readings. In
these results, the most positive and most negative
image values both lie in voxels near the cylinder
axis. Figure 10 shows the analogous results using
the constrained CGD method.
J

5 DISCUSSION AND CONCLUSIONS

Currently applicable image reconstruction schemes
in optical tomography require a priori knowledge of
the physical properties of the reference or back-
ground medium, which frequently is difficult to ob-
tain. The use of other image modalities, e.g., CT or
MR, provides a convenient way to estimate the
physical properties but introduces a mismatch in
the weight matrices. Our analysis of a simply struc-
tured phantom shows that qualitatively good (i.e.,
few artifacts, size and shape of image peak nearly
correct, sharp edge detection) images [Figure 2(B)]
can be obtained and the rod can be accurately lo-
cated using the constrained CGD method, when the
reconstruction is based on noiseless detector read-
ings and the matched weight matrix. The same data
and reconstruction algorithm yielded unacceptable
results [Figure 2(C)] when positivity constraints
were not used. This strongly suggests that even if
the use of constraints in reconstruction may lead to
a nonlinear solution to a set of linear equations, the
advantage confers by restricting the reconstructed
results to a feasible and interpretable region more

Fig. 4 Images reconstructed from simulated detector readings with
additive Gaussian white noise after 100 iterations. Noise levels
are: (A) 5%, (B) 10%, (C) 100%, and (D) 500%. The target is the
same as shown in Figure 2(A).

Fig. 5 Images reconstructed from simulation data with 10%
Gaussian white noise added to the detector readings after (A) 10
iterations, (B) 100 iterations, and (C) 1000 iterations. The target is
the same as shown in Figure 2(A).
Fig. 3 Images reconstructed from simulation data, after 1000 it-
erations of the CGD method, with unmatched weight matrices. The
target is the same as shown in Figure 2(A).
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Fig. 6 Images reconstructed from simulation data with noise
added to the weight matrix, after 1000 iterations. Noise levels are:
(A) 5%, (B) 10%, (C) 100%. The target is the same as shown in
Figure 2(A).
than compensates. Good image quality was also ob-
tained for unmatched weight matrices [Figures
3(A)–3(C)], but the location of the rod in the image
becomes increasingly inaccurate as the mismatch
increases.

The noise study shows that the reconstruction al-
gorithm is much more sensitive to noise in the
weight matrix than to noise in the detector read-
ings, when compared to the reconstructed results
with no added noise [Figure 2(B)]. The structure of
the rod can be identified with reasonable accuracy
with as much as 100% noise [noise variance equals
power of detector readings; Figures 4(A)–4(C)]
added to the detector reading, but 5% [Figures
6(A)–6(C)] noise added to the weight matrix is suf-
ficient to blur the rod structure. However, an en-
couraging finding is that the rod location remains
accurate with as much as 100% noise added to the
weight matrix [Figure 6(C)]. This indicates that if
we are interested only in detecting the presence and
specifying the location of an inhomogeneity, and
not so much in characterizing its structure, a rough
estimate of the weight matrix from an anatomically
accurate map is good enough to produce acceptable
results. However, when the same amount of noise
is added to both detector readings and the weight
matrix, the combined effect may reduce the image
quality dramatically with as little as 10% added
noise (compare Figures 4, 6, and 8).

The impact of noise on an image increases with
the number of iterations of the reconstruction algo-
rithm when noise is added to the detector readings
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(Figure 5). A similar phenomenon (not shown) was
also observed in images reconstructed using the
SART algorithm, which, like CGD, is a simulta-
neous iterative reconstruction algorithm, but was
not observed when the (sequential, iterative) POCS
method was used. There is a plausible, testable ex-
planation for these phenomena. When noise is
added to the detector readings, we can conve-
niently consider the reconstructed image as a sum
of a noiseless detector readings image and a pure
noise image (this is not strictly true, because the
positivity constraints imposed on the reconstruc-
tion results make the inverse problem nonlinear).
Because noise is randomly added to the detector
readings, it is evenly distributed in all dimensions
of the detector readings space. The CGD algorithm
updates voxels by moving the evolving solution in
the direction of the conjugate gradient, and those
voxels with the highest weights will be affected by
noise in earlier iterations due to their greater con-
tributions to the conjugate gradient. Thus, the spa-
tial extent of the noise effect seen in early stages of
the reconstruction is quite limited, and the magni-
tude of the effect is much smaller than that of the
noiseless detector readings [Figure 5(A)]. As the
number of iterations increases, the noise effect
spreads out over the entire volume involved in the
reconstruction and finally dominates the results
[Figure 5(C)]. There is not such a clear trend, how-
ever, when noise is added to the weight matrix
(Figure 7). In comparison to the results obtained
with systematically mismatched weight matrices

Fig. 8 Images reconstructed from simulation data with noise
added to both the detector readings and the weight matrix, after
100 iterations. Noise levels are: (A) 5%, (B) 10%, (C) 100%. The
target image is the same as shown in Figure 2(A).
Fig. 7 Images reconstructed from simulation data with 100%
noise added to the weight matrix after (A) 10 iterations, (B) 100
iterations, and (C) 1000 iterations. The target is the same as shown
in Figure 2(A).
Fig. 9 Images reconstructed from pure noise data as the detector
readings, using the CGD method without positivity constraint: (A)
1%, (B) 10%, (C) 100%, after 100 iterations. The most negative
(white) and most positive (black) image values both occur in voxels
lying near the cylinder axis.
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Fig. 10 Image reconstructed from pure noise data as the detector
readings, using the constrained CGD method, after 100 iterations.
Noise levels are: (A) 1%, (B) 10%, (C) 100%.
(Figures 2 and 3), the randomly mismatched weight
matrices cause more structural change than posi-
tion change in the reconstructed images (Figure 7).

The ‘‘images’’ obtained when pure noise (Figures
9 and 10) was substituted for R have an initially
unexpected nonrandom structure, with the greatest
absolute image intensity in voxels near the cylinder
axis. This is unlike other image modalities such as
CT and MRI, where images that are uniformly
zero6random noise sprinkled throughout would
be expected under such reconstruction conditions.
One possible explanation is that this phenomenon
is caused by the nonlinearity arising from our use
of positivity constraints, but this is ruled out by the
observation that it occurs as well when the recon-
struction is unconstrained. The results are, on the
other hand, consistent with the ill-conditioned
structure of the weight matrix, whose columns rep-
resenting voxels near the axis contain much smaller
elements than those in columns corresponding to
peripheral voxels. Nevertheless, the effect of ran-
dom input is to produce a nonrandom output.
Moreover, as seen in Figures 6 and 7, the path to
this result also appears to be structured (i.e., the
image evolves towards the center). This observation
may lend itself to the development of algorithms
which seek to detect trends in the evolving image
that are consistent with the effect of added noise
and adaptively filter out this effect.

5.1 IMPACT ON MEDICAL IMAGING

This study demonstrates the effect of mismatched
weight matrices and noise on image reconstruction
in optical diffusion tomography. When applying
optical diffusion tomography to diagnostic medical
imaging for detecting, say, a tumor or hemorrhage,
a weight matrix mismatch could be expected to
arise from positioning uncertainty and from the
discrepancy between the real reference medium
and the one obtained either from an anatomically
accurate map from other image modality or from
the iterative Born approximation. The sources of
noise in the detected signal are shot noise, environ-
mental dark current, and numerical errors. Our re-
sults demonstrate that our reconstruction algorithm
is more sensitive to mismatches in the weight ma-
trix than to noise in the detector readings. The ma-
jor factors determining the accuracy of the weight
J

matrix are the tissue scattering and absorption cross
sections and the photon transport model. Currently
available cross section data are incomplete and in-
sufficient to characterize different tissue types.
Even for a single tissue type (e.g., breast tissue),
significant discrepancies are observed among dif-
ferent reported values because of different model-
ing and measurement schemes. In terms of photon
transport models, the diffusion approximation to
the transport equation has long been used as a stan-
dard approach for photon transport because it is
relatively simple in comparison to the transport
equation and its solutions are in good agreement
with experimental data for special cases such as in-
finite uniform media. However, a study by
Hielscher et al.23 has shown that the discrepancy
between solutions of the transport and diffusion
equations may be as high as 100% in a finite, inho-
mogeneous medium. In addition, some reports
point out that even the transport equation may not
accurately model photon transport because it does
not consider interference and other wave phenom-
ena. Thus, without more accurate tissue data and
photon transport models, the application of diffuse
optical tomography may be limited to phantom
studies or to tissues that are uniform and well char-
acterized, such as breast tissue.

Although image quality is less sensitive to noise
in the detector readings than in the weight function,
an effort should still be made to reduce its influence
to the lowest level. Shot noise can be reduced by
increasing the source intensity and/or increasing
the signal acquisition time. Care should be taken to
make sure that the source intensity is within the
tissue tolerance limits, and patient immobilization
is important to reduce the positioning uncertainty
caused by increasing the integration time. The ef-
fects of dark current and numerical error can be
reduced by better equipment setup and proper fil-
tering (e.g., incorporating regularization24 and total
least squares25 techniques to enhance image qual-
ity). In addition, our study suggests that when
gradient-type reconstruction algorithms are used, a
compromise between image quality and noise ef-
fects should be considered when choosing the num-
ber of iterations. This is in contrast to the case of
ideal, noiseless data, where the reconstruction typi-
cally improves steadily as the number of iterations
is increased.

Acknowledgment
This work was supported in part by NIH Grant R01
CA59955 and by NIH Grant R01 CA66184.

REFERENCES
1. Optical Tomography, Photon Migration, and Spectroscopy of Tis-

sue and Model Media: Theory, Human Studies, and Instrumen-
tation, B. Chance and R. R. Alfano, Eds., Proc. SPIE 2389
(Feb. 1995).

2. Medical Optical Tomography: Functional Imaging and Monitor-
ing, G. Müller et al., Eds., SPIE Institutes, Vol. IS11, SPIE
Press, Bellingham, WA (1993).
143OURNAL OF BIOMEDICAL OPTICS d APRIL 1998 d VOL. 3 NO. 2



CHANG, GRABER, AND BARBOUR
3. B. Chance, ‘‘Optical method,’’ in Annu. Rev. Biophys. Biophys.
Chem. 20, 1–28 (1991).

4. D. A. Benaron, J. P. Van Houten, W.-F. Cheong, E. L. Ker-
mit, and R. A. King, ‘‘Early clinical results of time-of-flight
optical tomography in a neonatal intensive care unit,’’ in
Proc. Optical Tomography, Photon Migration, and Spectroscopy
of Tissue and Model Media: Theory, Human Studies, and Instru-
mentation, Proc. SPIE 2389, 448–464 (Feb. 1995).

5. J. Chang, H. L. Graber, and R. L. Barbour, ‘‘Progress toward
optical mammography: imaging in dense scattering media
using time-independent optical sources,’’ in 1994 IEEE Con-
ference Record of Nuclear Science Symposium and Medical Imag-
ing Conference, pp. 1484–1488, Norfolk, VA (Nov. 1994).

6. R. L. Barbour, S. S. Barbour, P. C. Koo, H. L. Graber, R.
Aronson, and J. Chang, ‘‘MRI-guided optical tomography,’’
IEEE Comput. Sci. Eng. Mag. 2(4), 63–77 (1995).

7. J. Chang, R. L. Barbour, H. Graber, and R. Aronson, ‘‘Fluo-
rescence optical tomography,’’ in Proc. Experimental and Nu-
merical Methods for Solving Ill-Posed Inverse Problems: Medical
and Nonmedical Applications, Proc. SPIE 2570, 59–72 (1995).

8. M. A. O’Leary, D. A. Boas, X. D. Li, B. Chance, and A. G.
Yodh, ‘‘Fluorescence lifetime imaging in turbid media,’’
Opt. Lett. 21, 158–160 (1996).

9. J. Chang, R. Aronson, H. L. Graber, and R. L. Barbour, ‘‘Im-
aging diffusive media using time-independent and time-
harmonic sources: Dependence of image quality on imaging
algorithms, target volume, weight matrix, and view angles,’’
in Proc. Optical Tomography, Photon Migration, and Spectros-
copy of Tissue and Model Media: Theory, Human Studies, and
Instrumentation, Proc. SPIE 2389, 448–464 (Feb. 1995).

10. S. R. Arridge and M. Schweiger, ‘‘Sensitivity to prior knowl-
edge in optical tomographic reconstruction,’’ in Proc. Optical
Tomography, Photon Migration, and Spectroscopy of Tissue and
Model Media: Theory, Human Studies, and Instrumentation,
Proc. SPIE 2389, 378–388 (Feb. 1995).

11. W. C. Chew and Y. M. Wang, ‘‘Reconstruction of two-
dimensional permittivity distribution using the distorted
Born iterative method,’’ IEEE Trans. Med. Imag. 9, 218–225
(1990).

12. D. A. Boas, M. A. O’Leary, B. Chance, and A. G. Yodh, ‘‘De-
tection and characterization of optical inhomogeneities with
diffuse photon density waves: A signal-to-noise analysis,’’
Appl. Opt. 36, 75–92 (1997).

13. J. Chang, Y. Wang, R. Aronson, H. L. Graber, and R. L.
Barbour, ‘‘A layer stripping approach for recovery of scat-
tering medium using time-resolved data,’’ Proc. SPIE 1767,
384–395 (July 1992).

14. S. R. Arridge, M. Schweiger, and D. T. Delpy, ‘‘Iterative re-
144 JOURNAL OF BIOMEDICAL OPTICS d APRIL 1998 d VOL. 3 NO. 2
construction of near infrared absorption images,’’ Proc. SPIE
1767, 372–383 (July 1992).

15. A. G. Marshall and F. R. Verdun, Fourier Transforms in NMR,
Optical, and Mass Spectrometry, Chap. 5, Elsevier Science
Publishing, New York (1990).

16. D. Y. Paithankar, A. Chen, and E. M. Sevick-Muraca, ‘‘Fluo-
rescence yield and lifetime imaging in tissues and other
scattering media,’’ Proc. SPIE 2679, 162–175 (1996).

17. H. Jiang, K. D. Paulsen, U. L. Österberg, and M. S. Patterson,
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