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Abstract—An important determinant of the value of quan-
titative neuroimaging studies is the reliability of the derived
information, which is a function of the data collection conditions.
Near infrared spectroscopy (NIRS) and electroencelphalography
are independent sensing domains that are well suited to explore
principal elements of the brain’s response to neuroactivation,
and whose integration supports development of compact, even
wearable, systems suitable for use in open environments. In an
effort to maximize the translatability and utility of such resources,
we have established an experimental laboratory testbed that sup-
ports measures and analysis of simulated macroscopic bioelectric
and hemodynamic responses of the brain. Principal elements of
the testbed include 1) a programmable anthropomorphic head
phantom containing a multisignal source array embedded within
a matrix that approximates the background optical and bioelectric
properties of the brain, 2) integrated translatable headgear that
support multimodal studies, and 3) an integrated data analysis
environment that supports anatomically based mapping of ex-
periment-derived measures that are directly and not directly
observable. Here, we present a description of system components
and fabrication, an overview of the analysis environment, and
findings from a representative study that document the ability to
experimentally validate effective connectivity models based on
NIRS tomography.
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I. INTRODUCTION

ODAY, a growing stable of quantitative neuroimaging

resources is being developed to support the exploration of
a host of factors affecting behavior, the impact of disease, and
strategies to overcome impairments. These systems vary widely
in the type of energy sources and detection strategies deployed,
sensitivity to intrinsic responses, form factor, and the range
of environments that can be studied. Common are large-scale
systems that support functional measures of hemodynamic re-
sponses [e.g., functional magnetic resonance imaging (fMRI)],
weak magnetic signals associated with bioelectric behavior
[magnetoencephalography (MEG)] or the distribution of radio-
labeled ligands [single photon computed emission tomography
(SPECT), positron emission tomography (PET)]. Different
from these are two complementary sensing technologies that
have the desirable attributes of inherently compact form factors
and sensitivity to the principal phenomenologies of the brain
that are associated with neuroactivation. Here we refer to near
infrared spectroscopy (NIRS) and electroencephalography
(EEG) for measures of the hemodynamic and bioelectric re-
sponse, respectively.

Together, these attributes strongly support development of
resources that can explore the mentioned elements affecting
human activity while enabling studies in natural environments
where the full range of behavior, in all its manifestations, can
be systematically explored. While desirable, such environments
and the goal of establishing resources suitable to operate in them
will produce a host of new challenges.

A strategy commonly used for developing such resources is to
implement appropriate sensing form factors and to test system
performance under the relevant conditions. While straightfor-
ward, adoption of this approach to functional imaging studies
can be problematic, because many of the interesting brain re-
sponses are not directly observable and instead rely on data in-
version schemes whose stability and limitations are often not
well appreciated. Adding to this is a general uncertainty re-
garding the expected response to a given cue. In contrast, struc-
tural imaging techniques are well validated, in part owing to
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the ability to evaluate phantoms that span a range of resolu-
tion and contrast values and are longitudinally stable. Access to
such resources is instrumental in guiding system development
and for validating operator training and routine performance
of deployed systems. Curiously, equivalent phantoms for func-
tional imaging studies are generally not available. Undoubtedly,
a complicating factor is the need to explore relevant features
of interest which, in this case, span a wide range of dynamic
responses.

We have previously developed a programmable dynamic
phantom for hemodynamic studies [1]. The active element is
an electrochromic cell (ECC) whose optical properties can be
precisely adjusted electronically, and in doing so can mimic
time-varying hemodynamic behaviors, either simple or com-
plex, with excellent precision and speed. This capability is one
part of a larger technology integration effort we have initiated
that has as its principal aims the ability to: 1) generate and
recover complex neurally derived macroscopic behaviors that,
in general, are not directly observable; 2) implement these
in a longitudinally stable, anthropomorphic head form that
supports maximal translatability between laboratory-based and
subject-based studies. The second objective is accomplished
by employing the same sensing devices, headgear, and analysis
resources as are used in human- or animal-subject studies to
explore the programmable validating environment, which we
refer to simply as the testbed.

We anticipate that access to the testbed will have benefits sim-
ilar to those which stable phantoms have provided to the devel-
opment of structural imaging methods: that it will serve as an
excellent training environment for those new to the field, pro-
vide an objective basis for verifying routine system performance
and aid in new system development.

In recognition of the complementary information provided
by NIRS and EEG sensing technologies, here we have taken
a second step in the development of a stable phantom. The con-
structed device has an anthropomorphic form similar to that
of our original phantom [1], and it has the added feature of a
conducting brain space that is composed principally of a nat-
urally derived hydrogel and saline, is hermitically sealed, has
been stabilized against biological degradation, and includes pro-
grammable source elements that serve as a network of electric
dipoles (in addition to the aforementioned ECCs). Because our
attention is directed at this time to exploring macroscopic be-
haviors, we have made no effort to consider the many complex-
ities of the brain that exist on the microscopic and mesoscopic
scales. Additionally, because phantoms for EEG studies have
been previously described and are—at least for nonhermitically
sealed forms—simple to construct [2], our attention here has
been to explore the properties of the hemodynamic elements that
have been chronically embedded in an otherwise corrosive en-
vironment (i.e., saline).

Yet another aim of the current report has been to document
the associated resources that are needed to effect fully translat-
able studies. This has included development of integrated head-
gear and of an advanced data-analysis environment that em-
ploys a common brain space. Thus, the overall theme here is
decidedly a technical report, with the added demonstration of
recovery of complex, nonobservable hemodynamic responses.

In this regard, attention is drawn to a previous report in the lit-
erature that also has sought to deploy a phantom for NIRS and
EEG studies [3]. While potentially useful as a calibrating de-
vice, its simple open form factor (a plastic cylinder containing
an aqueous medium, and static optical inclusions) does not sup-
port objective assessment of the translatability of integrated sys-
tems of the type considered here.

II. SYSTEM DESCRIPTION AND PERFORMANCE

In the following, we describe the principal elements of the
testbed and provide exemplary results that document their
capabilities.

A. Programmable Head Phantom

1) Phantom Fabrication: Here, we have extended an earlier
approach [1] by introducing into the phantom a “brain,” which
is composed of a hydrogel-based biopolymer with saline added
to mimic impedances typical of real tissue [4], [5]. Compared to
gelatin-based approaches [5], the selected material offers the ad-
vantage that it can be molded to yield mechanically robust forms
that are easily handled without deformation, yet are composed
of >97% water. Commonly available stabilizers are included in
the molding process to inhibit bacterial and mold growth, and
scattering and absorbing materials are added to provide physio-
logically plausible background optical properties. At the present
time, with the possible exception of the use of the selected hy-
drogel, there is no reason to believe that the materials used for
constructing the brain space confer any unique properties. That
is, the TiO2 and India Ink that we have used could easily be re-
placed with other widely used optical scattering and absorbing
materials (e.g., Intralipid, other dyes [6]). Additionally, while
hydrogels, of which there are many, may confer other possible
advantages (see Section V), in many instances use of a saline-
based gelatin brain form is likely equally suitable. In practice,
we anticipate that more than one type of head phantom might be
constructed, some having optical and bioelectrical properties in-
tended to strongly mimic those of a real brain, while others could
strongly deviate from these backgrounds as a basis for exploring
limits on information recoverability.

A concurrent requirement for ultimate success of the testbed
has been the development of fabrication techniques that pro-
vide for a hermetically sealed form. Briefly, fabrication of a
completed structure is accomplished using a three-step process.
First, a face-shell containing a brain cavity is formed from doped
silicone (Fig. 1(A), left). Because uncured silicone is notori-
ously viscous, the introduction of additives (e.g., TiO2, India
Ink) requires careful attention to mixing and suitable degassing
to ensure homogeneity. A wide range of silicone mixtures are
commercially available that vary in their curing times, type of
curing agent, resulting stiffness and opacity. Here, we have used
QM Skin 30 (Quantum Silicones Specialties, Richmond, VA),
although other types likely could yield similar final properties.
The precise amount of added TiO» was not fixed, in recognition
that the extent of microscopic adhesion of TiOs can vary. Nev-
ertheless, our goal was to match the transmission properties of
a 1% Intralipid solution in a 1 cm cuvette. A typical concentra-
tion was on the order of 250 mg/L. India Ink was added to a final
concentration of 0.004% vol/vol. Comparisons of multidistance
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Fig. 1. (A) Partially formed and fully formed head phantom. (B) Schematic of
embedded source array containing electric dipoles, ECCs and locating LEDs.

measures of optical intensity between the forehead of a human
subject and the phantom revealed an attenuation profile similar
to within an order of magnitude.

Next, the modeled brain, with included sources and attached
wires [Fig. 1(B)], was introduced. A two-step process was used
to fabricate the brain. First the source array was fabricated and
tested for operation and electrical isolation. Next, the array was
positioned within the brain mold, and liquefied hydrogel saline-
based medium containing the mentioned optical additives and
stabilizers was poured in. Prior to pouring, the mixture was vig-
orously stirred to ensure homogeneity. To avoid possible ther-
modegradation of the optical cells from prolonged exposure to
the elevated temperatures needed to achieve liquefied hydrogel
(>80°C), the mold was first flash-heated by immersion into
boiling water to prevent premature gel solidification upon sub-
sequent introduction of the hydrogel, and then rapidly cooled by
circulation of chilled water through a manifold embedded in all
six sides of the mold.

Finally, upon introduction of a molded brain, containing a
source array of the type sketched in Fig. 1(B), to the molded
brain cavity (Fig. 1(A), left side) a silicone-based cranium was
added to complete and seal the combined structure (Fig. 1(A),
right side). To accomplish this without introduction of air, the
brain-cavity, hydrogel brain assembly was positioned within the
final cranial cavity-forming mold, and two-part mixed silicone
was introduced slowly from the bottom, allowing the displace-
ment of air through a small escape hole at the top of assembly.
Allowing for curing times, fabrication of the entire assembly can
be accomplished within a week, given a fully fabricated sensing
array and support structures.

The human head-shaped phantom depicted in Fig. 1(A) was
fashioned using a commercially available anatomical model of
the head (American 3B Scientific, Tucker, GA, Model C25).

As currently configured, the source array includes a total of
twelve electric dipoles, six ECCs and six LEDs that can be used
to locate the sensor elements (which otherwise are unseen) in
the completed phantom. The array employed here includes two
different types of signal-generating arrangements. As depicted
in the schematic [Fig. 1(B)]. one type features an ECC, dipole
and locating LED within an integrated assembly having linear
dimensions of ~1.5 cm. The objective of this source configu-
ration is to support modeling of induced neural signals and an
accompanying local hemodynamic response. These assemblies
are positioned in three roughly bilaterally symmetric locations,
with elements positioned in the frontal, motor and occipital re-
gions and oriented to follow the contour of the cranium at a
depth of 1 cm into the cortex. This depth was adopted in recog-
nition of the limits of NIR light penetration in the human head
[71.

The other signal-generating arrangement includes only
dipoles, which are positioned at greater depths (3—5 cm). This
configuration was adopted in recognition that, in the real adult
brain, deep-lying bioelectric sources are detectable by EEG,
but not by NIRS measurements. Here we have introduced
small-gauge wires leading from a central terminal positioned in
the brain stem to connect to the dipoles and ECCs. Future forms
will consider flexible printed circuit boards that can support
high density arrays.

Control of the source array is achieved using a LabView GUI
connected to a custom-made electronic driver that includes an
expandable chassis with one or more 16-channel NI 9264 ana-
logue output cards.

The dipoles were fashioned from pairs of gold-plated nickel
pins, where each pin was 10 mm long and 0.5 mm in diameter,
and the pair was separated by approximately 3 mm. In order to
minimize electrical contact with the surrounding medium, the
surface of the dipoles, except for the most distal 2 mm, were
encased in nonconducting epoxy (as were any exposed electrical
contacts associated with the optical cells and LEDs). Prior to
encapsulation in the brain, the overall source array was tested for
electrical isolation of components and for fidelity of operation.

Small-diameter rods composed of gold-plated nickel are
used to access the conducting brain space from the surface,
allowing use of simplified headgear arrangements (see subse-
quent description).

Testing of the optical elements has so far demonstrated no
evidence of degradation of performance over a period of 12
months. In addition, excision of the entire source array from
a selected phantom after a comparable time interval produced
no evidence of component corrosion, mold or bacterial growth
within the surrounding background matrix, or desiccation of the
brain space.

Not shown are the driving electronics that can modulate each
element of the array either individually or in combination, using
either standard periodic waveforms (e.g., sine, square, triangle),
or in accordance with user-designed time courses. The bioelec-
tric sources can be driven at frequencies ranging from 0 (dc)
to more than 1 kHz. The optical cells typically are driven over
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Fig. 2. Summary of the basic strategy for using the testbed dynamic phantom to simulate a hemodynamic response. Starting with the target hemodynamic time
series (A), the corresponding two-wavelength absorption coefficients are computed (B), and then the appropriate voltage-versus-time sequence for driving the
ECCs (C). (D) An idealized example of task-related hemodynamic responses, with physiological oscillations overlaid. (E) the recovered hemodynamic responses
computed from testbed experimental data. Line-style coding in D and E is the same as that in A.

a frequency range of 0.01-2 Hz, which corresponds to physio-
logically important time scales, in order to model user-defined
hemodynamic responses.

As currently configured, excepting the added sensors and at-
tached wires, the brain space is otherwise homogeneous. No-
tably absent from the current phantom design is a skull. Because
real bone is not feasible for commercial purposes, we are cur-
rently exploring use of porous plastics as a suitable substitute.

2) Generation of Endogenous Signals: Unlike the bioelec-
tric signal, which is directly generated by application of a
driving voltage to a dipole, generation of the hemodynamic
signal is accomplished through a two-step process wherein the
ECC driving voltage is toggled between two levels so that its
opacity fluctuates between values corresponding to selected
measuring wavelengths. Having a response time of <1 ms,

the speed of switching can be adjusted to meet user-assigned
hemodynamics or to simulate other optical phenomena (e.g.,
fast signal [8]).

An illustration and experimental demonstration of this mod-
ulation is shown in Fig. 2. Seen in Fig. 2(A) is an exemplary de-
piction of a hemoglobin (Hb) response, illustrating linear time
dependence. Fig. 2(B) shows the corresponding variations in the
optical coefficients, at two selected wavelengths, that are asso-
ciated with this response. Plotted in Fig. 2(C) is the modulation
of the ECC cell needed to achieve the Hb response shown in
Fig. 2(A). Shown in Fig. 2(D) is a modeled signal modulation
more typical of those seen in response to different conditions
of neuroactivation. In particular, a BOLD-like response with
superimposed added cardiac and respiratory rhythms is simu-
lated. Shown in Fig. 2(E) is the recovered hemodynamic re-
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Fig. 3. Elastomeric cap with retaining rings used to hold the EEG electrode
and NIR optode in place. Inset shows how the EEG electrode fits around the
NIR optical fiber for co-located measurements.

sponse derived from the head phantom, where the detector data
were generated using a timing sequence of the type illustrated
in Fig. 2(C).

These results support previously reported findings that
demonstrated that this solid-state approach can faithfully re-
produce optical measures associated with true variations in Hb
oxygenation, blood volume, or both, and the programmable
phantom has excellent linearity, dynamic range, and operating
life [1].

B. Hemodynamic-Bioelectric Headgear and Sensing

In line with establishing an integrated resource that max-
imally supports translation from the laboratory to subject
studies, we have modified optode designs to allow for con-
current NIRS-EEG studies (e.g., see [9]) for several different
commercially available headgear types. Shown in Fig. 3 is
an example of one such type, while other optode-headgear
designs are available [10]. Here, the optode design supports
co-located EEG measures, which allows for higher sensor
density configurations than can be achieved using adjacent
sensor positioning. However, adjacent positioning offers the
advantage of including additional hardware within the optode
holder to more efficiently deal with hair displacement, reducing
setup time. As a practical matter, we find that in human-subject
studies, positioning a second elastomeric cap over the first with
addition of a chin or chest straps serves to provide for highly
stable sensor arrangements.

Typical sensor arrangements include standard 10-20 place-
ments for both types of sensors, or use of high-density arrays.
In the case of NIRS, the latter are necessary for tomographic
studies. Both sensor types are increasingly available as scal-
able systems and have been adopted as wearable wireless sys-
tems [11]-[14]. In the case of EEG, these are available with ei-
ther passive or active electrodes, while in the case of NIRS, the
principal discriminating factors include various issues associ-
ated with different illumination-detection schemes. Similar to
EEG, an aim for NIRS has been to achieve greater head cov-
erage while retaining lightweight arrangements. This aim is best

served by configurations that support active sensors in place of
intervening optical fibers. Irrespective of these particulars, a key
goal of the testbed design has been to enable substantial equiv-
alency between phantom and subject-based measures (i.e., both
use the same system hardware and headgear configurations).

C. NIRS-EEG Data Analysis and Mapping Environment

1) Near-Infrared Analysis Visualization and Imaging
(NAVI): Modern data analysis pipelines applied to neu-
roimaging studies support a range of capabilities that include
data editing and filtering, inversion schemes for localizing
activities of interest (e.g., source localization, detection of
hemodynamic response function), mapping capabilities based
on either individualized information or on specified atlases,
and the ability to define parametric maps for individual- or
group-level statistical analyses. Such platforms also support
a range of data-viewing options for raw and processed de-
tector data, formed images, mosaics, etc. For the purpose of
processing NIRS data, we have introduced NAVI [15], [16],
which is a MATLAB-based environment that supports many
of the principal data transformations common to evaluation
of bioelectric and hemodynamic studies. A principal differ-
ence between NAVI and a roughly similar environment called
NIRS-SPM [17] is that our approach is geared mainly toward
supporting parametric atlas-based mapping with full 3-D tomo-
graphic capabilities, while NIRS-SPM presently is limited to
only topographic measures of the sensor space.

The principal elements of NAVI include modules for image
formation, display and analysis, an electronic ledger that au-
tomatically records metadata associated with the various data
transformation resources, and important utilities. Among the
latter are: GLM-based parametric mapping of detected hemody-
namic response functions, modeled principally after strategies
supported by SPMS8 [18]; atlas-based mapping of image find-
ings onto identified brain regions, with additional information
provided by the automated anatomical labeling (AAL) function-
ality of SPMS [19]; and examination of effective connectivity
based on adoption of dynamic causal modeling (DCM) routines
also available in SPMS.

Inversion resources employ fast and stable first-order 3-D
reconstruction methods applied to the sensor time series [20].
Display capabilities support topographic displays of the sensor
space, 3-D mapping registered to the anatomy, cortical maps in-
volving interpolation of the latter, and montage views involving
overlays of 10-20 positions and identification of specific brain
regions by the AAL method.

2) ElectroMagnetic Source Estimation (EMSE): The EMSE
Suite comprises software modules for integrating EEG (and
MEG) with structural MRI [21]. The Locator module provides
a convenient interface to 3-D digitizers for spatial mapping
of sensor positions and MRI co-registration. The Data Editor
module enables EEG review, with various spatial and temporal
filters for treating artifacts. Data segments may be selected
using experimental criteria to generate event-related summary
measures in time, frequency, and time-frequency domains.
These signal space measures are mapped topographically on
the head surface via the Visualizer module, which also serves to
display cortical current-density inverse-problem solutions (e.g.,
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Fig. 4. Flowchart for integrated NIRS/EEG framework. The common anatom-
ical framework is provided by structural MRI.

weighted minimum norm least squares [22], [23], sSLORETA
[24], [25], and linearly constrained minimum variance scan-
ning beamformers [26]-[28]) provided by the Source Estimator
module. MR Viewer provides MRI display capabilities, with
tissue segmentation and mesh generation provided by Image
Processor. Statistical nonparametric mapping (SnPM) via
randomization of experimental conditions may be performed in
either signal space or source space [29]-[31].

Shown in Fig. 4 is a flowchart of the currently available in-
tegrated analysis environment [32]. Key elements include: seg-
mentation, registration and mesh generation resources applied
to a common anatomical framework (provided by MRI); in-
verse solvers for both sensing domains; signal filtering; statis-
tical parametric (individual- and group-level GLM) and non-
parametric mapping (supported by separate domain or mon-
tage views); and, as is subsequently illustrated, additional pro-
cessing in support of effective connectivity studies. Also indi-
cated (dotted arrows) are the points where structural information
and functional features derived from inverse-problem compu-
tations will feed back into available forward-problem solvers.
This is intended to support computationally more intensive so-
lutions for a given domain (e.g., coupled forward-inverse com-
putations using nonlinear solvers), and coupled solutions across
domains (e.g., DCM), for which primary data is available from
the programmable phantom, while solution validation has thus
far resisted systematic verification.

3) Atlas Based Mapping: Important goals of atlas-based
studies are to provide an objective basis for identifying brain
structures that undergo neuroactivation, and to support com-
parison of findings across data collection platforms, sensing
modalities or other atlases. Solutions to either problem ideally
would be based on knowledge of individualized boundary con-
ditions. As in the case of EEG, in practice this requires access

to anatomical information such as an individual’s MRI data,
as well as knowledge of sensor positions and head shape in
relation to known fiducials. In addition to supporting objective
mapping of sensor information, this information is also used
to support forward computations of specified sensor arrays
needed for inverse-problem computations. Explicit use of such
capabilities requires access to an individual’s MRI, which may
or may not be available, and the processing resources needed
to evaluate such information.

To support instances where MR images are not readily avail-
able, we have implemented an alternative solution wherein in-
formation from a selected atlas is substituted for individualized
atlases. Using resources available in EMSE, we have gener-
ated a series of overlapping regions that support specification
of any arbitrary sensor arrangement. Once the user has speci-
fied a given sensor arrangement, determination of the associated
imaging operators is immediately available, thereby avoiding
the multistep, labor-intensive effort needed to establish equiva-
lent information from an individual atlas.

At this time, two atlases have been developed. One is based
on a 26-year-old human male subject, and the other is derived
from a group atlas obtained from 80 adult male and 32 adult
female Rhesus macaques [33].

The developed atlases are depicted in Figs. 5 and 6. Having
selected an atlas from an available menu, the GUI displays
a specified head shape (human or macaque). Illustrated in
Fig. 5(A) is the human atlas, which includes a montage of
standard EEG electrode positions. Fig. 5(B) is a segmented
cutaway illustration that contains a depiction of functional
image data interpolated onto the cortical surface, along with a
montage of the corresponding sensor array. Following manual
or automated specification of the sensor array, the sensor loca-
tions are displayed on the selected atlas segment, as shown in
Fig. 5(C). Precomputed elements associated with the specified
optode array can then be retrieved from the library file in
support of 3-D image reconstruction. Once computed, images
are available for additional processing using features of SPM
that have been modified to support NIRS data.

Shown in Fig. 6 is the approach adopted to generate the
macaque atlas. As in the case of the human atlas, resources
available from EMSE were employed to generate a segmented
and tessellated array. A notable difference from the human-atlas
case is the fact that we have substituted a group brain atlas for
the individual brain [34], thereby generating a hybrid atlas, in
order to minimize bias owing to anatomical peculiarities of
the original subject. As with the human atlas, information cor-
responding to the associated imaging operators and reference
detector readings needed for model-based image recovery are
precomputed and accessible through a GUI.

An example of the spatial and temporal mapping capabil-
ities achievable using the testbed is shown in Fig. 7. Here,
tomographic data were collected from a macaque phantom
[Fig. 7(D)], which included a natural-bone skull between the
silicone “face” and “brain” compartments, with the latter con-
taining a three-element internal ECC source array. A simple
1-Hz sine wave, applied to one selected ECC of the array,
served as the driving function. In Fig. 7(A)—~(C) we show mu-
tually intersecting axial, coronal, and sagittal sections through
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Fig. 5. Graphic summary of the developed human atlas. (A) Positions of the
EEG electrodes. (B) 3-D representation of NIRS optode positions and a pro-
jection of hemodynamic information onto the cortex. (C) Example of an op-
tode sensor array placement, displayed on a selected atlas segment. Open circles
represent detector fibers only; filled circles are co-located source and detector.
Yellow dots show standard EEG locations.
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Fig. 6. Schematic showing the process used to create the macaque atlas. Infor-
mation from a group-averaged brain is superimposed onto an individual MRI
scan to yield the hybrid atlas. The image in the bottom right shows one of the
segmented and tessellated slices from the atlas.

a reconstructed 3-D image, at one selected time point, of the
simulated total Hb signal. Also shown [Fig. 7(E)] is the power
spectral density of a single-pixel [indicated by the root of the
arrow in Fig. 7(C)] time series extracted from the reconstructed
image time series. The presented results thus demonstrate
excellent fidelity of information recovery in both the spatial
and temporal domains.

III. EXEMPLARY APPLICATION
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Fig. 7. Sample macaque phantom study. (D) shows a photograph of the
phantom with fibers attached. (A) (B) and (C) show the horizontal, coronal,
and sagittal views of the reconstructed image, highlighting the location of the
ECC. (E) shows that after computing the PSD of the image time series, the
1 Hz sinusoidal driving function was recovered.

A. Testbed Simulation of Inter-Regional Connectivity

As indicated above, an important design feature of the
phantom component of the testbed is that it provides users with
exquisite control over the timing and amplitude of responses
generated by the dipoles and ECCs. A practical consequence
of the achieved degree of control is that it becomes possible to
consider laboratory simulations involving higher-order brain
functions that involve causally directed networks. In the real
brain, such a network has the properties that: neural activity
(and its hemodynamic correlates) of one region change in
response to activity of others; that exogenous stimuli can affect
a region’s activity indirectly, through the influences it receives
from the directly stimulated regions; and a given exogenous
input needn’t always have a direct effect on any of the regions
involved in the network, but may instead influence their activi-
ties by temporarily altering, or modulating, the strengths of the
excitatory and inhibitory connections among them [35].

As a demonstration of the claimed functional utility, here
we select a model of coordinated hemodynamic activity that is
based on an example previously reported in the fMRI literature
[36]. The indicated study explored effective connectivity among
three brain regions involved in processing visual information
while four different exogenous-input conditions were applied
in a pseudorandom sequence [37]. We chose this study as our
point of departure because it allows us to demonstrate the mul-
tiple integrated resources needed to produce a laboratory sim-
ulation of such complex behavior. It also provides an explicit
demonstration of the data quality and information content that
can be recovered using the testbed. However, it is important to
note that nothing in what follows is problem-specific. The same
sequence of modeling, data collection, and data analysis would
be followed for any application in which the goal is to use the
testbed to evaluate the ability of an experiment-analysis pro-
tocol to accurately identify functional activity, such as interac-
tions among brain regions.
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Fig. 8. Effective connectivity network modeled in DCM forward problem
computations. The interregional connectivities and sites of action of the inputs
are indicated. While the biological interpretations are arbitrary for the testbed
demonstration, the neuroimaging study that serves as its historical launching

point focused on three areas of the visual cortex (A = V1, B = V5,
C = PPC) and three aspects of visual stimulus (X = present versus absent,
Y = moving versus stationary, C = subject’s attention directed versus not

directed to the stimulus).
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Fig. 9. Modeled time courses for the exogenous inputs depicted in Fig. 8.

For the testbed-based study, three ECCs of a dynamic
phantom were driven with time-varying voltage signals, in
order to simulate the blood-volume fluctuations occurring
in three interacting cortical regions. The specific pattern of
effective connectivity modeled is sketched in Fig. 8, which
also shows the sites of action for the three exogenous inputs
that induce neuroactivity-linked hemodynamic responses. It
is seen that one of the inputs exerts a direct effect upon one
of the regions, while the other inputs work by modulating the
strength of an inter-regional interaction. The corresponding
exogenous-input time courses are plotted in Fig. 9.

To compute the time-varying blood volume signals that were
simulated by modulating the voltage across the phantom ECCs,
we numerically solved the equations, presented in the following
section, that are used to model neuroactivation and neurovas-
cular coupling in DCM.

B. Analysis of Hemodynamic Responses With DCM

The problem of elucidating the interactions among multiple
units in a network, based on observations of their composite
behavior, arises in many contexts [38]. It has been found that
many of the methods derived for analyzing network behavior
in other fields can be successfully applied to the problem of in-
ferring inter-regional interactions in the brain, if the data are ob-
tained from direct measurements of the brain’s electrical activity
[35]. However, when the measurement assesses neural activity
indirectly through its vascular correlates, then many of the tech-
niques that are adequate for electrical data can give inaccurate

results [39]. This is principally a consequence of the hemody-
namic response function, which introduces a spatially hetero-
geneous time lag between any change in neural activity and its
vascular correlates [39]. By contrast, DCM is a viable compu-
tational strategy even in this case, because it explicitly models
the position-dependent time delay [35].

The basic approach in DCM is to update coefficients that
model neural activity and associated neurovascular coupling in
amanner that simultaneously considers the influence of external
factors and the instantaneous bioelectric state. In practice this
is accomplished using a Bayesian approach, wherein prior esti-
mates of parameter values, and their variances and covariances,
are iteratively updated for several candidate models to identify
which best accounts for the observed behavior. The selection
of a model is determined by comparing estimates of Bayesian
model evidence derived from the posterior values of the param-
eters and of their variances and covariances [36].

For initial testing purposes, we used a straightforward bilinear
mathematical model of the temporally evolving neuronal ac-
tivity x in the regions that participate in an effective connec-
tivity network [40]

dx

— = A—I—ZujB(j) x 4+ Cu. )
J

dt

In (1), the dimensions of x and w are N X 1 and M x 1, respec-
tively, where IV is the number of interacting regions and M is
the number of experimental inputs. The N x N matrix A speci-
fies the inter-regional effective connectivity that is present even
in the absence of external input; the B matrices (each N x N)
represent the modulating effects of experimental manipulations
on the effective connectivity, and the N x A matrix C specifies
the direct effects of the inputs on the regions’ neural activities.

As our model of neurovascular coupling, we have used
the following previously described model [40], which has
frequently been employed in DCM analyses of fMRI data. The
form of the model for any brain region is

ds
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As neurovascular coupling involves interactions between neural
activity and vasculature within a region but is not directly af-
fected by the activities of the other regions, the neural activity
variable changes from a vector x in (1) to a scalar = in (2). The
remaining time-dependent variables in (2) are the vasodilatory
signal associated with neural activity (), inflow of blood (f),
blood volume (v), and deoxyhemoglobin content {g). [Note
that, as we are not evaluating fMRI data, no BOLD-signal equa-
tion is included in (2).] The variables f, v and ¢ are normalized
to their resting baseline levels (i.e., they are dimensionless and
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are equal to 1 when & = 0). The parameters are the vasodila-
tory signal decay rate «, autoregulatory feedback rate constant
~, mean capillary transit time 7, vessel stiffness exponent c,
and the capillary resting net oxygen extraction Fjy; the numer-
atorterm 1 — (1 — Eo)l/ 7 is a convenient approximation to the
flow-dependent oxygen extraction.

When DCM is applied to NIRS measurement data, the goal
is to solve an inverse problem: one or more hemodynamic vari-
ables (e.g., v or ) is supplied as input, and an iterative expec-
tation-maximization (EM) algorithm is used to compute the pa-
rameter values (i.e., A,B. C, x,~, T, «, and Ey) that yield the
most accurate fit to the data. The EM algorithm simultaneously
evaluates the Bayesian evidence for the model, which is the
basis for deciding which of several proposed effective connec-
tivity networks is most strongly supported by the measurement
data [36].

To explore the connectivity and associated hemodynamics of
the considered problem using the testbed, we first specified the
intrinsic ground-truth elements for the defined problem, against
which alternative models of connectivity can be compared. Con-
sequently, and also in order to guarantee convergence of (1) and
(2), we used the coefficients derived from a DCM inverse calcu-
lation applied to the reported fMRI findings as the ground-truth
interaction strengths [41], from which the corresponding time-
dependent hemodynamic response was determined by solving
the associated DCM forward problem. Armed with this infor-
mation, the goal was to simulate this phenomenology using the
dynamic phantom, then once again run DCM inverse computa-
tions, this time using several plausible connectivity models and
the testbed-derived data for experimental input.

It should be noted that the various electronic elements of the
phantom were not directly wired to each other in the manner
depicted in Fig. 8 (or in any other way). That is, their ability
to simulate the behavior of an effective connectivity network
does not entail the manufacture of physical linkages among the
phantom’s active components. Instead, effective connectivity
was modeled by supplying each ECC with an appropriate re-
gion-specific driving function, which had been precomputed by
solving (1) and (2). The rapid response of the ECCs and the tem-
poral precision that the controlling software provides makes this
a workable strategy. Thus, any one phantom can be used to con-
duct experiments on a large number of distinct neuroimaging
applications.

IV. RESULTS

Human-Phantom Based Effective Connectivity Study

The time-varying voltage levels used to drive selected ECCs
of the dynamic phantom are plotted in Fig. 10. These functions
were obtained by solving the DCM forward problem described
in the preceding section, then rescaling the computed normal-
ized blood volume to lie within the cells’ linear response ranges
[1]. Shown in Fig. 11 is a mapping of image time series-de-
rived dynamic feature information (GLM coefficients, as out-
lined subsequently) onto the cortical surface associated with the
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Fig. 10. Time courses of the driving voltages delivered to the ECCs that model
the hemodynamic responses of the indicated cortical regions. Voltage values are
proportional to tissue blood volume values computed by evaluating the DCM
forward problem.

Fig. 11. Cortical surface mapping of GLM coefficients. Plotted quantity (ar-
bitrary units) is the value of the GLM 3 coefficient obtained by fitting the ap-

propriate ECC driving function to the tissue blood volume time series in each
image pixel. A—top view, B—frontal view, C—right-side view, D—back view.

human-brain atlas. The red-colored regions indicate the loca-
tions of the three ECCs that were used for the laboratory simu-
lation. It should be noted, however, that for the purposes of the
demonstration the choice of which ECCs to use was arbitrary.

The two-wavelength data time series collected from the
phantom were processed using NAVI-SPM. First, taking into
account details of the optode arrays (such as the one depicted
in Fig. 5, which was used for the data from optodes located
over the occipital ECC), time series of 3-D images were re-
constructed. Subsequently, statistical parametric maps, which
are replotted in a different format in Fig. 11, were generated
using the GLM methods available in Level-1 SPM; for each
ECC, the corresponding function shown in Fig. 10 was used
as the model function. Volume-averaged temporal responses
(Fig. 12), obtained from the regions of interest identified
by Level-1 SPM, were derived that served as the input for
subsequent DCM inverse-problem computations. The three
models depicted in Fig. 13 were used as alternative effective
connectivity hypotheses. For each hypothesis, DCM iteratively
updates the coefficients in (1) and (2) in order to achieve the
best fit it can between the experimental and computed values of
the variable v. In addition, it computes a model selection-cri-
terion value, which is a function of the achieved accuracy as
well as of the complexity of the model [35]. When the three
networks in Fig. 13 are compared, the correct model is the one
preferred on the basis of the model selection criterion.

In a similar spirit, the effects of physiological “noise” (i.e.,
fluctuations in the hemodynamic variables that are not associ-
ated with the phenomenology of interest) can be experimentally
evaluated. A straightforward approach for doing so is illustrated
in Fig. 14, where a set of ECC driving functions is plotted that
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Fig. 12. Spatial mean time series of recovered tissue blood volumes, for each of
that have a statistically significant (p < 10~%) GLM fit to the corresponding
driving function shown in Fig. 10.
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to the DCM inverse problem code, as plausible hypotheses for the connectivity
present in the testbed model. For the phantom experiment, it is known a priori
problem results obtained from the data in Fig. 12, the correct model’s (1) log-
evidence value is larger than those for the two alternative hypotheses by either

the three brain regions considered. Averages are computed over all image pixels
-—Q—I“:'_ =00

Fig. 13. The three effective connectivity networks that are supplied as inputs

that the network in (A), reproduced from Fig. 8, is correct. For the DCM inverse-

103 (2) or 89.4 (3) units.
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Fig. 14. ECC driving functions for second experiment. Background respiratory
and vasomotor rhythms are added to the ideal-model behavior shown in Fig. 10.
Color coding is the same as in Fig. 10.

model background respiratory and vasomotor rhythms in addi-
tion to the variations associated with task-related neuroactiva-
tion (cf. Fig. 10).

The effective connectivity simulation experiment was carried
out a second time, with the ECC driving functions in Fig. 14
substituted for those in Fig. 10. If the resulting measurements
are treated in the same manner as described for the “noise-free”
data set, without processing the data to remove the contribu-
tions of the background rhythms [Fig. 15(A)], the consequence
is complete loss of accuracy of the model selection procedure:
effective connectivity network #3 in Fig. 13 is the one preferred
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Fig. 15. (A) Reconstructed image-derived time series used as input for the
DCM inverse computations for the second experiment. Color coding is the
same as in Fig. 12(A). In addition to the protocol-related component, substantial
contributions from background respiratory and vasomotor rhythms are evident.
(B) Result obtained when time series in 15 A are low-pass filtered to reduce
the amplitudes of background rhythms.

based on the model selection criterion, while the correct network
(Fig. 13, #1) is the one judged least likely to be correct (log-evi-
dence value for model 1 is smaller than those for models 2 and 3
by 19.8 and 25.4 units, respectively). However, if the image-de-
rived hemodynamic time series are low-pass filtered prior to
the DCM inverse-problem computations (more sophisticated al-
gorithms for separating the components of a mixed signal that
are and are not protocol-related are available, for cases where a
simple frequency filter is not adequate [42], [43]), as indicated
in Fig. 15(B), then the ordering shown in Fig. 13 is restored, and
the correct network is the one selected (log-evidence value for
model 1 is larger than those for models 2 and 3 by 39.5 and 5.2
units, respectively).

An important feature of above studies, in comparison to
results obtained by computer simulation, is that because the
former uses the same headgear, sensor arrangements, and
measuring systems as deployed in any human or corresponding
animal study, all of the experimental biases associated with
real experiments are preserved. This carryover is critical when
it comes to appreciating limits on information extraction,
especially those involving information that is not directly
observable (e.g., effective connectivity).

V. DISCUSSION

Functional imaging methods are increasingly being applied
to define localized and coordinated responses involving sensory,
motor, and higher-order executive functions of the brain, in ef-
forts to not only recognize associated responses but to serve as
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metrics that can be used to develop a host of practical applica-
tions [44].

Sensing technology available to explore intrinsic signals,
comprising bioelectric and hemodynamic responses, fall into
two broad categories: systems comprising large-scale, costly
and fixed facilities (e.g., MRI, MEG) and systems that deploy
economical and increasing portable technology (e.g., fNIRS
and EEG). From an information gathering perspective, a major
attraction of the latter is the ability to perform studies in open
environments wherein the full spectrum of task-dependent
sensory and motor input and corresponding cognitive elements
can be harnessed.

Here, we have described elements of a new experimental
testbed that is intended to support evaluation of the principal
observable elements of neural activity using hemodynamic and
bioelectric sensing methods. The developed fabrication tech-
niques are easily adopted to support generation of anatomically
accurate forms that are longitudinally stable and contain em-
bedded sources that are freely programmable. When operated
together with the developed analysis environment, the config-
ured system is intended to meet various practical needs as well
as modeling of complex macroscopic neural phenomenologies.

A. Potential Practical Uses of the Testbed

The testbed described here has been developed to serve
several useful purposes. At the most basic level it should serve
as a teaching environment for those new to the field. The same
sensing hardware, headgear and analysis environment used to
explore the head phantom is used in subject-based studies. This
homogeneity also maximizes translatability from laboratory
to real-world applications. As currently constructed, the head
phantom operates as a deterministic device. However, unlike
numerical simulations where output is a deterministic function
of input, here the output is expressly influenced by all of the
real-world limitations that will attend subsequent use of the
measuring system. For instance, in addition to data fidelity
being affected by the performance characteristics of the sensing
hardware and embedded sources arrays, it is also a function
of particulars of the sensor-populated headgear. Variations in
placement, contact, effects of ambient noise sources and other
factors can all be expected to affect data quality. We believe
such considerations have added significance when the goal is to
explore nonobservable phenomenologies such as the effective
connectivity example presented here. Inverting this consider-
ation, if features of interest cannot be successfully recovered
using the testbed, it is hard to imagine that improved success
will be achieved in subject studies. At a minimum, exploration
of the testbed should serve as a useful guide as to what types of
studies are feasible.

Another potential use of the testbed is its ability to objectively
determine the practical limits to information recovery. Measures
of functional brain connectivity explored by noninvasive tech-
niques, for example, are “twice-removed” from direct observa-
tion; first, the origins of activation are identified by inverting
surface-derived sensor data; second, connectivity is identified
by solving a dynamical system identification problem based on
results obtained from the first inversion. In NIRS and EEG neu-
roimaging applications, both inverse problems are plagued by

ill-posedness. In addition, the first, representing a boundary-
value problem, can be strongly affected by incomplete knowl-
edge regarding the details of the boundaries (internal and ex-
ternal). Here, the ability to expressly employ digitizing methods
and to operate on individualized MR data sets certainly should
aid in reducing errors originating from boundary condition mis-
matches. These additional capacities, combined with the fidelity
with which endogenous signals can be generated, provide a solid
basis for ground-truth benchmarking and for refinement of var-
ious feature extraction efforts.

Because of its longitudinal stability, still another practical use
of the testbed is its ability to function as a routine quality assur-
ance indicator for measuring systems. Quality assurance mea-
sures are, among other things, a significant factor in determining
whether new technology can receive FDA approval. Here, our
documentation of longitudinal stability admittedly has been lim-
ited when compared to validation standards typical for approved
medical devices. We observed no obvious degradation in per-
formance of the phantom over a one-year period, and a forensic
inspection of extracted source arrays over a similar period failed
to reveal any obvious biological degradation, component corro-
sion or desiccation of the brain space. This is expected, due to
the selected materials and fabrication methods.

Yet another potential practical use of the testbed is its po-
tential to serve as an information transfer hub for exploring
brain—machine interface applications. Real sensor recordings,
noninvasive or otherwise, can be introduced into the embedded
source array and measured from the surface. The resulting
real-time recordings can be operated on by selected processing
schemes that then drive peripheral devices, thereby validating
the fidelity and reproducibility of information transfer.

The suggested use to assist in real-time interpretation applica-
tions can be abstracted to various time-critical clinical decisions.
A concrete example is the ambiguities confronting clinicians
managing cases of acute stroke, where it is important to distin-
guish between ischemic and hemorrhagic stroke. Current stan-
dard-of-care procedures call for adoption of structural imaging
methods to rule out the latter. While CT imaging is effective for
appreciating hemorrhagic stroke, the added sensitivity of MR
imaging supports improved delineation of the penumbra of is-
chemic stroke. Unfortunately, there are many situations where
MR measures are infeasible on stroke victims, due to implanted
metal [46]. Both NIRS and EEG have been demonstrated to be
sensitive to the presence of stroke [47], [48], which has been
shown to produce measurable changes in effective connectivity
[49]. Building on its use as a quality assurance indicator and as
objective tool for appreciating limits on information recovery, it
seems entirely feasible that the testbed could serve as a real-time
aid to assess, at a minimum, whether collected data is of suffi-
cient quality to support an actionable clinical decision.

Continuing with this consideration, while the selected con-
nectivity demonstration considered a mainly arbitrary ECC con-
figuration, data were obtained, nevertheless, under conditions
that at least grossly approximate those expected for a real head.
Additionally, because the selected regions—prefrontal, motor
and occipital cortex—are involved in the planning and exe-
cution of visually directed motor tasks, all elements that are
affected in, for example, Parkinson’s disease [50], these find-
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ings at least suggest the feasibility of exploring disturbances in
causally directed activity associated with this disease [51].

B. Limitations of the Testbed

Representing principally a deterministic tool having a lim-
ited number of fixed-placed embedded sources, it is instruc-
tive to compare the expected range of phenomenology that can
be considered relative to that potentially available using a so-
phisticated simulation resource. Key discriminators here are the
physical accuracy with which observed phenomenologies can
be produced, the flexibility for reconfiguring internal sources,
and the capacity to accurately account for real-world effectors.
Favoring a simulation environment is the expected added flexi-
bility to reconfigure source conditions. Which domain is favored
for physical accuracy depends on several factors.

On a gross level, however, the testbed should hold the ad-
vantage because data obtained from it is experimentally derived
using resources that are maximally translatable, at least for the
sensor space. Internally, the demonstrated ability of the ECCs
to produce complex hemodynamic responses with high fidelity,
and likewise the expected fidelity of electric dipoles, would also
suggest that a wide range of phenomenology can be faithfully
introduced.

Admittedly, it seems unlikely that the testbed as currently
configured would compare well to the suggested simulation
environment for mesoscopic and microscopic phenomenology.
That said, it has not escaped our attention that hydrogel-based
media have proven an effective approach to sustaining popu-
lations of neurons, including in the presence of nanofabricated
programmable circuitry [52]. When configured within an
appropriately designed perfusion chamber, measures of real
neural activity seems possible.

Thus far, our developmental focus has been to build out the
primary elements of the testbed, including portable-wearable
NIRS systems [11], headgear for concurrent NIRS-EEG studies
[53], an integrated atlas-based analysis environment [34], and
the phantom itself. In terms of the latter, it is relatively straight-
forward to fine-tune the background optical and impedance
properties to achieve improved matching to real subjects. Pre-
viously mentioned is the need to introduce a skull. Higher-order
considerations include the introduction of high-density source
arrays for both hemodynamic and bioelectric domains, and im-
proved precision of fabrication to ensure precise knowledge of
their locations. Given such improvements, the testbed could be
used to systematically explore the limits on source localization
and other metrics as a function of the sensor space and applied
computational effort.
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