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We present a useful strategy for imaging perturbations of the macroscopic absorption cross section of
dense-scattering media using steady-state light sources. A perturbation model based on transport
theory is derived, and the inverse problem is simplified to a system of linear equations, WDm 5 DR,
where W is the weight matrix, Dm is a vector of the unknown perturbations, and DR is the vector of
detector readings. Monte Carlo simulations compute the photon flux across the surfaces of phantoms
containing simple or complex inhomogeneities. Calculation of the weight matrix is also based on the
results of Monte Carlo simulations. Three reconstruction algorithms—conjugate gradient descent,
projection onto convex sets, and the simultaneous algebraic reconstruction technique, with or without
imposed positivity constraints—are used for image reconstruction. A rescaling technique that
improves the conditioning of the weight matrix is also developed. Results show that the analysis of
time-independent data by a perturbation model is capable of resolving the internal structure of a
dense-scattering medium. Imposition of positivity constraints improves image quality at the cost of a
reduced convergence rate. Use of the rescaling technique increases the initial rate of convergence,
resulting in accurate images in a smaller number of iterations.
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1. Introduction

Many clinical imaging modalities that have been
developed during the past two to three decades—
e.g., x-ray computed tomography 1CT2, positron-
emission tomography 1PET2, single-photon-emission
computed tomography 1SPECT2, and magnetic reso-
nance imaging 1MRI2—employ forms of energy whose
propagation through biological tissues are weak-
scattering processes.1,2 Consequently, simple two-
dimensional 12-D2 projection imaging can produce

J. Chang, H. L. Graber, and R. L. Barbour are with the State
University of New York Health Science Center at Brooklyn,
Brooklyn, N.Y. 11203; J. Chang is with the Department of
Pathology, H. L. Graber is with the Department of Physiology and
Biophysics, and R. L. Barbour is with the Department of Pathol-
ogy and the Department of Physiology and Biophysics. R. Aron-
son is with Bioimaging Sciences Corporation, West Orange, New
Jersey, 07052.
Received 24 April 1995; revised manuscript received 8 Decem-

ber 1995.
0003-6935@96@203963-16$10.00@0
r 1996 Optical Society of America
interpretable images even of thick structures. More-
over, tomographic imaging techniques based on the
Radon transform and filtered backprojection algo-
rithms based on the Fourier slice theorem3–5 or
Fourier diffraction theory4,5 can produce detailed,
high-resolution anatomical maps of 2-D sections of a
person or another target medium. The spatial reso-
lution presently achievable in x-ray CT imaging is
.200 pixels@cm2within a 1-mm-thick slice.6 Amuch
more difficult problem is imaging based on analysis
of measurements of highly scattered signals, such as
red and near-infrared electromagnetic radiation 1i.e.,
approximately 0.7–1.3-µm wavelengths2 propagat-
ing through biological tissues, which are weakly
absorbing in this range. ‘‘Photon-migration imag-
ing’’ and ‘‘optical diffusion tomography’’ 1ODT2 have
been suggested as names for the proposed imaging
technique; image reconstruction in this case amounts
to solving the three-dimensional 13-D2 inverse scatter-
ing problem, and the methods successfully employed
in the low-scattering imaging modalities are inappli-
cable.
The diagnostic potential of ODT is sufficiently
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great that many groups of researchers in several
countries are now actively engaged in basic research
in this area.7–9 As an example of this potential,
hemoglobin and other heme-bearing proteins are
among the endogenous compounds largely respon-
sible for the absorption that does occur at red and
near-infrared wavelengths. Reconstructed images
of the absorption cross section can be related to the
spatially varying concentrations of the different
chemical or electronic states of these compounds,10
and physiological and functional information not
provided by other imagingmodalities can be inferred
from these relations. Imaging the scattering cross
section should also be possible and could have diag-
nostic value in itself, as scattering appears to occur
principally at the boundaries of intracellular organ-
elles,11 and in an incipient disease state, scattering
changesmaywell precede anatomical changes detect-
able by other imaging techniques. In addition, it
should be possible with ODT to image the spatial
distributions of exogenous tracers, which may be
detected by their effect on either absorption or on
scattering, or by fluorescence. Further, ODT tech-
niques may be generalizable to other, nonbiological,
imaging problems, thereby increasing their range
and the size and the complexity of the targets that
can be studied. There could well be, for example,
geologic, oceanographic, and astrophysical applica-
tions.
Because the target medium in an ODT measure-

ment is both heterogeneous and strongly scattering,
filtered backprojection and transform-based recon-
struction algorithms are inapplicable. However, an
alternative, algebraic, mathematical framework in
which to approach the image-reconstruction problem
is available. If the unknown distribution of target
properties can be recast as a small perturbation from
a known reference state, then the tomographic imag-
ing problem is expressible mathematically as a
system of linear equations; recovery of the image is
equivalent to solving the linear system.3–5 As we
discuss below, experience shows that this approach
works even when the perturbation is not especially
small. Algorithms that have been successfully used
in diagnostic imaging include direct matrix inver-
sion 1Gaussian elimination, or LU decomposition2,
singular-value decomposition, and iterativemethods.
Direct matrix inversion and singular-value decompo-
sition are very efficient for small problems, i.e.,
below a threshold size, but are generally not suitable
for inversion of large matrices, and they are rarely
used in practical image reconstructions. The itera-
tive methods, which repeatedly update the recon-
structed images according to the detected signals
and a priori information, are particularly suitable
for large-scale inverse problems; moreover, unlike
the direct-matrix-inversion and the singular-value-
decomposition methods, useful images may be ob-
tained even after a small number of iterations.
In earlier published reports,12–19 we have pre-

sented reconstructed images of both simulated tar-
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gets and laboratory phantoms consisting of a small
number 11–32 of absorbing heterogeneities embedded
in a strongly scattering, homogeneous background
medium. These image reconstructions employed
several algorithms, differing sets of detectors 3e.g.,
detectors surrounding the target in some cases but
only on the same surface as the source 1i.e., backscat-
tering2 in others4, different combinations of con-
straints and regularization techniques, and different
source types 1steady-state measurements in some
cases and time-resolved measurements in others2.
In the present study we extended these analyses and
compare three reconstruction algorithms: projec-
tion onto convex sets20 1POCS2, conjugate-gradient
descent21,22 1CGD2, and the simultaneous iterative
reconstruction technique4,23 1SART2. Image quality
and convergence rates were evaluated for both 2-D
and 3-D versions of each algorithm. Also presented
are results of an examination of the effects produced
by several elementary regularization methods24 and
of the dependence of image quality on the number of
sources as well as on the location and the orientation
of the sources with respect to the target surface.

2. Perturbation Model

It is generally accepted that for the sorts of problems
addressed in this report, photonsmay be treated as if
they were classical particles and that in such a
regime the migration of monoenergetic photons from
a steady-state, or continuous-wave 1cw2, source
through an isotropic medium can be described by the
time-independent one-speed transport equation25,26:

V · =f1r, V2 1 µT1r2f1r, V2 2 e
4p

µs1r, V8 · V2

3 f1r, V82dV8 5 s1r, V2, 112

where dV is the differential solid angle about the
direction V of photon motion, V is the unit vector in
the direction V, f1r, V2 is the angular intensity at
position r in direction V 1photons per unit area, unit
solid angle, and unit time2, s1r, V2 is the angular
source density at r in direction V 1photons per unit
volume, unit solid angle, and unit time2, µs1r, V8 · V2
is the macroscopic differential scattering cross sec-
tion at r from direction V8 into direction V 1inverse
length per unit solid angle2, µs1r2 5 e4p

µs1r, V · V82dV8

is the macroscopic scattering cross section 1inverse
length2, µa1r2 is the macroscopic absorption cross
section 1inverse length2, and µT1r2 5 µa1r2 1 µs1r2 is the
macroscopic total cross section 1inverse length2.
We restrict further discussion to changes in absorp-

tion, but the extension to changes in scattering is
immediate. We derived the perturbation model5,27
adopted for absorption cross sections in this study by
introducing perturbations of the cross sections and
intensity, µa = µa 1 Dµa and f = f 1 Df, into Eq. 112
and truncating the terms proportional to DµaDf.
This is our basic linearity assumption. It holds for
sufficiently small Dµa.



The general expression for the corresponding
change, DR, in the detector response in the linear
regime is

DR 5 e
V

wa1r2Dµa1r2d3r, 122

wherewa1r2 is the appropriate weight function at r.
The adjoint angular intensity, f11r, V2, is defined

as the detector response that is due to one photon
born per second at r and emitted in direction V.
The change in absorption density at r in dV that is
due to Dµa is Dµa1r2f1r, V2dV. The corresponding
change in the total detector response is then

DR 5 2 e
V
e
4p

Dµa1r2f1r, V2f11r, V2dVd3r. 132

Our linearity assumption implies that both f and f1

are to be computed for the unperturbed medium.
Comparison of Eqs. 122 and 132 gives

wa1r25 2 e
4p

f1r, V2f11r, V2dV. 142

If we can reasonably neglect the angular correla-
tions between f and f1, for instance, if either one is
nearly isotropic, then Eq. 142 reduces to

wa1r2 5
21

4p
f1r2f11r2, 152

where f1r2 and f11r2 are, respectively, the total direct
intensity and adjoint intensities:

f1r2 5 e
4p

f1r, V2dV,

f11r2 5 e
4p

f11r, V2dV.

As for the assumption that the angular correlation
between f and f1 is negligible, if f1r, V2 and f11r, V2
are expanded in spherical harmonics, one can show
that the lowest-order correction term to wa is 3J1r2 ·
J11r2@4p, where J and J1 are the direct and ad-
joint fluxes, respectively. Since 0J1r2 · J11r2 0 # 0J1r2 0
0J11r2 0 # f1r2f11r2 and the inequalities are usually
satisfied quite strongly, the correction is usually
small compared with the term we retained in Eq. 152.
3The 1@4p factor in Eq. 152 results from the normaliza-
tion we chose here for f1. A different choice would
give a different factor.4
Finally,f11r, V2 has awell-known alternative inter-

pretation as the angular intensity at 1r, 2V2 that is
due to a source r1rd, 2Vd2, where r1rd, Vd2 is the
detector response function for photons entering the
detector at rd in direction Vd.28 Thus the adjoint
intensity can be computed as the solution to a
forward problem.
For numerical implementation of the perturbation

equation, consider a medium divided into a set of J
small, contiguous, nonoverlapping volume elements,
or voxels. The voxel shapes are arbitrary, and they
are sufficiently small that the optical properties µa
and µs do not vary significantly within a voxel.
Letting Vj be the volume of voxel j, j 5 1, 2, . . . , J,
the discretized version of perturbation Eq. 122 for
source–detector pair i, i 5 1, 2, . . . , I, is

DRi 5 o
j
wa,i jDµa, j, 162

where DRi is the change 1perturbation2 in detector
reading associated with source–detector pair i, Dµa, j
is the averaged perturbation of absorption cross
section in voxel j, and wa,i j is the integrated absorp-
tion weight function of voxel j for source–detector
pair i.
The above linear perturbation equation can also be

represented in matrix form:

WaDma 5 DR, 172

where

Wa 5 3
wa,11 wa,12 · · · wa,1J

wa,21 wa,22 · · · wa,2J

···
···

· · ·
···

wa,I1 wa,I2 · · · wa,IJ

4 ,
Dma 5 3

Dµa,1
Dµa,2
···

Dµa,J
4 , DR 5 3

DR1

DR2

···
DRI

4 .
The inverse problem can be stated: Given a set of
source–detector pairs, the perturbed detector read-
ings DR, and the precalculated weight function Wa,
find the perturbation of the macroscopic absorption
coefficients Dma of the target medium using Eq. 172.

3. Reconstruction Algorithms

A. Iterative Methods

We obtain the least-squares solution to a system of
linear equations by iteratively modifying the un-
knowns Dma to minimize the mean-squared error E:

E 5 ‰1WDma 2 DR2T1WDma 2 DR2

5 ‰Dµa
TADma 2 bTDma 1 ‰DRTDR, 182

where A 5 WTW and b 5 WTDR. Any vector Dma
minimizing E is a least-squares solution. We find
such a solution by setting the derivative of E to 0:

g1Dma2 5
≠E

≠Dma
5 ADma 2 b 5 0, 192
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where g1Dma2 5 ADma 2 b is the gradient of E.
Three iterative algorithms—projection onto convex
sets,20 conjugate gradient descent,21,22 and the simul-
taneous algebraic reconstruction algorithm,4,23 all
based on the perturbation model in Eq. 172—were
used for image reconstruction.

1. Projection onto Convex Sets
POCS is a sequential projection method that reaches
the intersection point of L convex constraint sets by
the sequential and iterative projection of the current
estimate of the solution onto each set Cl 1i.e., the set
that satisfies the lth constraint2, l 5 1, 2, . . ., L. A
set is convex if any linear combination tx 1 11 2 t2y of
two of its elements x and y, with 0 , t , 1, also
belongs to the set. Some familiar examples of con-
vex sets are circles, lines, and cubes. Letting Dma

n

represent the estimate of Dma at the nth iteration,
each step in POCS can be represented by

Dmn11 5 PL + PL21 + · · · + P1Dmn. 1102

Here, the circle operator denotes the conformation of
functions, Pl represents the projection operator onto
Cl, such that PlDma

n is the element in Cl that is closest
to Dma

n. Each iteration in POCS consists of one use
of all L projection operators. Youla20 used the fixed-
point theorem of functional analysis to prove that, as
long as the intersection of the constraint sets is not
empty and each constraint set is convex, iterative
projections onto these sets will converge to their
intersection.
The set of solutions to each linear equation in Eq.

172 is a convex set. An advantage of POCS is that it
can easily incorporate nonlinear constraints in addi-
tion to these linear equations if the sets of solutions
satisfying these constraints are convex. The usual
source for these nonlinear constraints is a priori
information, i.e., known properties of the media that
help to regularize the reconstruction results. An
example of this would be a range constraint, which
limits the values of the reconstructed results. See
Ref. 20 for other useful constraints and their associ-
ated projection operators. When only the linear
equations are used, POCS is equivalent to the arith-
metic reconstruction technique 1ART2 proposed by
Gordon et al.29 for reconstruction of 3-D structures
from 2-D electronmicrographs and for x-ray imaging.
1This is not to say, however, that the POCS algorithm
is strictly valid only for tomographic-imagingmodali-
ties, such as x-ray CT, in which the energy traverses
the medium along straight-line paths. In contrast
to algorithms based on the projection-slice theorem,
POCS can be used to solve any system of linear
equations, whatever their physical origin.2

2. Simultaneous Algebraic Reconstruction
Technique
The SART algorithm, developed by Anderson and
Kak23 in 1984, combines the positive features of ART
and the simultaneous iterative reconstruction tech-
nique30 1SIRT2. Whereas the projections are applied
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sequentially in ART, in SIRT the computed changes
in all projections are averaged, and the average is
used to update the reconstruction. This usually has
the effect of suppressing certain types of artifacts
that are characteristic of ART reconstructions, but it
converges more slowly. SART updates the recon-
struction simultaneously, as in SIRT, but with an
efficiency equal to or better than that of ART. The
formula for computing the nth estimate of the absorp-
tion perturbation in the jth voxel is

Dµa, j
n 5 Dµa, j

n21 1

o
i51

I

wi j

DRi 2 o
j851

J

wi j8Dµa, j8
n21

o
j851

J

wi j8

o
i51

I

wi j

. 1112

When used in CT imaging, this algorithm can yield
reconstructions of good quality and numerical accu-
racy in only one iteration.4,23 1When applied to
linear systems such as those generated by an ODT
measurement, the rate of convergence is lower.
However, as was explained above for the POCS
algorithm, this does not imply SART is really valid
only for straight-line tomographic-imaging problems.
It is an algebraic method suitable for finding the
solution to any system of linear equations.2

3. Conjugate Gradient Descent
CGD, like SART, uses all detector readings simulta-
neously to compute each update of the estimated
absorption perturbation. The formula for comput-
ing Dma

n is

Dma
n 5 Dma

n21 2 andn, 1122

where

an 5
6gn2162

6Wdn62
,

dn 5 2gn21 1 bndn21,

bn 5
6gn2162

6gn2262
,

gn21 5 ADma
n 2 b 5 gn22 2 an21Adn21.

A and b are as defined previously, Dma
0 is an initial

estimate of the perturbation, and the initial values
taken for the other quantities are g0 5 ADma

0 2 b,
b1 5 0, and d1 5 2g0, where gn and dn are,
respectively, the gradient and the conjugate gradient
vectors. As a consequence of the coefficient bn in
the formula for dn, 5dn6 is A-orthogonal. That is, the
A-weighted inner product 1dn2TAdm 5 1Wdn2T1Wdm2
equals zero if n fi m. an is called the step size.
Theoretically, this algorithm should converge after
at most J iterations, because 5d1, d2, . . . , dJ6 spans



the solution space. In practice, round-off error may
prevent convergence; thus a convergence criterion is
needed.

B. Regularization

Strong scattering dilutes the effects of perturbations
in the medium and distributes the effect of a local-
ized perturbation among many detectors. Conse-
quently, columns corresponding to adjacent voxels in
the weightmatrices of Eq. 172may be nearly identical.
The mathematical significance of this is that the
linear systems that arise in practice typically are ill
conditioned. This is a reflection of the physics of the
situation. Multiple scattering is a smoothing pro-
cess. Very different configurations of absorbers can
give quite similar outputs on the surface. There-
fore, as was stated above in the subsection on POCS,
in practice it is necessary to regularize the computa-
tion in order to obtain a physically correct solution.
We examined the effect of ill conditioning and the

efficacy of different regularization schemes by apply-
ing the reconstruction algorithmswith no regulariza-
tion and again with a positivity constraint on the
reconstruction results. This constraint was im-
posed after each iteration:

Dµa, j
n 5 0 if Dµa, j

n , 0. 1132

1. Constrained Conjugate Gradient Descent
The CGD method is the most efficient of the three
algorithms but is not able to produce good-quality
images because of the difficulty in applying range
constraints. The CGD method iteratively updates
the reconstruction on the basis of the previous
reconstruction Dma

n21 and all the preceding gradient
vectors 5g0, g1, . . ., gn216 and conjugate gradient vec-
tors 5d1, d2, . . ., dn6. Imposition of positivity con-
straints on Dma

n21 leads to miscalculation of the
gradient and the conjugate gradient vectors and
results in the loss of the A-orthogonality properties.
Consequently, the conjugate gradient vectors
5d1, d2, . . ., dJ6 do not span the solution space with
this sort of regularization, so the reconstruction will
not converge after J iterations. The reconstruction
may even diverge in some cases.
In this study a technique to detect divergence

when range constraints are imposed on the recon-
struction was used. The reconstruction is diverging
if the ratio of two consecutive mean-squared errors,

r ;
En

En21
5

E1Dma
n2

E1Dma
n212

,

where E1Dma
n2 was defined in Eq. 182, is greater than

one. It is known that if the mean-squared error
increases during any one iteration, it will continue to
increase in all subsequent iterations. When diver-
gence is detected, the conjugate-gradient vector is
reset, i.e., we take dn 5 0, and the CGD reconstruc-
tion is restarted with Dma

n21 as the initial estimate of
Dma. That is, in the worst-case limit, the con-
strained CGD reduces to a standard gradient-
descent algorithm.

2. Weight-Matrix Rescaling
To suppress numerical errors and accelerate conver-
gence, we employed a matrix-rescaling technique.
The effect of rescaling the weight matrix is to make it
more uniform; this can potentially improve its condi-
tioning.21 Two rescaling criteria were applied: 112
rescaling the maximum of each column to 1, i.e.,
w8i j 5 wi j@maxi51

I 5wi j6; 122 rescaling the average of
each column to 1, i.e., w9i j 5 wi j@oi51

I wi j. Recon-
structions were also computed without any rescaling
in order to gauge the efficacy of this technique.

4. Methods

We performed numerical studies to examine the
capability of the algorithms 1see Section 32 derived
from our theoretical considerations 1see Section 22 for
reconstructing images of the interior properties of
dense-scattering media by analyzing measurements
made at the surface. In order to reduce the amount
of computation, we took full advantage of all symme-
try elements present in each problem.

A. Coordinate System

Figure 1 shows cross-sectional and longitudinal views
of the phantom geometry used for this study.
Cylindrical coordinates 1r, w, z2 were used, with dis-
tances in the r and z dimensions measured in
multiples of one mean free path length 1mfp2 and the
angle w measured in degrees. The outer boundary
of the phantom volume is r 5 10 mfp, and although
the cylinder axis is infinitely long, the forward and
the inverse computations are restricted to the por-
tion 0z 0 # 20 mfp. This 3-D volume was discretized
into 16,400 voxels bounded by surfaces of constant
r 5 nr@2 mfp, nr 5 1, 2, . . ., 20; of constant w 5 w1r2 5
360nw@12nr 2 12 degrees, nw 5 0, 1, . . ., 21nr 2 12; and
of constant z 5 61nz 1 0.52 mfp, nz 5 0, 1, . . ., 20.
There are 400 voxels in each transectional 1r, w2
plane. All voxels have the same volume but differ-
ent shapes, varying from a cylindrical central voxel
to progressively more brick-shaped voxels as r in-
creases.

B. Monte Carlo Simulations

The numerical studies employed Monte Carlo meth-
ods to compute the internal light distributions and
the flux of light reemitted across the surface of 3-D
cylindrical, isotropically scattering media. In all
cases the cylinder axis was infinitely long, its diam-
eter was 20 mfp, and the light source was a pencil
beam directed normally to the surface. Each pho-
ton incident upon a medium underwent repeated
scattering until it either was absorbed in the interior
or escaped.
The internal light distribution was calculated for a

homogeneous, cylindrical medium; the average colli-
sion density was computed in each of 16,400 voxels.
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These were arranged in forty-one 1-mfp-thick layers
perpendicular to the cylinder axis, with 400 voxels in
each layer; each voxel’s volume was p@4 mfp3 1i.e.,
pr2h@4002; see Fig. 1. The output was reported in
units of collisions per unit volume per incident
photon. The refractive-index ratio n between the
medium and its surroundings was 1.33:1. Photons
approaching the boundary were internally reflected
according to the reflection probability for unpolar-
ized light. The medium was nonabsorbing. Each
history was terminated when the photon escaped
from the medium. A total of 2 3 108 photons were
launched into the medium, and the number of colli-
sions occurring in each voxel during each 0.5-mfp
interval of the total distance propagated through the
medium was counted. As the speed of light is
constant in a homogeneous medium, this produced a
calculation of the time-resolved collision density in

1a2

1b2

Fig. 1. 1a2 Longitudinal view of a portion of the cylindrical
reference medium with coordinates z and r explicitly indicated,
illustrating the division of the volume into layers by planes, 1Z1
and Z22 perpendicular to the cylinder axis, i.e., by surfaces of
constant z, and the division of the layers into rings by a set of
surfaces of constant r 1P1 and P22. 1b2 A cross-sectional view,
showing the voxel geometry and the cylindrical coordinate system
used in this study; the z direction is perpendicular to the plane of
the sketch.
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each voxel. These results were also used in time-
and frequency-domain studies, not reported on here,
in addition to the work that is presented. The
temporal profiles were subsequently integrated to
determine the cw collision density in each voxel.
Detector readings were calculated in separate

simulations from those that computed the collision
densities; see Fig. 2. The cylinder’s surface was
first divided into 41 bands by planes perpendicular
to its axis with the central band bisected by the plane
containing the source. Each band was then divided
into 36 congruent areas by lines parallel to the axis.
The detectors were cosine detectors at the surface,
evenly placed at 10° intervals about the cylinder.
Each detector counted all photons emerging from the
cylinder within a patch of surface of area 5p@9 mfp2
1i.e., 2prh@362. The output was reported in units of
exiting photons per unit area per unit solid angle per
incident photon. The readings of detectors in only
the central bandwere actually used by the reconstruc-
tion algorithms.
A correlated sampling technique was employed to

reduce the statistical errors associated with the
simulation results. Each photon in the heteroge-
neous test medium followed exactly the same path as

1a2

1b2

Fig. 2. 1a2 Longitudinal view of a portion of the cylindrical
reference medium with coordinates z and r explicitly indicated,
illustrating the division of the surface into bands by planes 1H1
and H22 perpendicular to the cylinder axis and the bands into
sectors by a second set of planes 1V1 and V22 intersecting along the
axis. 1b2 Simulation source and detector configurations.



its counterpart in the homogeneous reference me-
dium. If its trajectory intersected a heterogeneity,
or black body absorbers in all the examples in this
report, then it contributed to a detector response for
the reference medium only; if it did not, then it
contributed equally to the response of a reference-
medium detector and the detector at the same
location on the target medium. This minimizes the
effect of randomness on the difference between the
readings of the paired detectors. In addition, be-
cause the responses of both sets of detectors were
calculated in a single run, their differences could be
calculated simultaneously. This eliminated the need
to perform subtractions in a separate postprocessing
step, with the attendant possibility of small effects
being reported as zero as a consequence of the finite
precision of the reported results.
Detector readings were calculated for three dis-

tinct test media; see Fig. 3. In the first case 3Fig.
31a24 the heterogeneity was a single 2-mfp-diameter
black rod whose axis coincided with the cylinder
axis. In the second case 3Fig. 31b24 the heterogeneity
was a single 2-mfp-diameter rod whose axis was
halfway between the cylinder axis and the boundary,
and detector readings were calculated for three
different locations of the source. In these cases, n 5
1:1, µa 5 0.0, and 53 107 photons were launched into
the medium. That is, there was no internal reflec-
tion at the boundaries of these target media, in
contrast to the index-mismatched boundary of the
mediummodeled in the collision-density calculations.
In the third case 3Fig. 31c24 the heterogeneity was
thirteen 0.5-mfp-diameter rods in a fourfold symmet-
ric cruciform array, and detector readings were
calculated for six different locations of the source,
with the cylinder rotated through an angle of 9°
between successivemeasurements. In these compu-
tations, n 5 1.33:1, µa 5 0.0, and 2 3 108 photons
were launched into the medium. The cw detector
responses were calculated by integration of the
temporal profiles that were the direct output of the
simulations.
The use of black absorbers in these tests violates

the linearity assumption in the theoretical and the
algorithmic developments. In reality the self-
shadowing effect of an absorber produces an essen-

1a2 1b2 1c2

Fig. 3. Phantoms modeled in the Monte Carlo simulations: 1a2 cen-
tered rod, 1b2 off-axis rod, and 1c2 13 rods.
tially hyperbolic dependence of DR on Dµa, and the
mutual coupling effect of two absorbers results in a
net DR that is smaller than the sum of those
produced by either of the two acting independently.31
This is the flux-depression effect well known in
reactor physics.26 However, in assessing the practi-
cal utility of an imaging scheme, especially one that
requires comparing the responses of a target me-
dium to a reference, it is essential to determine the
sensitivity of the algorithm to violations of its under-
lying premises. The decision to use black absorbers
was made as part of an effort to determine the
limitations of the imaging methods described in this
report. It also conferred two practical benefits that
partially offset its disadvantages. First, the use of
weaker perturbations would have required the simu-
lation of a larger number of photon histories to
produce statistically significant calculations of DR.
Second, it simplified the computations vis-à-vis a
finite-absorption model in which the heterogeneity’s
µT is different from that of the background.
All simulation programs were written in standard

FORTRAN 77 and were performed on IBM RS6000
workstations of the Center for Advanced Technology
in ComputerApplications and Software Engineering
1CASE Center2 at Syracuse University. Because the
runs shared time with other jobs on these platforms
and because reboots and systemmaintenance caused
many runs to be prematurely terminated, it was not
possible to measure the time required for the simula-
tions directly. However, by extrapolating the time
required for short test runs, one can reasonably
estimate that the average time required for every 107
photon histories was between 20 and 25 h in both the
collision-density and the detector-reading calcula-
tions.

C. Weight-Function Calculation

The intensity f is readily obtained from the Monte
Carlo simulation 1MCS2-computed collision density,
as collision density is simply the product µTf. As
the adjoint can also be computed by solving a for-
ward problem 1see Section 22, the same collision
density-to-cross section ratio was used for f1. The
1r, w2 coordinates of the computed f1 were rotated
through the central angle between source and detec-
tor, and the product of f and f1 was computed in
each voxel. To account for the factor of 1@4p in Eq.
152, image-reconstruction results were multiplied by
4p to produce the final computed Dma. The alge-
braic sign in Eq. 152 is accounted for because in
practice we defined DR as R0 2 R and Dma as
ma 2 ma

0.

D. Image Reconstruction

Image reconstructions were performed with simu-
lated detector readings as input, by all three algo-
rithms, with and without range constraints, and
with and without rescaling of the weight matrix.
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Three types of reconstructions were computed: 112
3-D reconstruction, in which each voxel was individu-
ally considered; 122 2-D reconstruction, in which a
priori knowledge of symmetry in the direction paral-
lel to the cylinder axis was assumed; 132 2-D limited
reconstruction, in which it was assumed that only
those voxels in the plane of the detectors contribute
to the detector readings 1i.e., that photons that
scatter out of the plane of the source and detectors do
not subsequently scatter back in2. Convergence rate
and image quality were evaluated for each combina-
tion of algorithm, rescaling technique, and con-
straints.

5. Results

A. Simulation Results

Polar logarithmic plots of the computed absolute
detected intensities 1R02 and the intensity perturba-
tions 1DR2 caused by the centered absorber are shown
in Fig. 4. In this instance the source was incident
upon the medium at w 5 0°, where w is the angular
dimension in the cylindrical polar coordinate system
1see Subsection 4.A.2. Detectors were positioned at
10° intervals in w about the phantom. R0 falls by
more than 3 orders of magnitude as w increases from
0°–10° to 170°–180°, whereas DR is nearly constant.
In fact, the difference between the greatest and the
least values of DR is ,7% of the mean value. The
same DR data are shown in a linear Cartesian plot in
Fig. 51a2, along with the quadratic least-squares fit;
the correlation coefficient is 0.73. This plot reveals
that much of the variation in DR among different
detectors is attributable to random noise, but there
is also a small systematic variation in DR with w 1see
Section 62. Plots of DR versus w for the case of the

Fig. 4. Monte Carlo simulation results: polar plot of the loga-
rithms of the absolute intensities 1R02 and the intensity differences
1DR 5 R0 2 R2.
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off-center absorber with sources located at w 5 0°,
90°, and 180° and detectors positioned at 10° inter-
vals about the phantoms are shown in Fig. 51b2. DR
for a source at 270° is the mirror image, about w 5
180°, of the data for the 90° source. Note that
values of w plotted on the abscissa refer to the
absolute location of the detector about the cylinder,
as shown in the sketch accompanying Fig. 51b2, not to
the relative angle between source and detector.

1a2

1b2

Fig. 5. 1a2Monte Carlo simulation results: intensity differences
1DR 5 R0 2 R2 and their second-order least-squares fit for the
centered absorber. The correlation coefficient of the fit is 0.73.
1b2 Monte Carlo simulation results: intensity differences
1DR 5 R0 2 R2 for the off-center absorber; the 270° data are the
mirror image 1with respect to 180°2 of the 90° data.



B. Reconstruction Results

These results 1Figs. 6–122 are displayed as gray-scale
images. The first panel in each figure shows the
target for the reconstruction; a white disk represents
a cross-sectional cut through the cylinder, and the
black area within it indicates the location, the size,
and the shape of the heterogeneity 1Dµa 5 `2. The
linear perturbation model must, however, recon-
struct a finite value for Dµa.31 Under each image is
a linear scale shading gradually from white to black
with the maximum value of the reconstructed Dµa
explicitly indicated in each.
Reconstructed images of the centered rod 3Fig.

61a24, the off-center rod 3Fig. 71a24, and the 13-rod 3Fig.
81a24 phantoms, comparing the performance of the
POCS, CGD, and SART algorithms, are shown in
Figs. 6, 7, and 8, respectively. All these results were
obtained from 2-D reconstructions with the rescaled
weight matrix W8 1maximum value in each column
set equal to 1.0; see Section 32 and a positivity
constraint on the results 1in addition, because the
MCS employed correlated sampling, DR is necessar-
ily nonnegative2. Instead of using a convergence
criterion, we arbitrarily terminated all but one recon-
struction after 10,000 iterations. The exception
was the SART reconstruction of the 13-rod phantom,
which was allowed to proceed for 100,000 iterations.

1a2 1b2

1c2 1d2

Fig. 6. Two-dimensional reconstructed images of the centered-
rod phantom after 10,000 iterations: 1a2 The target: the white
disk represents a cross-sectional cut through the cylinder, and the
black area within it indicates the location, the size, and the shape
of the heterogeneity 1Dµa 5 `2. Reconstructions by the 1b2 POCS,
1c2 CGD, and 1d2 SART algorithms. The maximum value of the
reconstructed Dµa is explicitly indicated on the linear scale,
shading gradually from white to black, under each image.
The results shown in Figs. 9–11 are the 3-D
reconstructions corresponding to the same three
phantoms. The same constraints and rescaling tech-
niques were used as in the 2-D reconstructions.
Because of the larger number of computations per-
formed, the 3-D reconstructions needed more time
per iteration, and the reconstructions of the centered-
rod and the 13-rod phantoms were terminated after
1000 iterations. However, the reconstructions of
the off-center phantomwere permitted to proceed for
10,000 iterations.
Two-dimensional limited reconstructions 1weights

only in the z 5 0 section of the cylinder are consid-
ered2 of the off-center rod phantom, with each of the
three algorithms, are shown in Fig. 12. The same
constraints and rescaling techniques were used as in
the 2-D and the 3-D reconstructions.
In all the one-rod cases the internal-reflection

properties of the media used for the detector-reading
computations were different from what was modeled
in the weight-function calculations 1see Subsection
4.B.2. We used the value n 5 1.00 when computing
the detector readings and the value n 5 1.33 when
calculating the weights. This systematic error did
not affect the ability of the reconstruction algorithm
to locate and size the heterogeneities accurately 1see
Section 62.

C. Comparison of Algorithms, Effect of Positivity
Constraints, and Effect of Rescaling

Graphs of the mean-squared error E versus the
number of iterations for 2-D reconstructions of the

1a2 1b2

1c2 1d2

Fig. 7. 2-D reconstruction results of the off-center rod phantom
after 10,000 iterations: 1a2 The target, 1b2 POCS reconstruction,
1c2 CGD reconstruction, and 1d2 SART reconstruction.
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off-center rod phantom are shown in Fig. 13.
Examination of the curves obtained for the three
algorithms when there was no positivity constraint
imposed 3Fig. 131a24 shows that the rate of decrease of
E was greatest for the CGD algorithm. However,
the mathematical solution to which the algorithm
converged was physically wrong. The rate of de-
crease of E associated with the constrained CGD
algorithm 3Fig. 131b24 is much lower and is compa-
rable to those seen for the constrained POCS and
constrained SART algorithms; however, the accu-
racy of the reconstructed images is much higher.
The impact of imposing positivity constraints on

Dma
n is seen directly in the reconstructed images

shown in Fig. 14. The images reconstructed by the
CGD algorithm without and with positivity con-
straints are shown for both the centered rod 3Fig.
141a24 and the off-center rod 3Fig. 141b24 phantoms.

1a2 1b2

1c2 1d2

1e2

Fig. 8. 2-D reconstructed images of the 13-rod phantom after
10,000 iterations: 1a2 The target. Reconstructions by the
1b2 POCS, 1c2 CGD, 1d2 SART, 110,000 iterations2, and 1e2 SART
1100,000 iterations2 algorithms.
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1a2 1b2

1c2 1d2

Fig. 9. 3-D reconstructed images of the centered-rod phantom
after 1,000 iterations: 1a2 The target. Reconstructions by the
1b2 POCS, 1c2 CGD, and 1d2 SART algorithms.

1a2 1b2

1c2 1d2

Fig. 10. 3-D reconstruction results of the off-center rod phantom
after 10,000 iterations: 1a2 The target. Reconstructions by the
1b2 POCS, 1c2 CGD, and 1d2 SART algorithms.



1a2 1b2

1c2 1d2

Fig. 11. 3-D reconstructed images of the 13-rod phantom after
1,000 iterations: 1a2 The target. Reconstructions by the 1b2 POCS,
1c2, CGD, and 1d2 SART algorithms.

1a2 1b2

1c2 1d2

Fig. 12. 2-D reconstruction results of the off-center rod phantom
with the weights on only the plane z 5 0 1i.e., 2-D limited
reconstruction2 after 10,000 iterations: 1a2 The target. Recon-
structions by the 1b2 POCS, 1c2 CGD, and 1d2 SART algorithms.
The impact of rescaling the weight matrix for each
of the three reconstruction algorithms is shown in
Figs. 15–17. The images shown are reconstructions
of the off-center rod phantom, with positivity con-
straints on Dma

n, as a function of the number of
iterations. The results obtained with W, W8, and
W9 as the weight matrix are compared for the POCS
1Fig. 152, the CGD 1Fig. 162, and the SART 1Fig. 172
algorithms.

1a2

1b2

Fig. 13. Mean-squared error versus the number of iterations for
different algorithms: 1a2 unconstrained and 1b2 constrained recon-
structions.

1a2

1b2

Fig. 14. Image reconstructed without positivity constraints 1left2,
image reconstructed with positivity constraints 1center2, and
target 1right2 by the CGD algorithm after 10,000 iterations: 1a2 cen-
tered and 1b2 off-center rod phantom.
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6. Discussion and Conclusions

The purpose of this study was to derive a useful
strategy for imaging highly scattering media with a
perturbation model based on transport theory. The
perturbation model adopts a first-order approxima-
tion to the change in photon intensity, DR, caused by

1a2

1b2

1c2

Fig. 15. Reconstructed images obtained by the POCS algorithm
and 1a2 no rescaling 1W2, 1b2 rescaling the maximum of each column
to 1 1W82, or 1c2 rescaling the average of each column to 1
1W92. Results are plotted after 100 1left2, 1000 1center2, and 10,000
1right2 iterations.

1a2

1b2

1c2

Fig. 16. Same as Fig. 15 except that the reconstructed images
are obtained by the CGD algorithm.
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the perturbation of the collision cross sections, Dµs
and Dµa. It greatly simplifies the inverse problem
by introducing a linear imaging operator, the weight
matrixW, which can be relatively easily inverted by
iterative methods. The quality of the image ob-
tained by solving the inverse problem therefore is a
function of the accuracy of this model and the
forward calculation of the weight matrix.
The computations performed for this study as-

sumed isotropic scattering. The rationale is three-
fold:

112 The computations are simpler. The empha-
sis here was on imaging, i.e., on solving the inverse
problem, and the details of the scattering are not
important in studying this question.
122 The correct differential cross sections are not

known, and they undoubtedly differ from tissue to
tissue. Any differential cross section used would be
arbitrary.
132 Along with all investigations by diffusion

theory, we fall back on the transport approximation.
In this approximation, µT is replaced by the trans-
port cross section, µtr, defined by

µtr 5 11 2 g2µs 1 µa,

where g is the average value of the cosine of the
scattering angle. It can be shown32 that, for a
particle going in a given direction, ltr 5 1@µtr is the
average distance it travels in this direction before its
direction is randomized. In effect, it is the distance
along its original direction to an isotropic collision.
For weakly anisotropic scattering it is known that
this is a good approximation, and even for the

1a2

1b2

1c2

Fig. 17. Same as Fig. 15 except that the reconstructed images
are obtained by the SART algorithm.



strongly anisotropic scattering in tissue it is as-
sumed to be not too bad. It is also a necessary
approximation for diffusion calculations to be appli-
cable.
Reconstructed images by diffusion theory along

with a perturbation algorithm analogous to our Eq.
162 have been reported by several groups.33–39 If the
voxel dimensions are larger than the diffusion coeffi-
cient D1r2—and preferably several times that—and
the boundary conditions are properly chosen, the
performance of a diffusion-based imaging operator
can be qualitatively very similar to that of the
transport-based operator. Unfortunately, there is
as yet no set of standardized problems on which all
groups work, so no detailed quantitative comparison
of different approaches to either the forward or the
inverse problem is possible. In any case, a priori
knowledge of the medium is required for accurate
forward modeling and solving the inverse problem.
It can be seen from Fig. 4 that R0 falls by more

than 3 orders of magnitude as the source–detector
angle w increases from 0° to 180°, whereas DR for the
case of the centered-rod phantom is nearly constant.
This is an encouraging result, as it was predicted on
the basis of the perturbation model, according to
which the weight at a point on the cylinder axis is
independent of w. The weak dependence of DR on w
is remarkable also because the rod, owing to both its
volume and its absorption cross section, strongly
violates the linearity assumption that underlies the
model. As shown in Fig. 51a2, however, DR is not
absolutely constant in w. As a consequence of the
rod’s relatively large 11-mfp2 radius, there is some
variation in weight across the area it occupies, and
the total weight integrated over this area is greatest
at w 5 0°, lowest at w 5 180°. Therefore DR would
be expected to fall somewhat as w increases from 0°
to 180°. Consistent with this prediction, the qua-
dratic-curve fit to the data has a minimum at w 5
180°.
All three curves of DR versus w for the off-center

rod in Fig. 51b2 have a maximum at w 5 175° or w 5
185°. The location of the maximum and the fact
that DR is larger for the w 5 180° source than for the
w 5 0° source are consequences of the absorber
location, as shown in the accompanying sketch.
The DR computed for the case of source w 5 0° and
detector w 5 175° is nearly the same as that for the
case of source w 5 180° and detector w 5 5°. This
could be interpreted as a direct confirmation of the
reciprocity theorem28 if the 1one-point, monodirec-
tional2 source and the 1finite-area, cosine2 detector
configurations were interchanged along with their
locations. As it is, the small difference between the
two computed values for DR suggests that the theo-
rem can be used as a check on the outcome of
appropriately paired measurements even if the
source–detector configurations are not truly recipro-
cal.
Inspection of Fig. 6 reveals that the CGD algo-

rithm produced a nearly perfect reconstruction of the
positions of the rods. Images almost as good were
also obtained with the SART and POCS algorithms.
For the off-center case, as seen in Fig. 7, all three
methods accurately located the absorber with mini-
mal artifacts. Although in all cases the images of
the 13-rod phantom, as shown in Fig. 8, were poorer
than those obtained for the single-rod phantoms,
identification of the general structure of the medium
is unmistakable. We believe the inability to resolve
the central features of the medium accurately is
caused by significant overestimation of the weight in
this region, which in turn is caused by the presence
of the peripheral absorbing rods 1i.e., flux depression2.
This phantom violates the linearity assumption un-
derlying Eq. 172 the most strongly of all those consid-
ered in these studies; the accuracy of the
reconstruction would presumably be improved by
use of the images shown in Fig. 8 as a modified
estimate of the reference medium.
The inverse scattering problem is intrinsically 3-D

because of the significant contribution to detector
response from photons that propagate out of the
source–detector plane and subsequently scatter back
to a detector. Thus, unlike CT or magnetic reso-
nance imaging, in which most detected signals arise
from slices selected by either the source–detector
pairs or by the gradient fields, voxels outside the
plane selected by source–detector pairs also should
be considered in ODT. The importance of these
voxels’ contributions depends on the absorption and
the scattering cross sections and on the dimensions
of the medium. In this study, results from 2-D, 3-D,
and 2-D–limited reconstructions were obtained and
compared. The 3-D reconstruction results 1Figs.
9–112 are similar to those of the 2-D case. This
suggests that, although the 3-D reconstruction is
most accurate, a 2-D reconstruction, which we make
either by assuming the phantom is symmetrical
along the z axis 1Figs. 6–82 or by using only the
weights of voxels in the source–detector plane 1Fig.
122, provides reasonably good results while giving
the solution in a much shorter computation time—as
little as 10% of the time needed for 3-D reconstruc-
tion in the study. This may prove to be a useful
strategy for obtaining an initial estimate of Dµs and
Dµa in more complex target media. However, the
phantoms used in this study have axial symmetry.
It is evident that in complex media such as tissue the
assumption of axial symmetry typically will be vio-
lated. Two-dimensional reconstructions may not
provide good results in these cases; additional stud-
ies on this topic are needed. For all the phantoms,
the comparative trend in image quality of the three
algorithms was CGD . SART . POCS. Overall,
the reconstructions clearly show that analysis of
time-independent data by a perturbation model is
capable of resolving the internal structure of a
dense-scattering medium.
Two factors, efficiency and quality, are key when

choosing a reconstruction algorithm for the inverse
scattering problem. High efficiency, defined as the
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rate of decrease of the mean-squared error, does not
generally guarantee a physically accurate image, as
a consequence of modeling error, noise, and accumu-
lation of numerical errors. Some nonlinear con-
straints derived from a priori information may pro-
duce better results. The use of constraints, however,
reduces the rate of convergence, as shown in Fig. 13.
When constrained, all three algorithms converge at
approximately the same rate, which is lower than
that of their unconstrained counterparts. CGD con-
verges much faster than the other methods when
there are no constraints, whereas inspection of Fig.
14 shows that unconstrained CGD provides the
worst results. As shown in this figure, the use of
constraints proved to be crucial. For both the cen-
tered rod and the off-center rod phantoms the recon-
struction results when there were no constraints
bore no resemblance to the target, and the imposi-
tion of constraints resulted in reconstruction of
nearly perfect images.
The images presented here also begin to address

questions about the sensitivity of the reconstruction
algorithms to both random and systematic errors in
the data. The MCS yields numerical solutions to
the transport equation containing 1sometimes signifi-
cant levels of2 noise. Therefore there necessarily
was random error in both the computed weight
functions and detector readings. There also were
three notable sources of modeling error in these
data. First, the heterogeneities were blackbody
absorbers, which have infinite µa. Consequently it
is not possible in the present report to compare the
MCS detector readings to those computed from Eq.
172, which clearly cannot have infinite solutions.
Second, DR was computed for cosine detectors that
received photons over a finite area, whereas W was
computed for normally directed, single-point, colli-
mated detectors. Third, the index-matched bound-
ary modeled for the one-rod computations differed
from the index-mismatched boundary of the collision-
density computations. These discrepancies serve
as tests of the power of the reconstruction algo-
rithms.
The rescaling techniques improve the reconstruc-

tion, especially in the early iterations. Comparison
of the results of all three methods, as seen in Figs.
15–17, shows that the reconstructed image with
rescaling is very different after 100 iterations from
the corresponding result obtained without rescaling.
The effect is largest, and most clearly beneficial,
when the CGD algorithm is used. A qualitatively
similar, but smaller, effect is seen in the results
produced by the SART algorithm. Setting themaxi-
mum of each column to 1.0 generally produces the
best results, followed by setting the average of each
column to 1.0, which in turn is better than the result
obtained with no rescaling. Although rescaling
causes a change in the results produced by the POCS
algorithm, it is not clear that there is any improve-
ment in the rate of convergence. When the recon-
structions were permitted to proceed for 10,000
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iterations, there was much less difference between
the images produced by the different weight-matrix
varieties. That is, rescaling does not appear to
introduce any systematic error into the computation,
and it can have the important benefit of increasing
the initial convergence rate. As a consequence, an
accurate imagemay be obtained in a smaller number
of iterations if these techniques are adopted.
This idea for the matrix-rescaling method was

derived from a recognition that, in dense-scattering
media, the range of possible weight values corre-
sponding to a particular voxel is strongly dependent
on the depth at which it lies in the medium. This
results in large variations in the maximum values
among the column vectors,wj, of Eq. 172. Physically,
wj is an expression of the importance of a particular
voxel to the detector response. Voxels having
weight-matrix elements with large absolute values
will have a greater impact on a detector than voxels
with smaller elements. Now it is expected that the
CGD method will preferentially update those voxels
having the greatest weights; this follows because
column vectors that have the largest sum of absolute
weights will most strongly influence the computed
conjugate gradient. From previous studies we have
determined that the largest values of weight typi-
cally occur in the vicinity of the sources and the
detectors.15 As these are located near the surface,
in early iterations the resultant image will be pre-
dominantly localized in these voxels, as shown in
Fig. 161a2. The effect of rescaling is to mathemati-
cally minimize differences in importance between
the weight vectors, leading to a more uniform update
of the reconstructed image.
Results shown in Fig. 161b2 demonstrate that, with

rescaling, a more accurate reconstruction is achieved
with the CGD algorithm after only 100 iterations.
Figure 161c2 shows that an improved result is also
obtained when the average value of the column
vector is set equal to one, but this result would
appear inferior to the case when the maximum value
is scaled to one 3Fig. 161b24. The corresponding re-
sults for the SART algorithm, which is also a simul-
taneous method, reveal 1Fig. 172 that rescaling pro-
duces some improvement in image quality in early
iterations, but the magnitude of this effect is less
than that observed for CGD. Without rescaling, the
SART result is more accurate at early iterations
than that obtained by CGD. Inspection of the SART
algorithm shows that during the backprojection step,
projections to each voxel are divided by the sum of
the elements of the column vector for that voxel.
This is equivalent to rescaling the average value of
each column vector to one. The effect of rescaling
on reconstructions obtained with POCS 1Fig. 152 is
less significant than that on the other algorithms.
In POCS the angles between the constraint sets are
critical determinants of the convergence rate. We
believed a priori that rescaling might have the effect
of increasing these angles and thereby increase the
convergence rate. This effect was not seen in these



results. Mathematical analyses of POCS20 have
shown that the quality of the image finally obtained
and the convergence rate may depend strongly on
the precise sequence in which the evolving estimate
of the solution is projected onto the constraints in Eq.
1102. The problem of optimizing the order in which
sequential algorithms consider the detector readings
needs to be addressed in future studies.
In conclusion, we have demonstrated the success-

ful recovery of patterns of absorption cross-section
inhomogeneity embedded in thick, dense-scattering
media. The images are accurate for a simple hetero-
geneity and are substantially correct even in the case
of a complex absorption pattern that strongly vio-
lates the premises of the physical model underlying
the reconstruction algorithms. This study used only
cw sources. It is reasonable to suppose that the use
of more sophisticated illumination–detection tech-
niques, e.g., time-harmonic40,41 and time-resolved42,43
measurements, will provide additional information
about a target medium, which could in turn permit
reconstruction of more accurate images. Although
the quality of some of the results we obtained might
seem to imply the sufficiency of cw measurement
alone, the optical thickness 120 mfp2 studied here is
sufficiently great that unscattered and singly scat-
tered light are negligible components of the total
detector response, but these media are nevertheless
thinner than many clinically interesting targets.
These issues of alternative measurement schemes
and optically thicker targets are among those we will
take up in the course of future work.
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Institutes of Health grant R01 CA59955, by Office of
Naval Research grant 00149510063, and by the New
York State Science and Technology Foundation.
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