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Abstract

We examine the impact of background lumiphore on
image quality in luminescence optical tomography. A
modification of a previously described algorithm [1,2}
is developed that estimates the background
luminescence directly from the detector readings.
Numerical simulations were performed to calculate the
diffusion—regime limiting form of forward-problem
solutions for a specific test medium. Image
reconstructions were performed with and without white
noise added to the detector readings, using both the
original and the improved versions of the algorithm.
The results indicate that the original version produces
unsatisfactory  reconstructions when background
lumiphore is present, while the improved algorithm
yields qualitatively better images, especially for small
target—to—background lumiphore ratios.
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reconstruction, range constraint.

1. Introduction

The use of lumiphore to enhance image quality in
optical diffusion tomography has received considerable
interest recently [1-5]. Luminescent compounds play a
role in optical tomography analogous to that of
radiopharmaceutical agents in nuclear medicine, in that
both types of molecules actively emit photons from
which projection or tomographic images are
reconstructed. In an earlier paper [1] we described
algorithms we have developed for reconstruction of two
quantities of interest when the background scattering
and absorption coefficients are known. These are the
luminescence yield yo,,N, (ie., the product of the
lumiphore’s quantum yield, microscopic absorption
cross section, and concentration) and the mean lifetime
T . We showed that yo ,,N, can be reconstructed from

DC (i.e., steady—state, ® = 0) detector readings. If
detector readings for at least one o %0 also are
available, then they can in principle be used to

reconstruct 1 directly, without knowledge of yo , N, .
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However, for a numerical reason we adopted a
“concentration correction” that makes use of the
Yo ,,N, information while reconstructing t. To
implement this correction, the maximum value of each
Y6 N, map is first obtained, and any value smaller
than a threshold fraction of the maximum is set to zero.
This modified yo,,N, map is then used in the

calculation of the weight matrix (imaging operator) for
the corresponding mean lifetime reconstruction. The
examples we presented [1] showed that this
concentration correction procedure works well in the
absence of background lumiphore.  Subsequently,
however, we have seen that when background
lumiphore is present, the reconstruction results are not
satisfactory (see below).

One idea we have pursued in our efforts to deal
with the problem just described is to make better use of
a priori information in our image-reconstruction
algorithms. It is well known that the use of a priori
information is a powerful tool for finding the solutions
of ill-conditioned problems [6]. For example, previous
studies [7] have demonstrated that positivity constraints
and range constraints can effectively improve image
quality. However, great care must be taken to use range
constraints properly, or they may not provide
satisfactory results when background lumiphore is
present. Background lumiphore not only significantly
increases the detected signal, but also makes it difficult
to assign a lower limit to the range constraint. An
arbitrary choice of a lower bound (typically zero) is not
satisfactory, as shown below in the results section.
Thus, a requirement for successful reconstruction by our
algorithms is a reasonable estimate of the background
lumiphore concentration.

2. Reconstruction

In this study, a new procedure was developed to
improve the reconstruction of concentration and mean
lifetime when background lumiphore is present by
directly estimating the background lumiphore’s
contribution from the detector readings. Here we
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assumed that the background lumiphore is uniformly
distributed with a constant concentration and mean
lifetime, and that the target is an isolated object. Under
these assumptions, the new procedure is:

1. Estimate the background luminescence yield (BLY)
via the maximum possible yield principle (MPYP).
This is a technique to compute a reasonable estimate
bly of the (true) BLY from the DC detector readings.
Suppose that all of the detected signal comes from
background lumiphore. Since the BLY is constant, it
is equal to the ratio of a detector reading to the
corresponding weight function integrated over the
entire volume of the medium. An estimate of BLY is
obtained for each detector reading, and the lowest of
these estimates is used as bly. BLY must be < bly,
since BLY > bly would imply negative contributions
to the detector readings from the target.

2. Reconstruct yo,,N, using an iterative algorithm

(e.g., CGD, POCS, SART) with a range constraint
where the upper and lower bounds respectively are
the maximum possible target luminescence yield and
bly. The former is estimated by supposing that all of
the lumiphore added to the medium is concentrated
in the target volume.

3. Re-estimate the BLY. That is, after reconstructing
the targets from the initial bly, a new bly can be
computed for use in the next reconstruction by
subtracting the contribution of the reconstructed
target from the detector readings. Repeated 1 to 3
until satisfactory bly is obtained.

4. Restrict the target volume by setting yo ,,N, to bly
in all voxels where yo_ N, — bly is less than a

preset fraction of max(yc ,,_,No) - bly .

5. Reconstruct the mean lifetime of the target and
background. Here, we sum the weight function over
all the background voxels so that the unknowns in
this reconstruction are the voxels in the target plus
one “lump” background voxel, thereby greatly
reducing the dimension of the vector of unknowns.

3. Method

Numerical simulations were performed to calculate
solutions to the diffusion equations describing the
excitation and emission fields. The phantom was an
infinite medium with background lumiphore uniformly
distributed in an 8.0x8.0 cm? square region of interest
(ROI) (Figure 1A). This area is discretized into 0.25x
0.25 cm? square voxels. The target was a smaller square
located at the center of the ROI (Figure 1B). In the four
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Figure 1. Sketches of phantom structure and source—detector
ring used for diffusion computation.

test cases studied, the target size was: (A) 0.5 cmx0.5
c¢m, (B) 1.0 cmx1.0 cm, (C) 1.5 emx1.5 cm, and (D) 2.0
cmx2.0 cm. The macroscopic cross sections for both

excitation and emission light were p, =1,000m"™
1

and

r, =3m"" . The absorption cross section introduced by

1

the lumiphore was u,, =001m™. Two sets of mean

lifetimes of the background and target lumiphore were
tested. One is 5x10°° s for the background and 10”° s for
the target. The other is 10 s for the background and 5x
10 s for the target. Diffusion equation solutions were
computed for DC illumination and for time-harmonic
illumination at a modulation frequency of 100 MHz.
These computations supplied the required information
for reconstructions of luminescence yield and of mean
lifetime. Different levels, defined as the ratio of the
signal mean to the noise standard deviation, of Gaussian
noise were also added to the detector readings. Images
were obtained by using both the previously described
(1] and improved versions of the reconstruction
algorithm, both of which were terminated after 10,000
iterations.

4. Results

Figure 2 shows the reconstructed luminescence
yield and mean lifetime when the background-to-target
luminescence yield ratio was 0.01 and 7,,; < Ty,q, for
different target sizes, using the previously described
algorithm with a positivity constraint on the
luminescence yield and a 5x107'°s to 5x107°s range
constraint on the mean lifetime. (A) 0.5 cmx0.5 cm, (B)
1.0 cmx1.0 cm, (C) 1.5 cmx1.5 ¢m, and (D) 2.0 cmx2.0
cm. Figure 3 illustrates the reconstruction results when
the background—to—target luminescence yield ratio was
0.2 and 1, < Ty, for targets of different sizes, when
the improved algorithm was used instead.  The
luminescence yield was constrained to lie between the
maximum target value (0.05 m!) and the first bly
selected by the algorithm. Figure 4 illustrates the
reconstructed results for the same luminescence yield
ratio as in Figure 3, but after the third estimate of BLY
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Figure 2. Reconstruction results with background—-to—target
luminescence yield ratio of 0.01 and different target sizes,
using the previously described algorithm [1] with positivity
constraints.

and with and t,, > T,,. Figure 5 demonstrates the
reconstruction results for a fixed background—to—target
ratio of 0.01 and a fixed target size of 2.0 cmx2.0 cm,
with different levels of added noise (1.0%, 3.0%, 5.0%,
and 10.0%) and using the improved algorithm with
constraints, after the first estimate of BLY.

5. Discussion and Conclusions

Our earlier report [1] described an algorithm that
sequentially computes yo,,N, and t using DC and
AC data. (While neither sequential computation nor the
use of different ws is essential [3-5], we based our
choice of these conditions on the different -
dependence of detector sensitivity to changes in the
quantities we reconstruct [2].) In the presence of
background lumiphore, however, the original algorithm,
which used a positivity constraint, failed to provide
accurate quantitative results for either yo,,N, or 1

(Figure 2). The algorithm set many voxels to zero
while reconstructing yo N, , instead of generating the

uniform background we expected. It is likely that this is
a consequence of the underdeterminedness of the
weight matrix, which has infinitely many left-inverses,
and that a uniform distribution does not lie on the
fastest—-converging path chosen by the algorithm. For a

fixed target-to-background luminescence yield ratio,
more accurate reconstructions were obtained for larger
targets. This indicates that the background-to—target
lumiphore ratio is not by itself a meaningful index of
the difficulty of an image reconstruction problem, and
the target size should be considered as well.

The reconstructions shown in Figures 3 and 4,
produced by the revised algorithm, show significant
improvement over those obtained from the original
version, even though the background-to-target
lumiphore ratio is twenty times larger in Figure 3 than
in Figure 2. The qualitative and quantitative results are
better after the third estimate of BLY (Figure 4) than
after the first (Figure 3). The correlation of image
quality with target size is not significant, or even
becomes negative, because the BLY is accurately
estimated using the MPYP. The size of the target,
however, is underestimated for larger targets, while the
quantitative values are overestimated. This is probably
a consequence of the underdeterminedness of the
weight matrix, and the error can be reduced by using
regularization techniques [8-9]. In addition, the
reconstructed mean lifetime is less accurate for larger
objects because of the underestimated target size. The
negative correlation between image quality and target
size seems reasonable when we recall that the presence
of a large target increases the detector readings
appreciably above that due to the background. Thus,
the BLY is overestimated by an amount depending on

yo N, (Targetis 0.0l m™!)

0.003 0.012

0.003 0.0369 0.003 0.05 0.003 0.05

v (Target is 10~ s and background is 5x10°9 s)

8.74x10"°  5x10°  5.84x10™¢

(A) (B) © D)

Figure 3. Reconstruction results with background—to—target
lumiphore ratio of 0.2 and different target sizes, using the
improved algorithm with range constraints, after the first
estimate of BLY. Target locations and sizes are the same as
for Figure 2, but background-to-target lumiphore ratio is 20
times larger.
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Figure 4. Reconstruction results with background-to-target
lumiphore ratio of 0.2 and different target sizes, using the
improved algorithm with range constraints and three-step
estimate of BLY. Target locations and sizes are the same as
for Figure 2.
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the target’s yield, size and location. High target yields,
large targets, and targets located near sources or
detectors result in significant overestimates of the BLY,
thus distorting the reconstructed images.

The addition of noise distorted the reconstructed
images in a noise—level-dependent manner. Results
shown in Figure 5 demonstrate that reasonable
qualitative accuracy was obtained from the improved
algorithm even for 10% Gaussian noise added to the
detector readings. The quantitative estimate of yo , N,

is inaccurate because of the noise. The mean lifetime
values, however, are acceptable for up to 5% noise,
even if the quantitative estimate of yo , NV, is incorrect.

This is reasonable because yo,,N, is used only to

delineate the target from the background. Its
quantitative value is not important, because that is
factored out in the mean lifetime reconstruction when
computing the ratio of imaginary to real parts.
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