
Strategies for Imaging Diffusing Media

Randall L. Barbour

Department of Pathology, SUNY Downstate Medical Center, Brooklyn,

NY, USA and NIRx Medical Technologies LLC., Glen Head, NY, USA

Harry L. Graber and Yong Xu
Department of Pathology, SUNY Downstate Medical Center, Brooklyn,

NY, USA

Yaling Pei and Raphael Aronson

NIRx Medical Technologies LLC., Glen Head, NY, USA

Abstract: We present a new approach to improving images in diffusion tomography,

involving construction of a linear filter function that converts images of absorption and

scattering coefficients back into the initial configuration being imaged. In a practical

situation, the initial configuration is not known, so that the filter function is constructed

by simulation for a neighboring situation. The algorithm is quite robust, so that the

neighboring situation need not be all that close to that of interest. We show how to

construct such a filter and give illustrations of how well it solves the problem. In

one configuration shown, this procedure gives a better image than 50 Born iterations.

This suggests that the inherent nonlinearity of the problem in diffusion tomography

may not be the largest source of error, but that linear errors may be more important.

A crucial advantage of the filter procedure is that the filter (or preferably, library of

filters) can be computed before the experiment of interest. It is only inversion of the

pattern of detector readings and application of the filter that take place afterward,

and both are very fast, leading to enhanced images in what is essentially real time.

Keywords:Medical and biological imaging, image reconstruct techniques, deconvolu-

tion, tomographic image processing

Address correspondence to Randall L. Barbour, Department of Pathology, SUNY

Downstate Medical Center, Box 25, 450 Clarkson Avenue, Brooklyn, NY 11203,

USA. E-mail: randall.barbour@downstate.edu

Transport Theory and Statistical Physics, 33: 361–371, 2004

Copyright # Taylor & Francis, Inc.

ISSN 0041-1450 print/1532-2424 online

DOI: 10.1081/TT-200051950

361



1. INTRODUCTION

One significant application of transport theory over the past 15 years or so has

been to near-infrared medical imaging (Aronson et al. 1991; Müller et al.

1993; Minet, Müller, and Beuthan 1998; Chance et al. 2003). This rapidly

growing field has gone by the name of diffusion tomography, and in the

opinion of many, it is destined to become a big technology.

Described as a physical and mathematical problem, the idea is that there

are a number of sources and detectors placed on the surface of the object, a

breast or head or whatever part of the body is to be imaged. One sends in

laser beams at one or more wavelengths and measures the radiation scattered

into the detectors from the object. One then solves an inverse problem for

the absorption and possibly the scattering coefficient as a function of position

in the interior, at each wavelength. The inversion is based on a linear

technique, while the coefficients and the detector readings are related nonli-

nearly. The resulting image, as shown in some of the figures below for

sample problems, is often very poor. The results can be used to recalculate

the parameters entering into the inversion in order to invert again to get an

updated image. This iteration often has to be done many times to get a good

image (Jiang et al. 1998; Schweiger and Arridge 1998).

We now describe a new and very different approach to improving the

initial image, using a linear filter approach.

2. METHODS

A typical experiment employs a number of sources and detectors. The sources

are activated in sequence by switches, and all of them are sampled several times

a second. All the detectors read the results from each source. We get a time

series of results by going through many cycles. Of course there is noise from

several causes. Now suppose that the cross sections in each voxel were to

vary sinusoidally in time, with a different frequency in each (two different fre-

quencies if we want scattering as well as absorption). If there were no errors in

the measurements and if we had an exact reconstruction and looked at the

frequency spectrum, we would find the cross sections for each voxel oscillating

at the respective input frequencies. (Technical point: We choose the frequencies

to be incommensurable so that one of them does not also show up in the results

due to sums or differences of input frequencies.) This does not happen so neatly

in practice, of course. At each frequency the reconstruction gives a spread of

perturbed cross sections of various strengths in voxels other than the input

voxel for that frequency. Typically these are nearby voxels. This spread can

be represented by a matrix, giving the strengths of the reconstructed

perturbed cross section found for each voxel, for each original voxel. Presum-

ably inverting this matrix will furnish a filter that we can expect to clean up the

reconstruction to give more exact results. Now this is a calculated filter matrix.
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If the calculated situation is close enough to the experimental situation, this filter

presumably improves the reconstruction from the experiment as well.

For reasons not yet fully worked out, this scheme was not really success-

ful, while working with the time series directly rather than with the frequency

transforms was much better. For that reason, the rest of this paper will use the

language of time series. For simplicity, we consider a case in which the scat-

tering cross section is constant and known, so that only the absorption cross

section needs to be examined.

Thus consider N voxels with incommensurate sinusoidally varying

cross sections. The forward calculation is done at T times that differ by a

small fraction of the smallest oscillation period, but over many cycles of

the longest period, and each forward calculation is inverted to give a calcu-

lated value of the cross section for each voxel. The input can be described

by a set of quantities ynt, where n is the voxel number and t the time index.

This information can be collected in an N � T matrix Y. Similarly, the

reconstructed cross sections can be described by quantities xnt, which can

be considered as elements of an N � T matrix X. We want to determine

an N � N filter matrix F that transforms X back into Y. That is, we

would like to solve the equation Y ¼ FX. We will then take this F and

apply it to reconstructed experimental images, in the hope of improving

them.

Now X and Y are in general not square matrices, since T � N in the situ-

ations of interest, and so they cannot in general be inverted. The calculations

whose results are shown here used 717 voxels and 16,384 (214) time steps. In

fact, in general the equation Y ¼ FX cannot hold. This situation is common in

statistical problems. The matrix equation represents T linear equations in N

unknowns, and unless the coefficients are linearly dependent in some way,

there is no exact solution. We therefore approximate the matrix equation as

well as possible in a least-squares sense. That is, we choose the elements

fnm, of F to minimize the quantity

I ¼
XT
t¼1

XN
n¼1

ynt �
XN
m¼1

fnmxmt

 !2

;

which gives the sum of the squares of the errors in the individual terms in

approximating Y by FX. Putting the derivative of I with respect to each

element of F equal to zero gives

@I=@fnm ¼ �2
XT
t¼1

ynt �
XN
k¼1

fnkxkt

 !
xmt ¼ 0:

This is just the matrix equation

YXT ¼ FXXT;
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where XT is the transpose of X. Since XXT is a square matrix, it can be

inverted in general to give

F ¼ ðYXTÞðXXTÞ
�1:

There is nothing original about this. It is just a linear regression

procedure. Note that if one wants to invert the procedure, trying to approxi-

mate X ¼ GY, one finds that

G ¼ ðXYTÞðYYTÞ
�1;

and in general, F and G are not inverses of each other.

To make this a little more concrete, Figure 1 shows a typical G filter for a

two-dimensional problem that gives the transformation of input information

to output information. It looks like a fuzzy identity matrix, which one might

expect. It’s somewhat more complicated because of course in two dimensions

integers can’t be well ordered, so for the most part next to a voxel with any

given number there are other voxels with numbers far removed. The graph

would not look really closely diagonal even if there were communication

only with nearest neighbors.

Figure 1. Typical G-matrix.
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3. RESULTS AND DISCUSSION

The remainder of the figures in this paper involve one or the other of

two different 2-D geometries. Both are for a circular region 8 cm in diameter

with uniform cross sections except for certain identical circular inclusions

with different absorption properties, located symmetrically about the center,

each 0.6 cm in diameter with center 1.5 cm from the center of the circle.

The background scattering and absorption coefficients are ms ¼ 10 cm21 and,

ma ¼ 0.05 cm21, respectively. In the inclusions, the scattering coefficient is

the same, but the absorption coefficient is either 0.06 cm21 or 0.40 cm21.

In the first situation, shown diagrammatically in Figure 2, there are four

inclusions. Sixteen sources and 16 detectors are located uniformly around

the circumference, with sources and detectors interspersed. Whether they

are interspersed or located in the same positions is actually not important,

provided that there are enough of them. We have also done calculations

Figure 2. Schematic four-inclusion geometry, full view.
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Figure 3. Demonstration of image-enhancing (spatial deconvolution) effect of the filter matrix F. Reconstructed images of four-inclusion

(Figure 2) target media are shown, for inclusion ma values of 0.06 cm21 and 0.4 cm21 (background ma ¼ 0.05 cm21). The images produced

by applying the filter matrix to the results in the top row are shown in the second row, for ma values of 0.06 cm
21 and 0.4 cm21.
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with 8 sources and 8 detectors and with 32 sources and 32 detectors. The

results are quite similar.

Figure 3(a) shows results of the inversion for 16 sources and 16 detectors

(16 � 16) for ma ¼ 0.06 cm21, Figure 3(b) for l6 � 16 and ma ¼ 0.40 cm21,

and Figure 3(c) for 32 � 32 and ma ¼ 0.4 cm21. The fourfold symmetry is

apparent, but little else of the structure. Figures 3(d)–3(f) have the same

source-detector numbers and absorption coefficients as Figures 3(a)–3(c),

respectively. Each results from its respective parent by applying a filter

matrix F for a circular region consisting of background only. The inclusions

show clearly in the filtered images.

A second geometry we examined is the limited-view geometry shown in

Figure 4. This is interesting because usually only a limited view is available in

clinical situations. There are nine sources and 24 detectors, located uniformly

on only half of the circumference, and two inclusions.

Figure 4. Schematic two-inclusion geometry, limited view.
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Figures 5(a) and 5(b) show unfiltered images, 5(c) and 5(d) the corre-

sponding filtered images. In Figures 5(a) and 5(c), ma ¼ 0.06 cm21 in the

inclusions; in Figures 5(b) and 5(d), ma ¼ 0.40 cm21. Without the filter one

sees just the symmetry with respect to a horizontal diameter. The other

features are due to the placement of the sources and detectors on the right

of the configuration. The computed absorptions with no filter are much

higher on the side away from the sources and detectors. The inclusions

aren’t seen at all. Evidently the image depends strongly on the placement of

the sources and detectors, and very little on the structure of the medium.

This is not true for the filtered images, which show the inclusions clearly.

To bring out even more strongly the advantages of using the filter, we

compared the effect of applying the filter to a first-order image with the results

Figure 5. Demonstration of image-enhancing (spatial deconvolution) effect of the

filter matrix F. Reconstructed images of two-inclusion, limited-view (Figure 4) target

media are shown, for inclusion ma values of 0.06 cm21 and 0.40 cm21 (background

ma ¼ 0.05 cm21). The images produced by applying the filter matrix to the results in

the top row are shown in the second row, for ma values of 0.06 cm
21 and 0.40 cm21.
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of using a Born iterative algorithm for the geometry of Figure 4 for ma ¼

0.40 cm21. Figure 6(a) is the initial configuration, the one to be imaged.

It looks a little unlike the idealized Figure 4 because it is generated by the

initial numerical approximation necessitated by the discrete algorithm

involved in our finite element scheme. Figure 6(b) shows the first-order image

and is identical with Figure 5(b). Figure 6(c) is the filtered image and is

identical with Figure 5(d). Figure 6(d) is the result of iterating 50 times

without a filter.

The two results look qualitatively similar, but the filtered one is altogether

superior. It is much more symmetric about the vertical diameter; the inclusions

are accurately located, which they are not in the other; and the resolution is

Figure 6. Comparison of filter-enhanced reconstructed image of two-inclusion,

limited-view (Figure 4) target medium, for inclusion ma values of 0.04 cm21 (back-

groud ma ¼ 0.05 cm21), and reconstructed image of the same target medium after 50

cycles of a Born iterative reconstruction algorithm. Unfiltered (i.e., first iteration)

reconstructed image and original target medium also are shown.
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better. Calculation of the 50 iterations takes about three hours on the desktop

computer used, and it all has to be done after the experiment (here a simu-

lation). Calculation of the filter is faster, though of the same order of

magnitude, but postprocessing requires only about 100ms on the same

computer. Further work has shown that the filter method is remarkably

robust. That is, the medium for which the filter is computed does not have

to be awfully similar to the actual medium to get good results.

Finally, one really significant and surprising realization arises from the

superiority of the filter method in the cases examined. It was always

thought that the major inaccuracies in diffusion tomography come from the

fact that the detector readings are nonlinear in the absorption and scattering

coefficients (Ostermeyer and Jacques 1997). The iterations are intended to

take account of this inherent nonlinearity. The success of the filter

technique, which is linear, suggests that the nonlinearities may not be as

large a source of error as errors inherent in the calculation itself, such as in

the discretization. It is certainly possible that the same situation holds for

other physical problems and that a filter technique of the sort described here

will have much broader application. If the filter method continues to be suc-

cessful in important cases, one can envision building a library of filter

matrices for a large number of situations, so that in a clinical situation one

can hope to find one that fits the experimental situation rather closely.
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