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1 Introduction

In this paper, we discuss approaches our group has developed for the problem of
imaging the interior of dense scattering media [1]. While our principal focus is on
potential biomedical applications, we believe our methods are sufficiently general to
have applications to other imaging problems as well. We begin our consideration of
the imaging problem by assuming that the target medium of interest interacts with
the penetrating energy source with sufficient strength to cause intense scattering.
We further assume that for essentially all practical schemes, only the multiply scat-
tered signal is measurable. One result of multiple scattering is that all the detected
photons will have propagated above and below the plane in which the source and de-
tector lie. Thus, it becomes necessary to explicitly consider volume functions whose
spatial distribution will depend on the properties and geometry of the medium and
on the geometry and type of illumination scheme. Measurement schemes which
have been suggested include steady-state [2], ultrafast [3-5], and amplitude mod-
ulated [6, 7] sources. Other schemes include holographic methods which have the
potential advantages of directly yielding an image without the need for numerical
reconstruction [8, 9]. In developing approaches to image reconstruction, our group
has emphasized the first two of the four methods [10-16].

For imaging methods such as x-ray CT, in which the path of the detected signal
is a straight line, the inverse problem can be accurately formulated as a system
of linear equations of the form Mx = y; where y is the measured response, M
is the imaging operator and x is the unknown [17]. The form of this relationship
is equivalent to Beer’s law, which follows directly from the radiation transport
equation in the limit of negligible scattering [18]. In the case of strong scattering,
though, the change in photon intensity with distance becomes a nonlinear function,
because of the contribution of previously scattered photons which add to the net
flux at a particular point and direction. A consequence of the additional term is
that there is no generally applicable direct method for solving the inverse problem.
One approach frequently applied to problems of this type is known as perturbation
methods. It is assumed that the composition of the unknown medium deviates only
by a small amount from a known, reference medium. This approach is appealing, as
it has the effect of reducing a highly nonlinear problem to one which is linear with
respect to the difference between the target and reference media. The coefficients
in the equations, to be referred to as weights, are the gradients of the detector
readings with respect to the absorption properties of the points inside the medium.
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The idea of weights, or importance functions, is commonly used in the control
of nuclear reactors [19]. For isotropically scattering media with continuous wave
(CW) measurements, the weight of a given point for a chosen source-detector pair
is the product of the forward and adjoint fluxes at that point. For time-resolved
(TR) measurements, the weight at a point for a given source-detector pair during
a chosen time interval is the convolution of the forward and adjoint fluxes during
that time at that point. The forward flux is proportional to the collision density
at the point for photons injected from the source; the adjoint represents the time-
reversed photon path entering the detector, and is proportional to the collision
density when photons are launched from the detector. This result is a counterpart
of the sensitivity theorem used in electrical impedance tomography (EIT) [20].

In the following, Sec. 2 introduces several notations and describes the pertur-
bation approach. Sec. 3 derives the weights for the CW and TR measurements,
respectively. Sec. 4 introduces the general methodology for solving the perturbation
equations and describes several iterative methods, including the conjugate gradient
descent, POCS, and multi-grid algorithms. Sec. 5 presents the progressive expan-
sion algorithm for reconstruction from TR data. Sec. 6 shows reconstruction results
from both CW and TR data for several test media. Finally, Sec. 7 summarizes the
main results and compares the methods proposed here with others. Most of the
analysis and results given in Secs. 2 to 6 have previously appeared in, respectively,
Refs. [10-15].

2 Notations and The Method of Perturbation

Consider an optical imaging system illustrated in Fig. 1. The unknown medium
has a volume €2 bounded by a surface d2. In a CW system, the incident sig-
nal is a point source (isotropic or collimated) with constant intensity (a harmonic
wave at an NIR frequency ) and the measurements are photon fluxes in the steady
state. The measurement is accomplished by injecting photons with intensity S; at J
source locations, j = 1,2,...,J, and measuring the photon flux I;; at K; detectors,
k=1,2,...,K;, for the j-th incident signal. These detectors may differ in position
as well as orientation. In a TR system, the incident light is a short pulse approx-
imating a delta function, and the measurements consist of the photon fluxes I;;
at different time intervals, t;,{ = 1,2,..., L;j; for each source-detector pair (j, k).
Let the medium €2 be divided into N small volume elements called voxels, and let
z; represent the optical property to be imaged at voxel i. The goal of the imag-
ing system is to reconstruct the N optical properties z; from the M = Z;:I K;

or M = Z‘Ll Ef;l L;x measurements [ or Ij. The sources and detectors can
either be pfaced around the entire surface of the medium or only portion of it. One
special case is when the sources and detectors are placed on one side of the medium
and the backscattered field alone is measured. This measuring strategy affords more
feasible implementation, but the reconstruction is more difficult.

In general, z; is a vector consisting of several optical properties to be imaged
at voxel 7, including the absorption coefficient p,; and the scattering coefficient
15 i- Because of the close relationship between absorption and oxygenation status
in tissues and organs, imaging the absorption property has been the focus of most
optical tissue imaging systems. The scattering property in such media is usually
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assumed to be isotropic and homogeneous, and is estimated in advance by other
means. In this case, p,, becomes the only remaining parameter included in z;.

For an arbitrary object, the relationship between the photon fluxes I;; at the
surface and the absorption properties z; in the interior can be very complicated.
A simple approximation to this relation is given by the diffusion equation [18].
However, even with this simplification, closed-form solutions of the forward problem,
i.e, determining ;i from the given z; and S;, are available only for media having
simple and regular geometric structures. The inverse solution, i.e., reconstructing z;
from S; and Iji, has been considered by many as intractable. In order to overcome
difficulties in solving the inverse problem, we have adopted a perturbation approach.
It assumes that the absorption coefficients of an unknown object, z;, are very close
to those of a reference medium, z. Suppose the detector readings for the test and
reference media are respectively I;; and Th- The perturbation model relates the
differences between the absorption properties of the two media (Az; = z;—z7) with
the changes in detector readings ( Aljx = I, — i) by the following first order
approximation:

N
o wENAS = ATy, BE1200 K FE L 2ends (1)
i=1

Here, wg}:‘r = —%El is called the weight of voxel i for source-detector pair (7, k). It

is proportional to the reduction of the photon flux at detector k due to the increase
in absorption at voxel i when photons are injected from source j.

Let x", x, Ax represent the vectors composed of, respectively, the elments z7, z;,
and Az fori=1,2,...,N. Then, Ax = x — x". Further, let m represent the one
dimensional ordering of the two-dimensional source-detector pair indices, and let
W be the vector consisting of the weights of the m-th source-detector pair. Eq.
(1) can be recast as:

wlAx=Al,, m=12,.... M. (2)

Let AI be the vector consisting of Al,,, and W the matrix containing w7, as row
vectors. The above equations become:

WAx = AI. (3)

The vector w,, will be called the weight vector for the m-th source-detector pair,
and the matrix W the weight matrix. They are functions of the properties of
the reference medium, x", the geometry of the medium, and the source-detector
configurations.

Given AI and W, Ax can be determined by solving the linear equation (3).
Once Ax is found, x can be readily identified. When the reference medium is very
different from the test medium, the approximation in Eqgs. (1)-(3) is inaccurate.
Hence the above process should be repeated a number of times, with the reference
image and the weight matrix being updated after each iteration. The process can
be stopped when the difference between two successive estimates becomes smaller
than a prescribed threshold. The flow chart of the above perturbation method is
shown in Fig. 2.
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The above formulations are for a CW measurement system. In a TR system,
let I7,; represent the detector readings for a reference medium in time interval ¢,
for the source-detector pair (j, k). Then the perturbation model relates Az; to the
changes in the detector reading Al = Iy, — ik by:

N
ngrk{'fAJ:i:AIjH) I:l,?,...,LJ‘k,k:I,?,...,I{j,j:l,?,...,.}. (4)
=1

Here, w:-gi"; = — a;;:‘ specifies the reduction of the photon flux in time interval ¢; at
detector k due to the increase in absorption at voxel i when photons are injected
from source j. The vector and matrix representations of the above equation are
the same as in Eqs. (2) and (3). The index m now represents the one dimensional
ordering of the three dimensional indices (j, k,{) and the vector w,, consists of the
weights associated with the m-th source-detector-time triplet.

There are four separate tasks involved in the perturbation approach described
above: 1) Determination of a good initial reference medium that is close to the
actual medium; 2) Calculation of the detector readings and the weight functions
for the reference medium; 3) Solution of the perturbation equation and update of
the reference medium; and 4) Update of the detector readings and weights for the
new reference medium. Until now, we have concentrated on the investigation of the
second and third problems, which are described below.

3 Determination of the Weight Functions

The original idea of using a weight function to describe the “importance” of a
voxel to each source/detector pair is due to Aronson [10]. Assume that photons are
injected at source j with intensity S;. Let W¥;; be the integrated angular intensity
per injected photon at voxel 7, V; the volume of voxel i, and £;, the macroscopic
total cross-section of voxel.i. Then N;; = S;¥;;V;E,;, will be the number of colli-
sions occurring in voxel i. If the absorption coefficient at voxel i is pgq,, then pq, Ni;
photons will be absorbed at voxel 7 and the rest will be scattered, or “born.” Sup-
pose that the absorption coefficient of this voxel is increased by Apu,, and all the
other voxels remain the same, then AN;; = Ap,, N;; represents the decrease in the
number of photons that will be born in voxel i. Let P; represent the contribution
of a single photon born in voxel i to the photon intensity at detector k. Based on
the reciprocity property of photon transport, it can be shown that Py = Dp®;,
where ®;; represents the flux at voxel i due to a photon injected at detector k.
The constant Di depends on the orientation and solid angle of detector k. From
the above relations, the reduction of the photon intensity at detector k due to the
change in voxel 7 is given by:

Aljk(i) = PirANij = ViE,, Sj D Vi Pin Aptg, . (5)

When the absorption coefficient at every voxel is changed by Ap,,, each change
will cause a reduction in detector readings. Since a strong absorber in one voxel
may cast a shadow in the medium, and hence reduce the photon intensities in other
voxels, the total reduction is not a simple sum of the reductions caused by each
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voxel independently. But when the change in each voxel is small, we can assume
the changes are additive, so that:

ALy =) ALi(i) = Y _wiY Apa,, (6)
with
wit = ViTy,S; DiWi; Dix. (7)

Comparing Eq. (6) to Eq. (1}, we see that wgr" is simply an estimate of the deriva-

tive 8—62_5, when z; = p, ;. The weight wg}:" is proportional to the product of the

forward and adjoint photon fluxes due to photons launched from source j and from
detector k.

The quantities ¥;; and ®;; in Eq. (7) can be obtained by Monte Carlo simula-
tions in which photons are launched from source j and successive collision, scatter-
ing, or absorption events are simulated according to the properties of the reference
medium. Let F.—f and F,f be the average number of collisions occurring at voxel
7 due to one injected photon from source j and detector k, respectively. Then
Vij = F/ViZy,, Qix = FR JVi%y,.

In the above derivation, ¥;; and ®,; are steady-state photon intensities and
are appropriate only for a CW system. In a TR system where photon flux Ijx(t)
at different times is evaluated, the reduction Alji(i;t) at time t due to a change
in the absorption coefficient of voxel i is proportional to the percentage of photons
launched from source j that travel first to voxel 7 and then to detector k in a total
time of ¢t. Let W;;(t) and ®;;(t) be the photon intensities at voxel i at time t due
to photons injected from source j and detector k, respectively; then:

t
Afjk(i;t} = ApaiViLy, S Dk-/ ‘«I’,-J'(T)Cpf;,(! — 7)dT.
=0
The reduction in a time interval t; = ¢; to {5 is simply
tz
AlLip(i) = f Alj(3;t)dt.
t

Applying the linear approximation as for the CW case, we obtain
ALy = Y wlifApa;, (8)
with
ty t
wiy = VL, S;Dy / f Wi (7)®ik(t — 7)drdt. (9)
1 r=0

The time-dependent photon intensities W;;(¢) and ®;(¢{) can be determined by
Monte Carlo simulations in the same way as for the CW system, except that the
collisions should be counted within separate time intervals.

Using Monte Carlo simulations, the weights for several isotropic scattering and
homogeneous media have been evaluated. Examples of weights for CW backscatter
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measurements are shown in Fig. 3 [12]. These were calculated according to Eq. (7)
for a medium having finite thickness (10 mfp), isotropic scattering, pq: = 0.01, and
detectors located 1 (Panel A) and 5 (Panel B) mfp from the source. For purposes of
visual interpretation, planar cross-sections through the weight functions have been
displayed as contour plots. Not surprisingly, the voxels lying directly beneath the
source and detector have the greatest weights. The weights decreases very rapidly
at increasing depths. This suggests that the maximum depth that can be probed
by CW signals is quite limited.

Fig. 4 shows weight functions for TR signals calculated according to Eq. (9)
[14]. These results are displayed in the same manner as those in Fig. 3. For an
early time interval (Panel A: t;=9-10 mfp), all the detected photons are restricted
to a small finite volume. This suggests that use of early time signals alone may
resolve the voxels near the source and detector. At later times (Panel B: t; = 69-70
mfp), this volume has greatly increased, containing voxels at a greater depth than
in the case of CW signals (Compare to Fig. 3, Panel B). This suggests that using
TR measurement, a greater depth may be probed than with the CW measurement.

In order to evaluate quantitatively the advantages offered by TR over CW mea-
surements, Fig. 5 shows the ratio of the TR weight to the CW weight in each
voxel. The ratios for three cases are illustrated, which differ in source-detector dis-
tances and the time intervals examined. In all three cases, a triphastic trend is
observed. The value of the weight ratio in the vicinity of the source and detector
is less than 1.0. As the distance from these points increases, the ratio at first in-
creases, becoming larger than 1.0, and then declines precipitously. This behavior is
not unexpected. It is interesting that in early time intervals, for detectors located
close to the source (Panel A: r=1 mfp, {;=19-20 mfp), the position of the region
of greatest sensitivity from TR measurements is located outside the region between
the source and detector. In this example, the value of the ratio reaches a maximum
of approximately 3.0. At later time intervals for the same detector location (Panel
B: t;=69-70 mfp), the maximum value increases to more than 14.0, and occurs at
greater depths. Thus, for this particular source-detector pair, a TR measurement
affords considerable advantages over a CW measurement. The advantage gained
by time-gating in a particular region is, however, highly dependent on the choice of
source-detector pair. When a comparison is made for a similar time interval but at
a greater source-detector separation (Panel C: r=10 mfp, ;=65-70 mfp), the max-
imum value is reduced to only approximately 1.35. In this case, little advantage is
gained by employing a TR measurement.

4 Solution of the Perturbation Equation

The difficulties in solving the perturbation equation are three-fold. First, the di-
mension of the unknown Ax, and hence the weight matrix W, can be extremely
large. Second, the weights for voxels far below the surface are very small, so that
the matrix W is ill-conditioned. This makes the solution sensitive to measurement
noise and numerical errors. The last, and also the most difficult to deal with, is
that the problem may be underdetermined, or ill-posed. This is the case when
there are fewer detector readings than voxels, i.e., M < N, as often will be the case
when only the backscattered field is measured. The problem may still be underde-
termined even when M > N, because the voxels far below the surface cannot be
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“seen” by any detector. Mathematically, the column vectors in W corresponding
to the weights for deep voxels all are nearly zero and hence are correlated, which
makes W rank-deficient. In these cases, there exists an infinite number of solutions
and additional a priori information, e.g., of the type described in Refs. [22-24],
must be incorporated to yield a correct solution.

Until now, we have concentrated on the application of iterative schemes for solv-
ing the perturbation equation. Compared to their counterparts using direct matrix
inversion or pseudo-inversion, these permit progressive reconstruction and selective
use of detector readings, which is very important for preliminary investigations [25].
Moreover, it is much easier to incorporate a priori information in iterative schemes.
An effective iterative scheme must meet at least two requirements: 1) it must con-
verge to a correct solution, and 2) the speed of convergence cannot be too slow.
In the following, we compare two iterative schemes in these regards: the CGD and
POCS methods. We also present a multi-grid reconstruction algorithm which is
faster and in most cases can yield better results.

4.1 Projection onto Convex Sets (POCS)

A set is convez if for any two elements z; and z5 in the set, the linear combination
azr; + (1 — a)z, also belongs to the set, where 0 < a < 1. Geometrically, convex
sets are the sets without holes or concave boundaries. The method of POCS is
applicable in our reconstruction problem if each piece of information about the
unknown medium, e.g., detector readings or other a priori information, confines
the unknowns to a convex set, C;,l = 1,2,..., L, and the desired solution is in the
intersection of these convex sets, i.e, Ax € Nf~;C;. The POCS method reaches a
point in the intersection by projecting the current estimate of the solution onto each
set sequentially and iteratively. Letting ax™ represent the estimate at the n-th
iteration, each step in POCS can be represented by:

Ax(’”'l)=pL°3DL—1°“"P1AX(") _ (10)

Here, P; represents the projection operator onto C; such that P;Ax is the element
in C; that is closest to Ax. The symbol o denotes the sequential concatenation
of two projections. The process in Eq. (10) can be relaxed by replacing P; with
Ti = I+ A(P1—1I), where A; are user-chosen relaxation constants, and 7 stands for
the identity operation. Youla [26] has proved that, as long as the intersection of the
constraint sets is not empty, iterative projections onto these sets using 0 < \; < 2
will converge to their intersection. For a more detailed description of POCS and its
applications in medical imaging, see Refs. [26, 27].

To solve the perturbation equation, each equation in (2) can be regarded as a
convex set constraint described by : C, = {Ax € RN : wl Ax = Al,,} . Here,
RYN denotes the N-dimensional real Euclidean space. The projection onto this set
can be accomplished by [27]:

Al -wl Ax

[lwom[*

W . (11)

Note that the update in (11) is equivalent to the backprojection of the error in an
individual reading in the algebraic reconstruction technique (ART) [17].
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In addition to the measurement constraints, other a priori information can also
be incorporated, as long as it forms convex sets. One constraint that we have used
is the range constraint:

C, = {Ax € RN : Azmin < Az; < Aznmax)

The projection operator is a simple truncation operation [27]. In our simulation,
we have assumed that the real medium always has stronger absorption than the
reference medium such that Az; > 0 or Azpin = 0. An appropriate AZmax is also
chosen, based on our a priori knowledge of the absorption properties of the test
medium. The POCS method using only the measurement and range constraints is
equivalent to the additive form of the weighted ART [17]. But POCS is much more
general, since almost any a priori information that may arise in practice forms a
convex set constraint and can be handled by the POCS method.

A problem with POCS is that its convergence rate can be quite slow. This is
because each projection makes use of one constraint without considering others. To
alleviate this problem, appropriate pre-processing should be conducted to reduce
the number of unknowns as much as possible. One approach is to make further
use of the positivity of Az;. Since Al or Alji in Eq. (1) or (4) is a summation
of positive numbers, each term in the sum should be close to zero if the sum is
very small. This constraint is enforced by setting Az; = 0 if Aljx/wije < T or
Aljji/wijpr < T, where T' is a preset threshold. When T'is selected properly, this
process is very effective in reducing the number of unknowns and speeding up the
reconstruction process.

Another drawback of POCS is that it may fall into a “dead loop” if the constraint
sets formed by the measurements fail to intersect. This is often the case in practice
due to measurement noise. This problem can be circumvented by enlarging each
measurement constraint set to C, = {Ax € RN : | wl Ax — Al |< €m} . The
corresponding projection operator can be accordingly modified from Eq. (11). In
addition, if it is known that the reconstructed image is close to the reference image,
we can add another constraint set: C, = {Ax : ||Ax|| < ¢}. The projection operator
onto this set can be found in Ref. [27]. This projection will regularize the iterative
process so that the solution is never too far from the reference image.

4.2 Least Square Solution Using Gradient Descent Methods

An alternative method for solving the perturbation equation is to minimize the
following squared error:

IWAx — AT||2. (12)

B

E(Ax) = %Z(w:, Ax—Aly)? =

Since E is a quadratic function of Ax, the minimal point can be reached by a
gradient descent method. The basic update operation is described by

g Y (whax™ - ALn)wn = wT(wax™ - AL)  (13)

Ax*t) = Ax(™) —ag. (14)
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Here, g is the gradient at the n-th iteration, and « is called the step-size, which
must be chosen appropriately to guarantee convergence. We see that the gradient
vector in Eq. (13) is equivalent to the summation of the backprojections from all
the readings. Hence, each update described by Eq. (14) is based on the total back-
projection, similar to the simultaneous iterative reconstruction technique (SIRT)
[17].

There are a variety of gradient descent methods. We have concentrated on the
conjugate gradient descent (CGD) algorithm, which is particularly suitable for large-
scale least-squares problems [28]. It modifies the current estimate in the conjugate
gradient direction, which is a linear combination of the previous gradient directions.
Theoretically, the CGD method can reach the optimal solution in no more than N
iterations. In practice, many more iterations are required due to rounding errors. It
is, nevertheless, much faster than the POCS method. In addition, it is more robust
in the presence of noise, since each update is based on the total backprojection.
The error in one measurement will not have as significant an effect on the final
solution as that with POCS-type sequential algorithms. Budinger et al. [29] have
found that, of the many iterative techniques for image reconstruction in emission
computed tomography, the best results and fastest convergence can be achieved

with CGD.

One major problem with CGD is that it is reliable only for overdetermined
problems. In an underdetermined setting, it simply reaches a solution that is closest
to the initial point. It is very difficult to impose non-linear a prior: constraints
to force the CGD process towards the true solution. One method has been to
periodically modify an intermediate solution by projecting it onto convex constraints
not included in the error measure [30]. But this will slow down the convergence of
the method substantially.

4.3 A Multi-Grid Reconstruction Algorithm

Facing the difficulties with POCS and CGD, we have developed a multi-grid pro-
gressive reconstruction scheme. It first obtains a coarse-grid image in which each
cell corresponds to, say, 3 x 3 x 3 voxels in the original medium, and then further
reconstructs the regions of interest (voxels with non-zero values, in our case) on a
finer grid. The weight for a coarse cell is approximated by the sum of the weights
of all the voxels contained in the cell. The reconstruction at each step can be ac-
complished by either CGD or POCS. In most cases, the reconstruction problem at
intermediate levels can be made overdetermined, and the CGD algorithm is prefer-
able since it converges faster. Only the reconstruction at the last level needs to be
accomplished by POCS, if the number of remaining unknowns exceeds the number
of available measurements.

Because the number of unknowns to be resolved at each level is much smaller
than the total number of voxels, the multi-grid method requires much less compu-
tation than CGD or POCS. In addition, such an approach can force the iterative
process to proceed in the correct direction if good solutions can be obtained at
coarse resolutions. Mathematically, this is a way to prevent the iterative process
from being trapped in an undesirable local minimum and enforce a solution that is
correct at various scales. The success of such a scheme, however, depends on the



96 / MEpICAL OPTICAL TOMOGRAPHY

composition of the test medium and the way the coarse grids are formed. Multi-
grid implementation of several iterative algorithms for image reconstruction from
straight-line projections has been studied in [31]. A “local smoothness” property
has been described as the necessary condition for the method to converge faster
than the direct single grid method. This result is applicable to our problem as well.
We have applied this method to CW measurements where the problem is severely
underdetermined.

5 A Progressive Expansion Algorithm for TR Data

We have previously recognized that the gradient of weight as a function of depth
is highly dependent on the tempo-spatial characteristics of the detector. We have
consequently developed a layer-stripping algorithm which progressively evaluates
the data in order of decreasing depth component of the weight gradients [12, 14].
When applied to TR data, this approach offers the additional advantage of reducing
the number of unknowns and dimension of the weight matrix, thereby improving the
determinedness and decreasing computation time. A difficulty with this approach
is that reconstruction errors encountered early on may propagate to later times
and be amplified. A description of this scheme and an approach for reducing the
propagation of errors is described in this section.

5.1 The Progressive Expansion (PE) Algorithm

This algorithm makes use of detector readings in different time intervals separately
and in a progressive manner. The process is illustrated in Fig. 6. In each time
interval, we only consider the region which may contribute to the detector readings
and which is not yet fixed from previous reconstruction stages. The contribution
to the detector readings in this time interval from the voxels solved earlier is first
subtracted. The new unknowns are then solved for by using the perturbation equa-
tion. We have found that, if detector readings are available for every mean free
time (mft) ! after the photons are injected, then the number of voxels having zero
weights will be less than the number of detector readings in some early time inter-
vals. This makes the perturbation equation overdetermined at these times, and the
CGD method can be used reliably. In the meantime, we still apply the positivity
constraint to the reconstruction result after each time interval. Specifically, for a
time interval ¢;, the algorithm is as follows:

Step 1: Find all detectors which may receive signal during ¢; for a given source.
This is accomplished by examining the weights of all the voxels for each source-
detector pair. Only the pairs that have at least one non-zero weight are
considered. The number of detectors found is here denoted as M;. The index
set of source-detector pairs is denoted by M;.

Step 2: Find all the non-fixed voxels which may contribute signals to any of the
detectors determined in Step 1. This is accomplished by including all voxels
that have non-zero weights for at least one of the selected detectors. The
number of voxels found is here denoted by N;,. The set of voxel indices is
denoted by AN.

!One mft is the time it takes a photon to propagate a distance of one mean free path (mfp).
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Step 3: From the detector readings and voxels found in Steps 1 and 2, form the
following set of linear equations:

Z wijkAz; = Alju— Y wiubzi, (j,k) € My
iEN] iEM,... . M-y

or

W,Ax; = AL (15)

Step 4: Find the least squares solution of Eq. (15) for Az;,i € A}, using the CGD
method.

Step 5: Apply the positivity constraint to the reconstructed values. This is ac-
complished by setting Az; = 0 if Az; < 0.

Step 6: Fix Az;,i € ;. Go to the next time interval.

5.2 An Overlapping Scheme

In the algorithm described above, a voxel is solved and fixed when its signal is
first detected. Since the weight of this voxel at this initial time is usually small,
the reconstruction is not reliable. The error in this voxel will further affect the
reconstruction of deeper voxels at later times. In order to overcome this problem, an
overlapping scheme has been developed. In this method, a voxel is not fixed the first
time it is solved. Rather, it is considered in the next several time intervals as well. In
each time interval, new voxels that first contribute signals in this time interval and
certain old voxels are considered. After the solution of the perturbation equation
involving all these voxels, a partial set of the old voxels is fixed. And the next time
interval is considered. This overlapping scheme can greatly reduce the propagation
of reconstruction errors in the proposed PE algorithm and provide more reliable
reconstructions. However, it also leads to several problems. First, the early detected
signals are more ballistic and contain information that is not merged with scattered
signals from other voxels too much. Overlapping will lessen the influence of this
kind of information in the final result. Second, overlapping will increase the number
of unknowns to be solved in each time interval and consequently the computation
time. Too much overlapping may even make the problem underdetermined at very
early time intervals, which will make the reconstruction in the following intervals less
reliable. If we overlap many time intervals at once, the reconstruction problem will
become similar to that in the CW case. Therefore, we need to select the overlapping
interval properly to arrive at a good compromise.

6 Results

The POCS, conjugate gradient descent, multi-grid, and the PE algorithms have
been implemented on a Sparc workstation and a parallel computer testbed, Kilonode
[32]. With POCS, only the measurement and range constraints are used. With the
multi—grid method, two levels of grids are used, the original (in which each voxel is a
cube of volume 1 mfp®) and a coarse representation formed by grouping every 3 x 3 x
3 original voxels. The CGD and POCS methods are respectively used for the coarse
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and fine reconstructions. For each test medium, a corresponding homogeneous
medium was chosen as the reference, and the weights for the reference medium for
the CW and TR cases were calculated, using Monte Carlo methods, according to
Eqs. (7) and (9). The intensity data used in the reconstruction were of two types.
The first is data from Monte Carlo simulations of reflectance measurements. The
second type is calcuated directly from Eq. (3), by multiplying the matrix of Monte
Carlo derived weights and the vector of the absorption coefficients chosen for all
voxels. Reconstruction from calculated data is intended to reveal the achievable
resolution of the proposed methods in the ideal case when the perturbation model
is valid.

The source and detector configurations for various experiments are shown in
Figs. 7 to 10. The reconstructed images are given in Figs. 12 to 20. In all the
figures of the original and reconstructed images, the gray level represents the relative
increase in absorption from the reference media. The degree of darkening is in
proportion to the relative increase. For display purposes, the images have been
scaled to the same minimum and maximum darkness. Hence, the same gray level
may represent different absorption levels in separate figures. In the following, we
present the results for three types of test media separately.

6.1 Media Containing Point Absorbers

To evaluate the capability of the proposed approaches to resolve absorption distribu-
tions at different depths from backscatter measurements alone, we have attempted
the reconstruction of one or two closely juxtaposed point absorbers of size 1 mfp?
buried at various depths in an isotropically scattering half-space. The absorption
coefficient of the background medium is 1 % (i.e., the macroscopic absorption cross—
section is 1% of the total cross-section) and that of the absorber is 5 %. A volume
of size 41 x 41 x 10 mfp? is reconstructed, with a total of 16,810 unit-size voxels.
Only calculated data have been considered for this type of test media.

Results from CW data

Reconstruction results using the CGD, POCS and multigrid methods for a medium
containing a single point absorber at depth 2-3 mfp are presented in Figs. 12(a)—(d).
The reconstructed images by both POCS and CGD methods correctly reveal the
existence of the absorber. But the CGD algorithm does not yield as sharp an image
as the POCS method. In fact, some voxels are given values outside the correct range
with the CGD method. The POCS method yields a nearly perfect reconstruction,
except that the voxel below the absorber is slightly darkened. With the multi-grid
method, a good estimate of the true image is obtained with the coarse grid solution,
and the final result is similar to that obtained by the direct POCS method. In terms
of computation time, the multi-grid method is the fastest of the three. Specifically,
the POCS and CGD methods used 50 and 33 hours of computing time of a SUN
Sparc workstation, while the multi-grid method required only 5 hours.

To compare the convergence behavior of the above algorithms, Fig. 11 presents
their error reduction curves, where the error is as defined in Eq. (12). It is seen that
the CGD algorithm has the fastest convergence rate among these methods. It also
has a smaller final error, although the reconstructed image is not as close to the
true image as those produced by the POCS and multi-grid methods. This implies
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that it converges to a legitimate, but wrong, solution. The convergence rates of the
POCS and multi-grid methods are comparable to each other, with the latter being
more uniform.

Figs. 12(e)—(j) present the results of the multi-grid method for three other point
absorber configurations: a single absorber at depth of 4-5 mfp, and two absorbers
separated by 1 mfp at depths 2-3 and 4-5 mfp. We see that the results for media
containing absorbers at 4-5 mfp are less accurate, with the darkest regions occurring
at depth 3-5 mfp. Many more iterations are required to reach better results. For
example, starting with the image in Fig. 12(j), the use of additional 500 CGD
iterations produced the image in Fig. 12(1). The reason for the requirement of more
iterations is that the weights for deeper voxels are much smaller than those for
shallower voxels, so the iterative algorithm does not change the deeper voxels until
the shallower voxels have been solved.

Results from Calculated TR Data

Reconstruction results for the medium containing a single point absorber at depth
1-2 and 4-5 mfp, respectively, are presented in Figs. 13 and 14. In order to examine
the noise sensitivity of the PE algorithm with and without overlapping, we show
results from noiseless as well as noise-added data. The ratio of the noise variance
to the mean value of the difference in calculated readings is used as the measure of
noise level. It can be seen that overlapping produces a higher quality image in the
presence of noise. Further, a comparison of Figs. 13(d) and 14(d) reveals that in
deeper layers, the reconstructed image is more sensitive to noise. It should be noted
that most of the image artifacts seen at locations away from the central axis of the
source would be expected to vanish had additional source positions been considered.

Reconstructed images at different noise levels, for the medium containing a point
absorber at 1-2 mfp, are presented in Fig. 15. As expected, the reconstruction qual-
ity degrades as the noise level increases, but the result at the 20% noise level is still
quite reasonable. Figs. 16 and 17 show the results for two point absorbers separated
by 1 mfp at depths 1-2 and 4-5 mfp, respectively. The results are similar to the
single absorber case — overlapping significantly outperforms the non-overlapping
case and deeper layers are more sensitive to noise.

Overall, when comparing the above results to those from CW data, it is obvious
that TR data afford better reconstructions.

6.2 A Medium Containing the “T” Absorber

In this section, we present the results for an isotropically scattering medium contain-
ing a “T” shaped black absorber. Fig. 18(a) shows the X-Z (left) and Y-Z (right)
cross-sections of the medium. Figs. 18(b)-(d) show the reconstruction results by the
CGD and multi-grid methods, using simulated CW data. The multi-grid method
correctly identified the existence of a strong absorber, although the absorption level
in the “cap” of the “T” absorber was underestimated, and the “stem” is smeared.

For TR measurements, we have attempted reconstructions from both calculated
and simulated data. For the simulated data, two different detector configurations
are used. Fig. 19(b) shows the result by the PE algorithm based on calculated
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data. The reconstructed image has a sharp transition at the “cap” of the “T” but
there is evidence of image degradation at greater depths. This is due to numerical
errors, as well as to the propagation of reconstruction errors. Figs. 19(c) and 19(d)
show images reconstructed from the Monte Carlo simulation data but employing
the detector distributions in Figs. 10(a) and 10(b), respectively. The poor result
seen in Fig. 19(c) is a consequence of too great a spacing between the detectors
(Fig. 10(a)). When the denser packing of detectors (Fig. 10(b)) was used, a much
better result was obtained, in which the “cap” of the “T” was reconstructed quite
accurately but the “stem” was smeared.

Note that the changes in detector readings in the presence of such a large black
absorber will not follow the perturbation model accurately. In general, the rate of
increase in Al,, is less than linear with increasing Az;. Nevertheless, as shown
here, the reconstructed images based on this model contain a sharp darkening in
the region where the “T” absorber is located. This is a very encouraging result as
it suggests that even with a reference medium that is quite different from the real
medium, one iteration of the perturbation method may yield useful results.

6.3 A Three-Layer Medium

To evaluate the effect of the accuracy of the reference medium on the reconstruction
results, we have attempted to reconstruct a three-layer medium using a homoge-
neous medium as the reference. The original medium is shown in Fig. 20(a). It
is 10 mfp thick, and the three layers are located from 0-3, 3-7, and 7-10 mfp, re-
spectively. The absorption coefficient of the first and third layers is 1%, and that
of the middle layer is 5%. For simplicity, we assume it is known that the medium
has a stratified structure. With this assumption, a perturbation equation with only
10 unknowns can be set up, each representing the absorption property of a single
layer. The weight for each layer is obtained by summing the weights for all the
voxels in it. A homogeneous medium with an absorption cross—section of 1% of the
total cross—section is used as the reference.

Results from Calculated and Simulated CW Data

To evaluate the effect of the accuracy of the weights on the reconstruction results,
the weight functions have been calculated for both the target and reference media.
These two sets of weights will be referred to as the three-layer weights and half-
space weighls, respectively. Two sets of readings are tested: one is calculated, using
the three-layer weights; the other is obtained from Monte-Carlo simulations. In
each case, the reconstruction is performed using both the three-layer and half-space
weights.

The reconstructed images in various cases are shown in Figs. 20(b)—-(e). Fig. 20(b)
is obtained from the calculated CW data, using three-layer weights. The transition
from the first to the second layer is accurately reconstructed, but the transition
from the second to the third is blurred. When the half-space weights are used, an
incorrect image resulted (Fig. 20(c)), with a darker and narrower layer appearing
before the true second layer. This is reasonable, since the half-space weights used
in the planes within and below the second layer are larger than the three-layer
weights.
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With the simulated CW data, when the three-layer weights are used (Fig. 20(d)),
the algorithm reveals correctly, with slight blurring, the three-layer structure. But
the absorption level of the second layer is overestimated and its thickness is under-
estimated. With the half-space weights (Fig. 20(e)), the transition from the first to
the second layer is further blurred, and as with the calculated data, the thickness
of the second layer is underestimated. This is as expected, since the perturbation
model is not valid in the presence of a non-localized variation between the true and
reference media. In order to obtain a more accurate reconstruction, the pertur-
bation method should be iterated several times, as described in Sec. 2, with the
reference medium and weights being updated after each step.

Results from Simulated TR Data

Fig. 20(f) shows the reconstruction result from simulated TR data using the weights
calculated for the half-space reference medium. As expected, this reconstruction
result is much more accurate than the reconstruction from CW data. The three-
layer structure is correctly revealed, with slight blurring. The transition between
the first and second layers was correctly reconstructed and the transition from the
second to third was less accurate. As with the CW data, the absorption level of the
second layer is overestimated and its thickness underestimated.

7 Discussion

On first consideration, image reconstruction based on the analysis of highly
scattered signals appears infeasible. It is clear that the radiation transport equation
correctly describes the relation between the internal structure of a medium and the
angular intensity at its surface, but no closed—form solutions are available to the
general inverse problem. In our attempt to develop practical imaging algorithms,
we chose to apply a perturbation approach. This allows the problem of solving an
integro-differential equation to be recast as a much simpler one of solving a system
of linear equations. Several difficulties, both theoretical and numerical, inevitably
arise when this approach is taken. Among the important questions are how should
one choose a reference medium, and how should the elements of I, and W be
measured or calculated? In addition, the linear assumption used in the perturbation
model is accurate only when the reference is similar to the target medium. It
thus becomes important to examine the degradation of the reconstruction quality
when this assumption is increasingly violated. Other important questions are, how
sensitive is the reconstruction algorithm to noise in the measurement of Iy and I,
and how can an accurate, or at least approximately accurate solution be obtained?
The studies presented here were directed to partially answer some of these questions.

Theoretical derivations were presented to show how weight functions can be
practically calculated for a reference medium with any desired set of properties.
As the particular examples shown all dealt with model media in which the correct
structure for the reference was known in advance, the problem of finding the best
reference without a priori knowledge of the medium has not been emphasized here.
One approach would be to empirically relate MRI data to absorption and scat-
tering coefficients of tissue, thereby permitting consideration of non-homogeneous
reference media.
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The decision to use iterative rather than direct algorithms was made because
these allowed us to incorporate strategies for reducing numerical errors and noise
sensitivity, and for transforming an underdetermined problem into one which is
overdetermined. Each of the methods described here has some particular advantage.

e POCS is well-suited for underdetermined problems because of its ability to in-
corporate additional information and constraints to a solution that lies within
the reasonable set.

o The multigrid algorithm can reduce the effect of error in the weight calcula-
tion by averaging the weights over a larger volume. It also reduces the number
of unknowns in two ways. First, because the coarse grid contains many fewer
voxels than the finer grids; second, because coarse-level reconstructions can
identify large regions that are not of interest, and whose properties can there-
fore be fixed in finer-level reconstructions. Either or both of these may make
the problem overdetermined, allowing use of the faster CGD algorithm instead

of POCS.

e The PE algorithm for TR-data reconstructions also reduces the number of
unknowns, by considering only the small set of voxels with non-zero weights
in early time windows, and fixing the absorption coefficients in these voxels at
later times. This also leads to the separation of the contributions of different
voxels to the measured elements of AL This type of algorithms can greatly
increase the depth at which reasonable reconstructions can be obtained.

The reconstructions presented here include examples in which a given target
medium was compared to more than one reference medium. The results indicate
that the linear perturbation model is robust to variation in Io and W, at least for the
relatively simple structures considered here. While useful images of complex media
would likely require iterative updates of these quantities, results shown indicate
that a useful image can be obtained from a single step of the perturbation model.

The perturbation approach, and the algorithms presented here, can be used in
a complementary manner with other strategies under consideration. Schlereth et
al. [32] have formulated image reconstruction as a learning problem in a neural net
structure. This method iteratively updates the current image estimate (i.e. the
node properties) until values calculated for photon fluxes (i.e. the output of the
net) match those measured (i.e. the training vector). This method, taken from
suggestions by Singer et al. [33] and Griinbaum et al. [34], offers great flexibility
in modeling the forward problem. When provided with a good initial estimate
of the structure of the target medium, it yields accurate and numerically stable
results. The method by Singer et al. [33] and Griinbaum et al. [34] use a general
mathematical model, derived from the discretization of the transport equation in
both the spatial and angular domains. It is applicable to arbitrarily shaped objects,
and permits iterative estimation of both the absorption and scattering coefficients of
a target medium. However, the overwhelming amount of computation required has
limited them, so far, to evaluation of media having few voxels (i.e. ~ 100). Using a
method similar to the perturbation model described here is the approach of Arridge
et al. [21,35], which makes use of the diffusion approximation to the transport
equation. Closed-form solutions for the scattered field and its gradient have been
derived, and used for reconstruction of cylindrical media. They have also adopted a
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finite element calculation for computing solutions to the diffusion equation [36]. An
important aspect of this work is the emphasis placed on regularization methods for
restricting the solutions to those that are physically reasonable. We anticipate that
further algorithmic developments by our group will incorporate similar techniques
to complement the use of a priori information for restricting the set of allowed
solutions.
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List of Figures

. Schematic of an optical imaging system.

Iterative perturbation approach. F represent the function relating Ax and
AL F' represents the gradient, W+ Ax represents the solution of the pertur-
bation equation.

. Contour plots of vertical sections through CW weight functions. Plane of

section is y = 50, with light source directed normal to surface at (50,50, 0).
Detector is located at (51,50,0) (Panel A) or (55,50,0) (Panel B), and is
inclined 10° from normal, so that the source and detector intersect at a point
below the surface (z > 0).

. Contour plots of vertical sections through TR weight functions. Plane of

section, source and detector configurations are the same as in Fig. 3(b). The
time interval of measurement is 9-10 mfp (Panel A) or 69-70 mfp (Panel B).

. Contour plots of ratios of TR weights relative to CW weights. Plane of section

and source configuration are the same as in Fig. 3 and Fig. 4. Detector is
located at (51,50,0) (Panels A and B) or (60,50,0) (Panel C). The time
interval of measurement for the TR Weights is 19-20 mfp (Panel A) or 69-70
mfp (Panels B and C).

. Sketch of the progressive expansion or layer stripping algorithm for recon-

struction from TR data. By first considering readings in earlier time intervals
(Panel A), a reliable reconstruction of the regions close to the surface can be
obtained (Panel B). With the surface layer known, readings in later time in-
tervals are considered, to allow reconstruction of deeper layers of the medium.

. (a) Source locations for the point absorber and three-layer simulations using

CW data; (b) Position and orientation of detectors about each source: “ ”
and “x” indicate positions at which the detector was inclined 10° and 80°
from the normal, respectively. “ ” indicates positions in which measurements
were made in both orientations. In every experiment, the azimuthal angle of
the detector was chosen such that the source and detector axes intersected
at a point below the surface. Each detector received photons within a cone
extending 10° from the centered axis, for an acceptance solid angle of ~ .095
ST.

. Source locations for the T absorber simulation using CW measurements. The

detector position for each source is the same as in Fig. 7(b).

Source locations for simulations using TR measurements: (a) for calculated
data; (b) for simulated data of the “T” absorber.

Detector locations for simulations using TR measurements. Detectors were
normal to the surface. Each detector received photons within a cone extending
[T 1]

10? from the central axis, for an acceptance solid angle of ~ .095 sr. “v
indicates location of the source.

Convergence behaviors of the three reconstruction schemes for the medium
shown in Fig. 12(a).
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Results for media containing a point absorber from calculated data: (a) orig-
inal: a single absorber at 2-3 mfp; (b)—(c) reconstructions of (a) by CGD
(b) and POCS (c), both after 100 iterations; (k) coarse-grid solution of (a)
by multi-grid (using CGD); (d) fine-grid solution of (a) by multi-grid (using
POCS, 100 iterations); (e) original: a single absorber at 4-5 mfp; (f) fine—grid
solution of (e) by multi-grid (using POCS, 200 iterations); (g) original: two
absorbers 1 mfp apart at depth 2-3 mfp; (h) fine—grid solution of (g) by multi-
grid (using POCS, 200 iterations); (i) original: two absorbers 1 mfp apart at
depth 4-5 mfp; (j) fine-grid solution of (i) by multi-grid (using POCS, 200
iterations); (1) fine-grid solution of (i) by multi-grid with additional 500 CGD
iterations starting from (j).

Reconstruction of the medium containing a point absorber at depth 1-2 mfp,
from calculated TR data. The source configuration is as shown in Fig. 10(a).
The detectors are uniformly distributed on the surface, separated by 1 mfp in
each direction, within a radius of 10 mfp. The images on the left shows the Y-
Z cross-section and those on the right the X-Z cross-section. (a) Original; (b)
Reconstruction from noiseless data without overlapping; (b) Reconstruction
from noise-added data without overlapping; the noise level is 2%. (d) Recon-
struction from noise-added data with an overlapping interval of 3 mfp. All
the reconstruction results are obtained by considering data received between
1-12 mfp using a time interval of 1 mfp. “v” indicates location of source.
Images shown here were limited to within a hemisphere of 6 mfp originating

from the position of the photon entry.

Reconstruction of the medium containing a point absorber at depth 4-5 mfp,
from calculated TR data. The source-detector configuration is the same as
in Fig. 13. (a) Original; (b) Reconstruction from noiseless data, without over-
lapping, after 20 time windows of width 1 mfp (i.e., 0-1, 1-2, ..., 19-20); (c)
Reconstruction from noise-added data without overlapping; The noise level is
10%. (d) Reconstruction from noise-added data with an overlapping interval
of 3 mfp. The results in (b), (¢) and (d) are limited to within hemispheres of
10,6, and 5 mfp originating from the point of photon entry respectively.

Reconstruction of the medium in Fig. 13(a) at different noise levels from
calculated TR data. The noise levels are, respectively (a) 1%, (b) 5%, (c) 10%,
and (d) 20%. All the reconstruction results are obtained with an overlapping
interval of 3 mfp, after 12 time windows of width 1 mfp (i.e., 0-1, 1-2, ...,
11-12). Volume of medium considered in the reconstructed images is the same
as in Fig. 13.

Reconstruction of the medium containing two point absorbers separated by
1 mfp at depth 1-2 mfp, from calculated TR data. The source-detector
configuration is the same as in Fig. 13. (a) Original; (b) Reconstruction from
noiseless data without overlapping; (c¢) Reconstruction from noise-added data
without overlapping; the noise level is 2%. (d) Reconstruction from noise—
added data, with an overlapping interval of 3 mfp. All the reconstruction
results are obtained after 14 time windows of width 1 mfp. The results in (b),
(c) and (d) are limited to the regions within hemispheres of 10, 7, and 6 mfp
originating from the point of entry, respectively.
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17,

18.

19.

20.

Reconstruction of the medium containing two point absorbers separated by
1 mfp at depth 4-5 mfp, from calculated TR data. The source and detector
configuration is the same as in Fig. 13. (a) Original; (b) Reconstruction from
noiseless data, without overlapping, after 20 time windows of width 1 mfp; (c)
Reconstruction from noise-added data, without overlapping; the noise level is
10%. (d) Reconstruction from noise-added data, with an overlapping interval
of 3 mfp. The result in (c) and (d) are both obtained after 14 time windows.
Volume of medium considered in the reconstructed image is the same as in
Fig. 16.

Reconstruction of the medium containing the “T” absorber, from simulated
CW data. Left column: X-Z cross-section, right column: Y-Z cross—section.
Within each column: (a) original medium, (b) reconstruction by CGD, 200
iterations; (c) coarse-grid solution by multi-grid (using CGD); and (d) fine-
grid solution by multi-grid (using POCS, 200 iterations).

Reconstruction of the medium containing the “T” absorber, from calculated
and simulated TR data. Left column: Y-Z cross-section, right column: X-Z
cross—section. (a) Original; (b) Reconstruction from calculated data after 16
time windows of width 1 mfp (i.e., 0-1, 1-2, ..., 15-16), without overlapping;
the source and detector configuration is the same as in Fig. 13. (c) Recon-
struction from simulated data after 9 time windows of width 2 mfp (i.e., 0-2,
2-4, ..., 16-18), with an overlapping interval of 2 mfp; the source and de-
tector configurations are as shown in Figs. 9(b) and 10(a), respectively. (d)
The same as in (d), except that the detector configuration is as shown in
Fig. 10(b).

Results for the three-layer medium, assuming planar structure is known: (a)
original medium; (b—c) reconstructions from calculated CW data using the
three-layer (b) and half-space (c) weights; (d—e) reconstructions from simu-
lated CW data using three-layer (d) and half-space (e) weights; (f) reconstruc-
tion from simulated TR data using half-space weights; the result is obtained
after 10 time windows of width 2 mfp (i.e., 0-2, 2-4, ..., 18-20), with an
overlapping interval of 2 mfp. For the CW cases, the source and detector con-
figurations are as shown in Figs. 9(a) and 9(b). For the TR case, the sources
are located uniformly over a 17 x 17 mfp? region in a grid-like manner sepa-
rated by 1 mfp in each direction; the detector configuration for each source is
shown in Fig. 10(c).
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Figure 1.

Initial estimate x(0);
Measurement data I3

Forward solution:
I(k) = F[x(k)] ; W(k)=F

[x(k)]

.

Al(k)=1I(k) -1

x(k+1) = x(k) + A x(k)

:

Inverse solution:
Ax(k) = W5 A T(k) |

b
Y N

Figure 2.
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Figure 6.
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